

Theoretical study of the lowest - lying states of LuI located below 40 000 cm-1

J. Assaf (1,2), S. Magnier (1), F. Taher (3), and F. Haj Hassan (4)

(1) Laboratoire de PhLAM, Universite Lille 1 Sciences et Technologies, France. (joumana.assaf@yahoo.com), (2) Universite Libanaise, Ecole doctorale des Sciences et Technologies, Liban., (3) Universite Libanaise, Faculte de Genie (III), Liban., (4) Universite Libanaise, Faculte des Sciences (I), Liban.

A theoretical investigation of the lowest-lying electronic states of Lutetium monoiodide LuI molecule is presented. Calculations have been performed through CASSCF and MRCI (single and double excitations) methods, in a range of internuclear distance R from 1.80 (Å) to 3.50 (Å), taking without and with the Spin-orbit coupling. The Lutetium atom is described by a relativistic pseudopotential ECP28 [1] while for the Iodine atom, the pseudopotential ECP 46 is used [2]. Calculations have been performed via the computational chemistry program MOLPRO [3]. Potential energy curves of the lowest-lying $22\ 2S+1\Lambda^{(\pm)}$ electronic states located below 40.000 cm⁻¹ and that of the corresponding $43\ 2s+1\Omega^{(+/-)}$ molecular states have been determined. Spectroscopic constants (Re (Å), ω_e , Te, Be in cm⁻¹) have been calculated and part of the results are compared with available experimental and theoretical values [4, 5]. A satisfying agreement has been obtained. Calculations have been used to predict the spin - orbit constant (A) in different triplet states of $\Lambda \neq 0$ and the composition (in percentage) of state wavefunctions in term of $2s+1\Omega^{(+/-)}$. A discussion is done to identify the Hund' case in LuI.

References:

- [1] X. Cao, M. Dolg, J. Chem. Phys., 115, 7348 (2001).
- [2] H. Stoll, B. Metz, M. Dolg, J. Comput. Chem., 23, 767 (2002).
- [3] J. Werner, P.J. Knowles, with contributions from R.D. Amos, A. Berning, D.L. Cooper, P.J. Knowles and H.-J. Werner, "Chem. Phys. Lett.", 115, 5053.
- [4] J. Kramer, J. Chem. Phys., 69 (6), 15 September (1978).
- [5] V. Solomonik , A. Smirnov, J. Struct. Chem., 46, (6), 973-978, (2005).