
WPS-BASED TECHNOLOGY FOR CLIENT-SIDE REMOTE SENSING DATA

PROCESSING

E. Kazakov, A. Terekhov, E. Kapralov, E. Panidi *

Saint-Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,

33-35 10-th line V.O., 199178 Saint-Petersburg, Russia – panidi@yandex.ru

KEY WORDS: Remote Sensing Data Web Processing, Web Processing Services, OGC WPS, Client-Side Web Geoprocessing,

Hybrid Geoprocessing Web Services

ABSTRACT:

Server-side processing is principal for most of the current Web-based geospatial data processing tools. However, in some cases the

client-side geoprocessing may be more convenient and acceptable. This study is dedicated to the development of methodology and

techniques of Web services elaboration, which allow the client-side geoprocessing also. The practical objectives of the research are

focused on the remote sensing data processing, which are one of the most resource-intensive data types.

The idea underlying the study is to propose such geoprocessing Web service schema that will be compatible with the current server-

oriented Open Geospatial Consortium standard (OGC WPS standard), and additionally will allow to run the processing on the client,

transmitting processing tool (executable code) over the network instead of the data. At the same time, the unity of executable code

must be preserved, and the transmitted code should be the same to that is used for server-side processing. This unity should provide

unconditional identity of the processing results that performed using of any schema. The appropriate services are pointed by the authors

as a Hybrid Geoprocessing Web Services (HGWSs).

The common approaches to architecture and structure of the HGWSs are proposed at the current stage as like as a number of service

prototypes. For the testing of selected approaches, the geoportal prototype was implemented, which provides access to created HGWS.

Further works are conducted on the formalization of platform independent HGWSs implementation techniques, and on the approaches

to conceptualization of theirs safe use and chaining possibilities.

The proposed schema of HGWSs implementation could become one of the possible solutions for the distributed systems, assuming

that the processing servers could play the role of the clients connecting to the service supply server.

The study was partially supported by Russian Foundation for Basic Research (RFBR), research project No. 13-05-12079 ofi_m.

1. PROJECT MOTIVATION

Web-based geospatial data representation and data manipulation

technologies got extensive development and rapid growth in

recent years. The improvement of the network infrastructure and

hardware facilities entails enhancement of transfer and store

abilities when operating with large geospatial datasets, which are

especially important when using remote sensing data.

Additionally, the improvements of Web software technologies

become the basis for the implementation of Web-based systems,

which able not only to transfer and display the geospatial data

through the Web, but also to provide tools for geoprocessing and

spatial analysis using Web interface, directly in the Web browser.

The Web 2.0 paradigm (Governor, 2009), the concept of SaaS,

i.e. Software as a Service, (Software & Information Industry

Association, 2001) and the HTML51 standard should be

mentioned as examples of such improvements. The development

of interactive data manipulation techniques is one of the current

trends in geospatial Web.

An important phase in the development of technologies for

processing geospatial data in the Web was the publication of the

Open Geospatial Consortium Web Processing Service (OGC

WPS) standard in 2007 (Schut ed., 2007). This international

standard formalized the Web implementation rules for the

services of geospatial data processing. The standard describes the

order of request-response interaction between server and client

* Corresponding author.
1 http://www.w3.org/TR/html5/
2 http://www.arcgis.com

computers, when accessing geospatial data processing services

via Web.

However, a significant feature of the open source WPS standard

and of the proprietary ecosystems (e.g. ESRI ArcGIS Online2),

which allow Web publishing of the geoprocessing tools, is their

focusing on the server-side data processing. The software tools

that provide decentralized data processing, on the client side or

using grid computations, are developed only within the sporadic

research projects (Coene at al., 2007) or referred by some authors

as a promising concept (Keens ed., 2007).

Nevertheless, in some situations, the use of server-side

computations for geospatial data processing may be unjustified

or inconvenient. For example, when the user handles the data,

which have distribution restrictions, and cannot be transmitted to

a third-party server. In this and in some other situations, a

possible solution is to transmit the executable code from the

server to the client instead of transmitting the raw data to the

server for processing (Panidi, 2013). In this case, the problem is

reduced to providing of executable code portability, i.e. the

software components suitability for use on the client side without

installation. Additionally, the facilities for execution and running

of the code on the client should be provided.

Moreover, to provide maximum flexibility of the geoprocessing

schema and maximum comfort for user, it is reasonable to

provide the choice possibility for running processing on the

server or on the client side. At the same time, of course, the unity

of the executable code should be ensured. It means the possibility

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-102-1

of use the same computational core on the server and on the

client, to provide identical processing results, either of the client-

side or server-side computations.

In general, the industrial scale technologies for client-side

computations are standardized and used widely. However, in the

case of geospatial data processing, the main obstacle to the

development of the software tools, which can be requested via

the Web and can be executed optionally on the server or client

side, is the absence of common approaches and standards. This

finding became the starting point of our project.

2. PROJECT SCOPE AND TOOLS

Currently the OGC WPS is the only international standard that

regulates the implementation rules for geoprocessing Web

services. Due to this fact, we decided to use it as a basis of our

elaborations. Thus, the main objective of the project was the

development of the WPS standard extensions, which would

provide not only geoprocessing on the server side, but also

transmitting executable code and running it on the client. We

suppose that this novation will not violate current conventional

approaches to the Web geoservices implementation. Moreover, it

will provide a synergistic effect by adding more flexible

implementation schema.

Current WPS standard assumes three types of client requests to

be executed one by one:

1. getCapabilities request

2. describeProcess request

3. execute request

The first one allows the client to request and receive an XML file

containing the metadata of the WPS compatible service that

published on the server. Metadata file contains the names and

general descriptions of the separate processes available as part of

this service.

The describeProcess request allows to get another XML file with

a detailed description of one or more processes. This file contains

number and types of the inputs and outputs for each process.

Finally, the execute request allows to transmit an XML file to the

server, with the input values required for the process execution.

If necessary, it includes links to the local files to be uploaded.

As a result of the execute request the server returns another XML

file that contains calculation results or links to output files.

Our idea is to introduce a fourth type of request named getProcess

request (Panidi, 2014). This request must be generated using the

results of getCapabilities and describeProcess requests. As a

response on this request, the server should return to the client a

detailed description and download links to the software

components that are required for selected process or processes

execution on the client side (Figure 1).

Figure 1. Modified WPS Interface Diagram with getProcess

method added

3 http://www.python.org
4 http://www.java.com

The described approach will allow to implement geoprocessing

Web services suitable for use with the existing WPS clients, as

well as newly developed, which will be capable to support the

loading of executable geoprocessing code and to run it on the

client side. Services with a similar double sided architecture we

offer to name as Hybrid Geoprocessing Web Services (Panidi,

2013).

3. FUNCTIONALITY SCHEMA

Due to the fact that the usual client-server paradigm, which the

current WPS standard version assumes, will be added with a new

method, there is a need to revise some data structure organization

on the server side.

A basic description of each process must be supplemented with

two entities:

1. A flag indicating availability of the client side version

of the process for a particular software platform

2. List of modules and applications required to be

downloaded on the client for local execution

In addition, to describe the software components that can be

downloaded, we propose two new notions, which are functional

modules (fModules) and extra applications (extraApps).

The term functional modules denotes the separate files that

playing the role of containers for processing algorithms. The code

presented in these files explicitly in the form of some functions,

program classes or scripts. These can be Python3 scripts, DLLs

(Dynamic Link Libraries), Java4 bitecode files etc., depending on

the client operating system and runtime environment which are

used for the process execution.

Extra applications are active software components with a

particular functionality that can be executed directly. Any

compiled programs for geospatial data processing, that are able

to run in the client operating system after downloading, can be

used as extra application, including programs that require

runtime engine (e.g. Python and Java programs). Good examples

of such programs are open source SAGA5 GIS, GRASS6 GIS,

and others.

Transmitting of extraApps to the client computer should be

conducted in a minimum configuration (core only) and in

portable-assembly. Software components, which are not included

in the program core, should be transmitted as fModules.

Therefore, every process designed for execution on the client

side, could be composed of an unlimited number of functional

modules, which provide particular processing algorithms. Each

module must have a unique name and should be organized into a

file of specific type. The module should be supplemented with

description, table of compatibility with different operating

systems, and list of additional program resources, which are used

in this module (for example, it can refer to io_gdal module that

executed through the SAGA command line, which is used as

extraApp to provide this execution).

As the software components are obtained from the server, the

mirror program structure is formed on the client. However, this

structure is filled out with the components of the loaded processes

and their dependencies only (Figure 2).

To organize software components downloading and

geoprocesses running on the client computer, the special software

client should be deployed in the client operating system. This

software client plays the roles of the user interface and runtime

environment for client side geoprocessing. As in the case of

current WPS standard, the software client can be implemented in

any form of Web browser interface, and in the form of a desktop

graphical user interface (standalone or as a part of the desktop

5 http://www.saga-gis.org
6 http://grass.osgeo.org

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-102-1

geoinformation system, i.e. GIS). This software client is direct

provider of the HGWSs in the client environment. However, the

implementation of this runtime environment in the form of

browser-based interface can be difficult, due to the built-in

browser security, which can block execution of the desktop

applications from a browser.

In some cases the HGWS runtime environment must be

complemented by external runtime environment for the code

execution, for example it may be bytecode interpreter.

The objectives of the HGWS runtime environment include the

generation of a graphical user interface and execution of the

process in the case of absence of the process extraApps, which

are suitable for immediate launch.

Figure 2. ER-map of process components located on server and

client

4. PROGRAM INTERFACE IMPLEMENTATION

The general schema of the interaction between the client runtime

environment (RE) and the WPS/HGWS server is a cascade type

and includes four basic steps.

Step one (Figure 3), assumes that the user choose a server and the

client RE establishes connection to it. Client generates standard

request getCapabilities, and receives the response, which is

extended with the desktop-available attribute. For each of the

processes this attribute indicates downloading availability of the

software components for client-side geoprocessing. Client RE

analyzes the response and gets a list of processes that are

available for client-side execution.

Figure 3. First step of data exchange – requesting capabilities

and generating list of available processes

At the step two, the user choose any of the available processes to

execute. After that, the client RE automatically executes a

describeProcess request, and generates a graphical user interface

(UI) for selected process, in the case of desktop execution. The

parameters for UI generation are extracted from describeProcess

response, using its list of process inputs and outputs.

Additionally, the base interface for the process is generated,

which is the program function that enables linking of the

graphical UI and the functional module(s) or extra application(s)

of selected process. At the time of the process execution, the base

interface redirects all the process inputs to the corresponding

functional module or extra application (Figure 4).

Figure 4. Second step of data exchange. Requesting process

details and generating UI and base interface of functional

module

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-102-1

At the step three, the application executes a new request to the

server, which is getProcess. The request involves getting a list of

all required to be downloaded and executed software components

of the process, namely the functional modules and extra

applications (Figure 5). The structure of the request includes a

number of compatibility settings that characterize the client

computer (Table 1).

Figure 5. Third step of data exchange. Requesting process

executable code and downloading program components with

dependencies

Name Presence Description

Request Required
Identifies service request.

Must be "getProcess"

Service Required
Identifies service type. Must

be "HGWS"

Version Required Identifies service version

Identifier Mandatory
Process identifier as listed in

the Capabilities document

Platform Required

Identifies user’s desktop

platform. Could be “Win32”,

“Win64”, “Mac”, “Linux

Debian” etc.

Table 1. getProcess request parameters

The getProcess request schema example is as follows:

http://some.host/server?

 Request=getProcess&

 Service=HGWS&

 Version=x.0.0&

 Platform=Win32

 Identifier=index-NDVI

As a result, the HGWS server returns the XML-document

containing the description of all the software components that are

needed to use the process on the client side. This document

includes unlimited number of descriptions of the functional

modules and extra applications, and all of the components may

refer to each other. Each software component is supplied with the

description and download link. This link can be static or

temporarily generated for downloading at the time.

The schema of this document should be as simple as it is possible.

The example is as follows:

<schema xmlns="…" xmlns:ows="…" xmlns:wps="…" targetN

amespace="…" version="…" xml:lang="…">

7 http://www.iis.net

<annotation>...</annotation>

<import namespace="…"/>

<element name="ProcessExecutableModules">...</element>

<!—Platform parameters-->

<complexType name="Platform">...</complexType>

<!—Modules parameters-->

<complexType name="fModules">

 <complexContent>

 <name>…</name>

 <annotation>…</annotation>

 <compability>…</compability>

 <type>…</type>

 <usedExtraApps>

 <complexContent>

 <name>…</name>

 <annotation>…</annotation>

 <compability>…</compability>

 <type>…</type>

 <downloadLink>…</downloadLink>

 </complexContent>

 </usedExtraApps>

 <downloadLink>…</downloadLink>

 </complexContent>

</complexType>

</schema>

Finally, at the step four, the client RE downloads the functional

modules and extra applications that were not previously

downloaded. The downloaded files are stored on the client so that

the software components can access each other if necessary.

As a result, the client forms the software infrastructure that is

ready to perform computations and data processing (Figure 6).

This infrastructure is accessible through the client RE.

Figure 6. Processes on client side, in the case of desktop client

To implement geoprocessing tools in accordance with the HGWS

concept and to test described principles, the server application

(HGWS server) was developed. This software server works in

conjunction with the Web server (the Microsoft IIS7 was used)

and the WPS server (the PyWPS8 server was used). The HGWS

server is responsible for handling the request getProcess and

generation of links to functional modules and extra applications.

5. USER INTERFACE IMPLEMENTATION

As the described schema of the client-side services execution is

based on the OGC WPS standard, it allows to access the server-

side HGWS services directly using any existing client

applications that implement WPS protocols. Also, some

8 http://pywps.wald.intevation.org

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-102-1

functionality updates and implementation of getProcess request

is needed for accessing the client side services.

As it was mentioned above, the client application could be a Web

application, a desktop application, or a built-in desktop GIS

module (i.e. QGIS9 WPS client). For the proposed approaches

validation and testing, we implemented our own Web client10.

This elaboration is needed because of two main reasons, which

are the unsuitability of existing software clients to full support of

HGWS schema, and secondly, the need to have a full and clear

access to the source code of the client.

Concerning the suitability for client-side geoprocessing, the

client should be able to parse the desktop-available attribute in

the getCapabilities response, and to provide some correct

reactions when this attribute is presented. Firstly, the client must

provide the processes execution in the corresponding client

runtime environment, using getProcess response data.

Additionally, the desktop client should provide graphical user

interface generation, using getCapabilities response data.

Finally, since the server-side process execute response may

include the download links to the processed files (raster, vector

or text data) it leads to a number of potential inconveniences.

When there is a need to have the availability of the processing

results during some time, we should provide some tools for

convenient storing of the links.

The main tasks of the elaborated HGWS Web client include

parameterization and execution of selected processes on the

server side, storage of the obtained geoprocessing results on the

server and providing of the re-access to the stored data. The Web

client also should allow to manage the data storage on the server.

The storage could preserve as downloadable files of the

processed data as well as the user raw data, which could be used

as processing inputs. User access to the storage is also carried out

via the Web client.

Thus, the user cannot lose the processing results links, when

accidentally updating the page, for example. The processing

results can be downloaded at any time and not only immediately

after the processing. On the other hand, there is no need to

download the result, and then upload it to the server as the inputs

for another process. It is important when running a sequence of

processes within a single technological chain.

Provision of the data store abilities requires the implementation

of a registration and authorization system on the server.

Furthermore, to ease personal data store, the user interface should

provide some functionality for metadata representation (e.g. the

number of channels of the raster, raster size, etc.).

Due to these needs, our HGWS Web client was supplemented

with the user's personal account, which is responsible for the

management of data, uploaded by authorized users (Figure 7).

Figure 7. Web interface of the personal account

9 http://www.qgis.org
10 http://195.70.211.131
11 http://en.wikibooks.org/wiki/JavaScript

Web client includes the Web interface and the server

components. The Web interface consists of several Web pages,

which are responsible for the following tasks:

1. Registration data collecting when registering the new

users

2. Entering of the user authorization data

3. Managing of the stored geospatial data on the server

4. Generating and visualizing of a list of available

geoprocesses

5. Parameterizing of the process before execution

6. Sending raw data to the server (if necessary)

7. Getting the server responses and its interpretation

Web interface was implemented using the client-side

JavaScript11 Web scripting language and the jQuery12 JavaScript

library.

Server components of the Web client include a set of the server-

side scripts developed using the PHP13 Web scripting language.

The server components performs:

1. Registration and authentication of the users

2. Validation and storage of the geospatial data, uploaded

by the users

3. Generation of graphic files for each dataset, for

preview in a browser

4. Putting the geoprocessing results into the user store

Currently, users can upload the raster datasets in the GeoTIFF

format, vector datasets in archived Shape-files, and a simple text

files. All the uploaded files are available for renaming,

downloading and deleting.

For the raster datasets, the server generates two JPG images at

uploading. The first one is the image in source data map

projection for previewing directly in a browser, and the second is

the image in personal account Web map projection for visualize

as an overlay on the world map.

After the one of available geoprocesses at the data processing

Web page was selected, the Web interface automatically

generates a Web form for data input with the required number of

input fields. The input type of each field corresponds to the

process input parameter or input dataset, such as single-channel

raster image for example.

Summarizing the description of the elaborated Web client, we

may entitle it as the prototype of geoportal or geoportal interface

designed to provide publication and access capabilities for

HGWSs.

6. CURRENT RESULTS

To provide the client-side execution of the HGWS processes, the

client (desktop) runtime environment application was developed

that can interact with HGWS server. This application

implemented using the Python programing language and the

PyQt414 program library.

When the user selects in the Web interface one of the processes

that is suitable for execution on the client side, and sends a

command to execute it on the client side, the RE application is

downloaded and executed on the client automatically.

The process input parameters specified by user in the Web

interface are transmitted to the client RE interface.

Additionally the RE application can be started by the user

manually, if the corresponding executable file was previously

saved. In the case of direct execution of client RE, user may select

a server to connect indicating two URLs. The first is the WPS

server URL, and the second is the URL of the HGWS server.

After that, the RE application executes getCapabilities request,

12 http://jquery.com
13 http://php.net
14 http://www.riverbankcomputing.co.uk/software/pyqt/intro

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-102-1

using PycURL15 program library, and shows the list of

geoprocesses that are marked as desktop_available in the

getCapabilities response.

For example, when you select the process that converts Digital

Number values into Reflectance values for Landsat 8 remote

sensing imagery (which is implemented using the SAGA

command line) these steps are performed as follows.

RE application executes the describeProcess request, and

generates the graphical user interface using PyQt. Requested

process needs the input parameters to be passed as a links to a

single-channel raster in GeoTIFF format and metadata text file.

Also, the channel item number should be pointed. Accordingly to

these input requirements, the RE application generates three file

input fields (i.e. group of Label, lineEdit and pushButton

graphical interface elements) to select the input files and the

output file name and saving path, as well as a field (i.e. group of

Label and lineEdit) for entering channel item number as a text

(Figure 8).

Figure 8. Graphical UI of the HGWS client RE for desktop

The Python program code fragment, which generates these

graphical user interface components, is as follows:

lineEdit_3 = new QLineEdit(Dialog);

lineEdit_3->setObjectName(QString::fromUtf8("input3:

channel_num"));

lineEdit_3->setGeometry(QRect(30, 160, 211, 20));

pushButton_3 = new QPushButton(Dialog);

pushButton_3->setObjectName(QString::fromUtf8("browse"));

pushButton_3->setGeometry(QRect(260, 160, 75, 23));

Then the base interface is generated (the process input function),

which connects graphical interface elements and software

components that will be downloaded later. Base interface name

is equal to the name of the executed process (in this case

imagery_landsat8_to_reflectance). It stores the data specified in

the user interface of the RE application and then transmits these

data to the process as input parameters.

On the next step, the RE application executes a getProcess

request:

15 http://pycurl.sourceforge.net

http://host/server?

 Request= getProcess&

 Service=HGWS&

 Version=1.0.0&

 Platform=Win64

 Identifier=imagery-landsat8_to_reflectance

HGWS server processes the request and generates the XML

response:

<complexType name="fModules">

 <complexContent>

<name>Imagery_Landsat8_to_reflecatnce_Fmodule</name>

 <annotation>Python module, launching SAGA CMD for

Landsat 8 DN to reflectance transform</annotation>

 <compability>Win64</compability>

 <type>PythonPlainText</type>

 <usedExtraApps>

 <complexContent>

 <name>SagaCMD</name>

 <annotation>OpenSource portable SAGA GIS command

environment</annotation>

 <compability>Win64</compability>

 <type>PortableCMDApp</type>

<downloadLink>host.domen/hjhfSFHjashsd</downloadLink>

 </complexContent>

 </usedExtraApps>

<downloadLink>host.domen/ljsdbnSmujhHJFjshjsf</download

Link>

 </complexContent>

 <complexContent>

 <name>SAGACMD_imagery_tools</name>

 ...

 </complexContent>

 <complexContent>

 <name>SAGACMD_io_gdal</name>

 ...

 </complexContent>

</complexType>

In this XML response the detailed descriptions are presented for

all of the uploadable functional modules and extra applications,

which are used by the selected process (these are the Python

script containing the process main function, the SAGA libraries,

e.g. io_gdal and imagery_tools, and all dependencies of these

libraries).

All these modules refer to SagaCMD as the extra application,

which is portable applications able to execute different SAGA

modules in console mode. This application is transmitted as the

archive containing the executable file and the required

dependencies, without external libraries and modules. The main

function in the Python script calls the SagaCMD, which calls all

other libraries when need.

RE application saves all loaded modules and applications locally,

so when recalling by other processes, this components will not be

loaded again.

After downloading of process program components, the process

can be executed independently of the HGWS server connection

and Internet connection at all.

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-102-1

7. OUTLOOK

At the current stage of the project, we had formulated the HGWS

concept and offered its possible implementation.

The implementation of the client software was elaborated, which

combines elements of Web-based and desktop user interface.

This software is convenient for HGWS processes execution on

the server side and on the client side by the user’s choice. A

testing of the selected implementation is conducted on the

example of the tools for satellite imagery processing.

Possibilities of the getProcess request implementation into the

WPS standard, or development of a separate WPS-compatible

standard, require further study and discussion.

Other promising areas of investigations are the research of more

useful technical implementations of the HGWS conceptual

approach and discussion over the more convenient HGWS XML

schema.

An important issue is also a study of the possibilities of using

various development tools for HGWS processes. Above all, the

study of limitations for the safe running of the executable code

transmitted to the client from the external source, and verification

techniques of the source of executable files, as well as the other

security issues.

Finally, some study required to develop approaches to

atomization and chaining of the HGWS processes for the

implementation of the complex algorithms and processing

techniques.

Despite these issues, which require further study, the first step

towards the development and implementation of HGWSs can be

considered successful. The elaborated software and data

exchange schemas indicate the principal possibility of

implementing a relatively simple technique of geoprocessing

Web services execution on the server or client side by the user’s

choice.

ACKNOWLEDGEMENTS

The study was partially supported by Russian Foundation for

Basic Research (RFBR), research project No. 13-05-12079

ofi_m.

REFERENCES

Coene Y., Marchetti P.G., Smolders S., 2007. Architecture and

Standards for a Distributed Digital Library of Geospatial

Services. Third Italian Research Conference on Digital Library

Systems (IRCDL 2007) Padova 29–30 January 2007 Proceedings

pp. 52–60.

Governor J., Hinchcliffe D., Nickull D., 2009. Web 2.0

Architectures: What entrepreneurs and information architects

need to know. O'Reilly, 276 p.

Kazakov E.E., 2013. Approaches to Implementation of Web

Services for Pro-cessing and Analysis of Remote Sensing Data.

In Proceedings of the Earth Remote Sensing From Space:

Algorithms, Technology, Data - Young Scientists Workshops

(Altai State University, Barnaul, Russia, October 2 - 6, 2013).

pp. 82-86. Issued in Russian, accessible at

http://elibrary.asu.ru/xmlui/bitstream/handle/asu/203/read.7boo

k

Keens S. (ed.), 2007. Discussions, findings, and use of WPS in

OWS-4. OGC Discussion Paper. OGC 06-182r1. Version 0.9.1,

2007-05-10.

Panidi E.A., 2013. Geoservices for Online Remote Sensing Data

Processing. In Proceedings of the Earth Remote Sensing From

Space: Algorithms, Technology, Data - Young Scientists

Workshops (Altai State University, Barnaul, Russia, October 2 -

6, 2013). pp. 74-81. Issued in Russian, accessible at

http://elibrary.asu.ru/xmlui/bitstream/handle/asu/203/read.7boo

k

Panidi E.A., 2014. Towards Client-Side Web Processing

Services. Proceedings. OSGeo's European Conference on Free

and Open Source Software for Geospatial, Independent

Innovation for INSPIRE, Big Data and Citizen Participation

(FOSS4G-Europe 2014) July 15-17 2014 Jacobs University,

Bremen, Germany. Issued online, accessible at

http://europe.foss4g.org/2014/content/toward-client-side-web-

processing-services.html

Schut P. (ed.), 2007. OpenGIS Web Processing Service.

OpenGIS Standard. OGC 05-007r7. Version 1.0.0, 2007-06-08.

Software & Information Industry Association, 2001. Software As

A Service: Strategic Backgrounder. Washington, D.C., USA.

Revised March 2015

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-102-1

