

The mirror symmetry principle for radiation fields in a vertically non-uniform atmospheric slab

O.I. Smokty

St. Petersburg Institute of Informatics and Automation of Russian Academy of Sciences, 14th Line, 39, PB 199178 St. Petersburg, Russia (soi@iias.spb.su)

The fundamental problem of mirror spatial-angular symmetry of extended radiation fields in a vertically non-uniform plane-parallel atmosphere is considered. New approach to the mentioned problem generalizes an appropriate analytical consideration in the case of vertically uniform atmospheric slab is also studied [1]. Exact conditions of adequate mapping for the own mirror symmetry properties of a vertically non-uniform slab into multiple light scattering have been established. The mirror symmetry principle for scalar and polarized radiation fields of a vertically non-uniform plane-parallel atmosphere is performed. Mentioned principle generalizes the analogous symmetry principle in the case of a vertically uniform atmospheric slab [2]. The principle of mirror images (symmetry) and appropriate invariant relations take into account arbitrary vertical non-uniformities and any energetic sources' distribution. Basic content of given principle is as follows: the sum of initial and mirror radiation fields is a spatial-angular invariant value which is relatively mutual for mirror transfer of optical levels, vision directions and primary energetic sources. Application of previously performed general concept to the spatial-angular radiation fields as well as in uniform case produces a new notation of the radiative transfer theory known as photometrical invariants. However, in contradistinction to the uniform slab [3], the mirror radiation field in the non-uniform case cannot be calculated, making direct use of initial radiation field. In present paper the new algorithm of numerical determination of initial radiation field in arbitrary non-uniform atmospheric slab based on the mentioned above mirror symmetry principle is performed.

References

1. Smokty O. I. Mirror Symmetry Principle in Radiative Transfer Theory, Proc. Of IGARSS'93, Tokyo, Koga Kuin Univ., 1993, pp. 1960-1962.
2. Smokty O. I. Development of Radiative Transfer Theory on the Basis of Mirror Symmetry Principle. Current Problems in Atmospheric Radiation, Publ. Hampton, 2001, p. 341-344.
3. Smokty O. I. Modeling of Radiation Fields in Problems of Space Spectrophotometry, Leningrad, Publ. Co. Nauka, 1986, 352p.