

APC: A New Code For Atmospheric Polarization Computations

A. Lyapustin (1) and S. Korkin (2)

(1) NASA Goddard Space Flight Center, Greenbelt, Code 613, MD, USA (Alexei.I.Lyapustin@nasa.gov), (2) Universities Space Research Association, Columbia, MD, USA

A new code APC (Atmospheric Polarization Computations) is presented. The diffuse field is decomposed into anisotropic and smooth regular parts. The anisotropic component (AC) is singled out using a small angle method [1], modified for the vector case, and is computed analytically. The problem for the regular part with the AC source function is solved numerically using the Discrete Ordinates Method [2]. A matrix-operator method [3] is used to model vertically inhomogeneous atmospheres. A bidirectional surface reflection models for the land and wind ruffled ocean surface are adapted from the code SHARM [4]. An automatic criterion is introduced to control the azimuthal (Fourier) convergence of the vector solution. The kernel model of spherical or spheroidal scattering [5] is incorporated as part of APC via a convenient interface. A scaling transformation [6] is used to avoid the instability of solution in optically thick atmospheres. The APC code is written in Fortran 90/95 using LAPACK libraries and validated against RT3 [7] and SCIATRAN [8] codes. Examples of APC simulations for polarimetric remote sensing will be presented.

- [1] Astakhov IE, Budak VP, Lisitsin DV, Selivanov VA, Atmospheric and Oceanic Optics, 1994, V7, 398.
- [2] Siewert CE, JQSRT, 2000, V64, 227.
- [3] Plass GN, Kattawar GW, Catchings FE, Appl. Optics, 1973, V12, 314.
- [4] Lyapustin AI, Appl. Optics, 2005, V44, 7764.
- [5] Dubovik O, Sinyuk A, Lapyonok T, et al., J. Geoph. Res., 2006, V111, D11208.
- [6] Karp AH, Greenstadt J, Fillmore JA, JQSRT, 1980, V24, 391.
- [7] Evans KF, Stephens GL, JQSRT, 1991, V46, 413.
- [8] Rozanov VV, Kokhanovsky AA, Atm.Res., 2006, V79, 241.