Quantifying the effect of post-wildfire soil water repellency on runoff

Rose Shillito1, Markus Berli2, Ian Floyd1, Li Chen2, and Teamrat Ghezzehei3

1USACE Research and Development Center, Coastal Hydraulics Lab, Vicksburg, United States of America (rose.m.shillito@erdc.dren.mil)
2Desert Research Institute, Division of Hydrologic Sciences, Las Vegas, NV, USA
3Life & Environmental Sciences, UC Merced, Merced, CA, USA

Several factors are believed to contribute to post-wildfire flooding and debris flows. One contributing factor—the occurrence of post-wildfire soil water repellency—lacks a quantitative mechanism to incorporate the effects in physically-based runoff models. For this study, a physically-based model was developed linking the contact angle (degree of water repellency) to sorptivity. The model was verified in laboratory experiments using a silica sand proxy. The effects of water repellency on infiltration were illustrated. Further, the effect of water repellency on runoff was simulated using the AGWA-KINEROS2 watershed model with data from rainfall following the 2009 Station fire in the San Gabriel Mountains of southern California, USA. Results show water repellency has a quantifiable effect on runoff production, an effect enhanced by the dry soil moisture conditions common after wildfires.