The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-102-1

WPS-BASED TECHNOLOGY FOR CLIENT-SIDE REMOTE SENSING DATA
PROCESSING

E. Kazakov, A. Terekhov, E. Kapralov, E. Panidi *

Saint-Petersburg State University, Institute of Earth Sciences, Department of Cartography and Geoinformatics,
33-35 10-th line V.O., 199178 Saint-Petersburg, Russia — panidi@yandex.ru

KEY WORDS: Remote Sensing Data Web Processing, Web Processing Services, OGC WPS, Client-Side Web Geoprocessing,
Hybrid Geoprocessing Web Services

ABSTRACT:

Server-side processing is principal for most of the current Web-based geospatial data processing tools. However, in some cases the
client-side geoprocessing may be more convenient and acceptable. This study is dedicated to the development of methodology and
techniques of Web services elaboration, which allow the client-side geoprocessing also. The practical objectives of the research are
focused on the remote sensing data processing, which are one of the most resource-intensive data types.

The idea underlying the study is to propose such geoprocessing Web service schema that will be compatible with the current server-
oriented Open Geospatial Consortium standard (OGC WPS standard), and additionally will allow to run the processing on the client,
transmitting processing tool (executable code) over the network instead of the data. At the same time, the unity of executable code
must be preserved, and the transmitted code should be the same to that is used for server-side processing. This unity should provide
unconditional identity of the processing results that performed using of any schema. The appropriate services are pointed by the authors
as a Hybrid Geoprocessing Web Services (HGWSs).

The common approaches to architecture and structure of the HGWSs are proposed at the current stage as like as a number of service
prototypes. For the testing of selected approaches, the geoportal prototype was implemented, which provides access to created HGWS.
Further works are conducted on the formalization of platform independent HGWSs implementation techniques, and on the approaches
to conceptualization of theirs safe use and chaining possibilities.

The proposed schema of HGWSs implementation could become one of the possible solutions for the distributed systems, assuming

that the processing servers could play the role of the clients connecting to the service supply server.
The study was partially supported by Russian Foundation for Basic Research (RFBR), research project No. 13-05-12079 ofi_m.

1. PROJECT MOTIVATION

Web-based geospatial data representation and data manipulation
technologies got extensive development and rapid growth in
recent years. The improvement of the network infrastructure and
hardware facilities entails enhancement of transfer and store
abilities when operating with large geospatial datasets, which are
especially important when using remote sensing data.
Additionally, the improvements of Web software technologies
become the basis for the implementation of Web-based systems,
which able not only to transfer and display the geospatial data
through the Web, but also to provide tools for geoprocessing and
spatial analysis using Web interface, directly in the Web browser.
The Web 2.0 paradigm (Governor, 2009), the concept of SaaS,
i.e. Software as a Service, (Software & Information Industry
Association, 2001) and the HTMLS5' standard should be
mentioned as examples of such improvements. The development
of interactive data manipulation techniques is one of the current
trends in geospatial Web.

An important phase in the development of technologies for
processing geospatial data in the Web was the publication of the
Open Geospatial Consortium Web Processing Service (OGC
WPS) standard in 2007 (Schut ed., 2007). This international
standard formalized the Web implementation rules for the
services of geospatial data processing. The standard describes the
order of request-response interaction between server and client

* Corresponding author.
!http://www.w3.org/TR/html5/
2 http://www.arcgis.com

computers, when accessing geospatial data processing services
via Web.

However, a significant feature of the open source WPS standard
and of the proprietary ecosystems (e.g. ESRI ArcGIS Online?),
which allow Web publishing of the geoprocessing tools, is their
focusing on the server-side data processing. The software tools
that provide decentralized data processing, on the client side or
using grid computations, are developed only within the sporadic
research projects (Coene at al., 2007) or referred by some authors
as a promising concept (Keens ed., 2007).

Nevertheless, in some situations, the use of server-side
computations for geospatial data processing may be unjustified
or inconvenient. For example, when the user handles the data,
which have distribution restrictions, and cannot be transmitted to
a third-party server. In this and in some other situations, a
possible solution is to transmit the executable code from the
server to the client instead of transmitting the raw data to the
server for processing (Panidi, 2013). In this case, the problem is
reduced to providing of executable code portability, i.e. the
software components suitability for use on the client side without
installation. Additionally, the facilities for execution and running
of the code on the client should be provided.

Moreover, to provide maximum flexibility of the geoprocessing
schema and maximum comfort for user, it is reasonable to
provide the choice possibility for running processing on the
server or on the client side. At the same time, of course, the unity
of the executable code should be ensured. It means the possibility

The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-102-1

of use the same computational core on the server and on the
client, to provide identical processing results, either of the client-
side or server-side computations.

In general, the industrial scale technologies for client-side
computations are standardized and used widely. However, in the
case of geospatial data processing, the main obstacle to the
development of the software tools, which can be requested via
the Web and can be executed optionally on the server or client
side, is the absence of common approaches and standards. This
finding became the starting point of our project.

2. PROJECT SCOPE AND TOOLS

Currently the OGC WPS is the only international standard that
regulates the implementation rules for geoprocessing Web
services. Due to this fact, we decided to use it as a basis of our
elaborations. Thus, the main objective of the project was the
development of the WPS standard extensions, which would
provide not only geoprocessing on the server side, but also
transmitting executable code and running it on the client. We
suppose that this novation will not violate current conventional
approaches to the Web geoservices implementation. Moreover, it
will provide a synergistic effect by adding more flexible
implementation schema.
Current WPS standard assumes three types of client requests to
be executed one by one:

1. getCapabilities request

2. describeProcess request

3. execute request
The first one allows the client to request and receive an XML file
containing the metadata of the WPS compatible service that
published on the server. Metadata file contains the names and
general descriptions of the separate processes available as part of
this service.
The describeProcess request allows to get another XML file with
a detailed description of one or more processes. This file contains
number and types of the inputs and outputs for each process.
Finally, the execute request allows to transmit an XML file to the
server, with the input values required for the process execution.
If necessary, it includes links to the local files to be uploaded.
As aresult of the execute request the server returns another XML
file that contains calculation results or links to output files.
Our idea is to introduce a fourth type of request named getProcess
request (Panidi, 2014). This request must be generated using the
results of getCapabilities and describeProcess requests. As a
response on this request, the server should return to the client a
detailed description and download links to the software
components that are required for selected process or processes
execution on the client side (Figure 1).

<<Interface>>
OGCWebService {Abstract)
(from OWS Get Capabilities)

+ getCapabilities (request : GetCapabilities) : ServiceMetedata

I

WPService

+ describeProcess {request : DescribeProcess) : ProcessDescriptions
+ execute (request : Execute) : ExecuteResponse
+ getProcess (request : GetProcess) : ProcessExecutableCode

Figure 1. Modified WPS Interface Diagram with getProcess
method added

3 http://www.python.org
4 http://www.java.com

The described approach will allow to implement geoprocessing
Web services suitable for use with the existing WPS clients, as
well as newly developed, which will be capable to support the
loading of executable geoprocessing code and to run it on the
client side. Services with a similar double sided architecture we
offer to name as Hybrid Geoprocessing Web Services (Panidi,
2013).

3. FUNCTIONALITY SCHEMA

Due to the fact that the usual client-server paradigm, which the
current WPS standard version assumes, will be added with a new
method, there is a need to revise some data structure organization
on the server side.
A basic description of each process must be supplemented with
two entities:

1. A flag indicating availability of the client side version

of the process for a particular software platform

2. List of modules and applications required to be

downloaded on the client for local execution
In addition, to describe the software components that can be
downloaded, we propose two new notions, which are functional
modules (fModules) and extra applications (extraApps).
The term functional modules denotes the separate files that
playing the role of containers for processing algorithms. The code
presented in these files explicitly in the form of some functions,
program classes or scripts. These can be Python? scripts, DLLs
(Dynamic Link Libraries), Java* bitecode files etc., depending on
the client operating system and runtime environment which are
used for the process execution.
Extra applications are active software components with a
particular functionality that can be executed directly. Any
compiled programs for geospatial data processing, that are able
to run in the client operating system after downloading, can be
used as extra application, including programs that require
runtime engine (e.g. Python and Java programs). Good examples
of such programs are open source SAGA> GIS, GRASS® GIS,
and others.
Transmitting of extraApps to the client computer should be
conducted in a minimum configuration (core only) and in
portable-assembly. Software components, which are not included
in the program core, should be transmitted as fModules.
Therefore, every process designed for execution on the client
side, could be composed of an unlimited number of functional
modules, which provide particular processing algorithms. Each
module must have a unique name and should be organized into a
file of specific type. The module should be supplemented with
description, table of compatibility with different operating
systems, and list of additional program resources, which are used
in this module (for example, it can refer to io_gdal module that
executed through the SAGA command line, which is used as
extraApp to provide this execution).
As the software components are obtained from the server, the
mirror program structure is formed on the client. However, this
structure is filled out with the components of the loaded processes
and their dependencies only (Figure 2).
To organize software components downloading and
geoprocesses running on the client computer, the special software
client should be deployed in the client operating system. This
software client plays the roles of the user interface and runtime
environment for client side geoprocessing. As in the case of
current WPS standard, the software client can be implemented in
any form of Web browser interface, and in the form of a desktop
graphical user interface (standalone or as a part of the desktop

3 http://www.saga-gis.org
© http://grass.osgeo.org

The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-102-1

geoinformation system, i.e. GIS). This software client is direct
provider of the HGWSs in the client environment. However, the
implementation of this runtime environment in the form of
browser-based interface can be difficult, due to the built-in
browser security, which can block execution of the desktop
applications from a browser.

In some cases the HGWS runtime environment must be
complemented by external runtime environment for the code
execution, for example it may be bytecode interpreter.

The objectives of the HGWS runtime environment include the
generation of a graphical user interface and execution of the
process in the case of absence of the process extraApps, which
are suitable for immediate launch.

HGWSProcess fModules

H name —| name

abstract - file

G

W inputs description

S outputs compatibility

desktop-a_V extraApps p

fModules-list >

Files

=file system items=>

AmMm<OmWn

extraApps

<file system items=> [

Server-side
processes

name
abstract

Existing
fModules

inputs
outputs
fModules-list -
extraApps

Existing
extradApps

Client-side
processes

name
abstract

4Z2m=r0

inputs
outputs
extraApps
fModules-list

¥

Figure 2. ER-map of process components located on server and
client

4. PROGRAM INTERFACE IMPLEMENTATION

The general schema of the interaction between the client runtime
environment (RE) and the WPS/HGWS server is a cascade type
and includes four basic steps.

Step one (Figure 3), assumes that the user choose a server and the
client RE establishes connection to it. Client generates standard
request getCapabilities, and receives the response, which is
extended with the desktop-available attribute. For each of the
processes this attribute indicates downloading availability of the
software components for client-side geoprocessing. Client RE
analyzes the response and gets a list of processes that are
available for client-side execution.

Client RE getCapabilities
3

e
Capabilities (xML) | WPS Server

List of desktop-available processes
with descriptions

Figure 3. First step of data exchange — requesting capabilities
and generating list of available processes

At the step two, the user choose any of the available processes to
execute. After that, the client RE automatically executes a
describeProcess request, and generates a graphical user interface
(UI) for selected process, in the case of desktop execution. The
parameters for UI generation are extracted from describeProcess
response, using its list of process inputs and outputs.
Additionally, the base interface for the process is generated,
which is the program function that enables linking of the
graphical Ul and the functional module(s) or extra application(s)
of selected process. At the time of the process execution, the base
interface redirects all the process inputs to the corresponding
functional module or extra application (Figure 4).

Client RE describeProcess
“

~=eee——
Process details (xML) | WPS Server

1 4

Process Process
inputs outputs

4
Graphical Ul
auto-generation
Module base
interface
auto-generation

Figure 4. Second step of data exchange. Requesting process
details and generating UI and base interface of functional
module

The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-102-1

At the step three, the application executes a new request to the
server, which is getProcess. The request involves getting a list of
all required to be downloaded and executed software components
of the process, namely the functional modules and extra
applications (Figure 5). The structure of the request includes a
number of compatibility settings that characterize the client
computer (Table 1).

getProcess
4

HGWS Server

Client RE

List of fModules and
extraApps with links

1

Downloading all fModules and extraApps
for user's platform

Figure 5. Third step of data exchange. Requesting process
executable code and downloading program components with

dependencies
Name Presence Description
. Identifies service request.
Request Required Must be "getProcess"

. . Identifies service type. Must
Service Required be "HGWS"
Version Required Identifies service version

. Process identifier as listed in

Identifier | Mandatory the Capabilities document
Identifies user’s desktop
. platform. Could be “Win32”,
Platform Required “Win64”, “Mac”, “Linux
Debian” etc.

Table 1. getProcess request parameters

The getProcess request schema example is as follows:

http://some.host/server?
Request=getProcess&
Service=HGWS&
Version=x.0.0&
Platform=Win32
Identifier=index-NDVI

As a result, the HGWS server returns the XML-document
containing the description of all the software components that are
needed to use the process on the client side. This document
includes unlimited number of descriptions of the functional
modules and extra applications, and all of the components may
refer to each other. Each software component is supplied with the
description and download link. This link can be static or
temporarily generated for downloading at the time.

The schema of this document should be as simple as it is possible.
The example is as follows:

"

<schema xmins="..." xmins:ows="..." xmins:wps="..." targetN

—_n —_n

amespace="..." version="..." xml:lang="...">

7 http://www.iis.net

<annotation>...</annotation>
<import namespace="..."/>
<element name="ProcessExecutableModules">...</element>

<!—Platform parameters-->
<complexType name="Platform">...</complexType>

<!—Modules parameters-->
<complexType name="fModules">
<complexContent>
<name>...</name>
<annotation> ...</annotation>
<compability>...</compability>
<type>...</type>
<usedExtraApps>
<complexContent>
<name>...</name>
<annotation> ...</annotation>
<compability>...</compability>
<type>...</type>
<downloadLink> ...</downloadLink>
</complexContent>
</usedExtraApps>
<downloadLink> ...</downloadLink>
</complexContent>
</complexType>
</schema>

Finally, at the step four, the client RE downloads the functional
modules and extra applications that were not previously
downloaded. The downloaded files are stored on the client so that
the software components can access each other if necessary.

As a result, the client forms the software infrastructure that is
ready to perform computations and data processing (Figure 6).
This infrastructure is accessible through the client RE.

Client Runtime Environment

Auto-generated base interfaces +
auto-generated UI +
downloaded fModules (extraApps) =
ready-to-use functionality

Figure 6. Processes on client side, in the case of desktop client

To implement geoprocessing tools in accordance with the HGWS
concept and to test described principles, the server application
(HGWS server) was developed. This software server works in
conjunction with the Web server (the Microsoft IIS7 was used)
and the WPS server (the PyWPS? server was used). The HGWS
server is responsible for handling the request getProcess and
generation of links to functional modules and extra applications.

5. USER INTERFACE IMPLEMENTATION

As the described schema of the client-side services execution is
based on the OGC WPS standard, it allows to access the server-
side HGWS services directly using any existing client
applications that implement WPS protocols. Also, some

8 http://pywps.wald.intevation.org

The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-102-1

functionality updates and implementation of getProcess request
is needed for accessing the client side services.

As it was mentioned above, the client application could be a Web
application, a desktop application, or a built-in desktop GIS
module (i.e. QGIS® WPS client). For the proposed approaches
validation and testing, we implemented our own Web client'?.
This elaboration is needed because of two main reasons, which
are the unsuitability of existing software clients to full support of
HGWS schema, and secondly, the need to have a full and clear
access to the source code of the client.

Concerning the suitability for client-side geoprocessing, the
client should be able to parse the desktop-available attribute in
the getCapabilities response, and to provide some correct
reactions when this attribute is presented. Firstly, the client must
provide the processes execution in the corresponding client
runtime environment, using getProcess response data.
Additionally, the desktop client should provide graphical user
interface generation, using getCapabilities response data.
Finally, since the server-side process execute response may
include the download links to the processed files (raster, vector
or text data) it leads to a number of potential inconveniences.
When there is a need to have the availability of the processing
results during some time, we should provide some tools for
convenient storing of the links.

The main tasks of the elaborated HGWS Web client include
parameterization and execution of selected processes on the
server side, storage of the obtained geoprocessing results on the
server and providing of the re-access to the stored data. The Web
client also should allow to manage the data storage on the server.
The storage could preserve as downloadable files of the
processed data as well as the user raw data, which could be used
as processing inputs. User access to the storage is also carried out
via the Web client.

Thus, the user cannot lose the processing results links, when
accidentally updating the page, for example. The processing
results can be downloaded at any time and not only immediately
after the processing. On the other hand, there is no need to
download the result, and then upload it to the server as the inputs
for another process. It is important when running a sequence of
processes within a single technological chain.

Provision of the data store abilities requires the implementation
of a registration and authorization system on the server.
Furthermore, to ease personal data store, the user interface should
provide some functionality for metadata representation (e.g. the
number of channels of the raster, raster size, etc.).

Due to these needs, our HGWS Web client was supplemented
with the user's personal account, which is responsible for the
management of data, uploaded by authorized users (Figure 7).

X

My Data

Name TypelFormat size Actions

Neva_River.f| imageni CAT I-NE R
NOVI_testtf | imagere s21 001100 | B [0 & %
Boundary.shp | vector/shape 1as (B0 S

BhibepiTe Gain

| File name

Upload

Figure 7. Web interface of the personal account

° http://www.qgis.org
10 http://195.70.211.131
T http://en.wikibooks.org/wiki/JavaScript

Web client includes the Web interface and the server
components. The Web interface consists of several Web pages,
which are responsible for the following tasks:

1. Registration data collecting when registering the new

users

2. Entering of the user authorization data

3. Managing of the stored geospatial data on the server

4. Generating and visualizing of a list of available

geoprocesses

5. Parameterizing of the process before execution

6. Sending raw data to the server (if necessary)

7. Getting the server responses and its interpretation
Web interface was implemented using the client-side
JavaScript!! Web scripting language and the jQuery'? JavaScript
library.

Server components of the Web client include a set of the server-
side scripts developed using the PHP'> Web scripting language.
The server components performs:

1. Registration and authentication of the users

2. Validation and storage of the geospatial data, uploaded

by the users

3. Generation of graphic files for each dataset, for

preview in a browser

4. Putting the geoprocessing results into the user store
Currently, users can upload the raster datasets in the GeoTIFF
format, vector datasets in archived Shape-files, and a simple text
files. All the uploaded files are available for renaming,
downloading and deleting.

For the raster datasets, the server generates two JPG images at
uploading. The first one is the image in source data map
projection for previewing directly in a browser, and the second is
the image in personal account Web map projection for visualize
as an overlay on the world map.

After the one of available geoprocesses at the data processing
Web page was selected, the Web interface automatically
generates a Web form for data input with the required number of
input fields. The input type of each field corresponds to the
process input parameter or input dataset, such as single-channel
raster image for example.

Summarizing the description of the elaborated Web client, we
may entitle it as the prototype of geoportal or geoportal interface
designed to provide publication and access capabilities for
HGWSs.

6. CURRENT RESULTS

To provide the client-side execution of the HGWS processes, the
client (desktop) runtime environment application was developed
that can interact with HGWS server. This application
implemented using the Python programing language and the
PyQt4!4 program library.

When the user selects in the Web interface one of the processes
that is suitable for execution on the client side, and sends a
command to execute it on the client side, the RE application is
downloaded and executed on the client automatically.

The process input parameters specified by user in the Web
interface are transmitted to the client RE interface.

Additionally the RE application can be started by the user
manually, if the corresponding executable file was previously
saved. In the case of direct execution of client RE, user may select
a server to connect indicating two URLs. The first is the WPS
server URL, and the second is the URL of the HGWS server.
After that, the RE application executes getCapabilities request,

12 http://jquery.com
13 http://php.net
14 http://www.riverbankcomputing.co.uk/software/pyqt/intro

The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-102-1

using PycURL' program library, and shows the list of
geoprocesses that are marked as desktop available in the
getCapabilities response.

For example, when you select the process that converts Digital
Number values into Reflectance values for Landsat 8 remote
sensing imagery (which is implemented using the SAGA
command line) these steps are performed as follows.

RE application executes the describeProcess request, and
generates the graphical user interface using PyQt. Requested
process needs the input parameters to be passed as a links to a
single-channel raster in GeoTIFF format and metadata text file.
Also, the channel item number should be pointed. Accordingly to
these input requirements, the RE application generates three file
input fields (i.e. group of Label, lineEdit and pushButton
graphical interface elements) to select the input files and the
output file name and saving path, as well as a field (i.e. group of
Label and lineEdit) for entering channel item number as a text
(Figure 8).

]

[HGWS Desktop

Server options Settings Modules About

Availble processes:

imagery-andsatd_to_reflectance -
Process Interface (imagery-andsat8_to_reflectance)

inputl: image

browse

input2: metadata file

browse

input3: channel num

browse

outputi

browse

Execute

Figure 8. Graphical Ul of the HGWS client RE for desktop

The Python program code fragment, which generates these
graphical user interface components, is as follows:

lineEdit 3 = new QLineEdit(Dialog);
lineEdit_3->setObjectName(QString: :fromUtf8("input3:
channel_num"));

lineEdit 3->setGeometry(QRect(30, 160, 211, 20));
pushButton_3 = new QPushButton(Dialog);
pushButton_3->setObjectName(QString: :fromUtf8("browse"));
pushButton_3->setGeometry(QRect(260, 160, 75, 23));

Then the base interface is generated (the process input function),
which connects graphical interface elements and software
components that will be downloaded later. Base interface name
is equal to the name of the executed process (in this case
imagery landsat8 to reflectance). It stores the data specified in
the user interface of the RE application and then transmits these
data to the process as input parameters.

On the next step, the RE application executes a getProcess
request:

15 http://pycurl.sourceforge.net

http://host/server?
Request= getProcess&
Service=HGWS&
Version=1.0.0&
Platform=Win64
Identifier=imagery-landsat8_to_reflectance

HGWS server processes the request and generates the XML
response:

<complexType name="fModules">
<complexContent>

<name>Imagery Landsat8_to_reflecatnce_Fmodule</name>
<annotation>Python module, launching SAGA CMD for
Landsat 8 DN to reflectance transform</annotation>
<compability>Win64</compability>
<type>PythonPlainText</type>
<usedExtraApps>
<complexContent>
<name>SagaCMD</name>
<annotation>OpenSource portable SAGA GIS command
environment</annotation>
<compability>Win64</compability>
<type>PortableCMDApp</type>

<downloadLink>host.domen/hjhfSFHjashsd</downloadLink>
</complexContent>
</usedExtraApps>

<downloadLink>host.domen/ljsdbnSmujhHJFjshjsf</download
Link>
</complexContent>

<complexContent>
<name>SAGACMD _imagery tools</name>

</complexContent>

<complexContent>
<name>SAGACMD io_gdal</name>

</complexContent>
</complexType>

In this XML response the detailed descriptions are presented for
all of the uploadable functional modules and extra applications,
which are used by the selected process (these are the Python
script containing the process main function, the SAGA libraries,
e.g. i0o_gdal and imagery tools, and all dependencies of these
libraries).

All these modules refer to SagaCMD as the extra application,
which is portable applications able to execute different SAGA
modules in console mode. This application is transmitted as the
archive containing the executable file and the required
dependencies, without external libraries and modules. The main
function in the Python script calls the SagaCMD, which calls all
other libraries when need.

RE application saves all loaded modules and applications locally,
so when recalling by other processes, this components will not be
loaded again.

After downloading of process program components, the process
can be executed independently of the HGWS server connection
and Internet connection at all.

The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-102-1

7. OUTLOOK

At the current stage of the project, we had formulated the HGWS
concept and offered its possible implementation.

The implementation of the client software was elaborated, which
combines elements of Web-based and desktop user interface.
This software is convenient for HGWS processes execution on
the server side and on the client side by the user’s choice. A
testing of the selected implementation is conducted on the
example of the tools for satellite imagery processing.
Possibilities of the getProcess request implementation into the
WPS standard, or development of a separate WPS-compatible
standard, require further study and discussion.

Other promising areas of investigations are the research of more
useful technical implementations of the HGWS conceptual
approach and discussion over the more convenient HGWS XML
schema.

An important issue is also a study of the possibilities of using
various development tools for HGWS processes. Above all, the
study of limitations for the safe running of the executable code
transmitted to the client from the external source, and verification
techniques of the source of executable files, as well as the other
security issues.

Finally, some study required to develop approaches to
atomization and chaining of the HGWS processes for the
implementation of the complex algorithms and processing
techniques.

Despite these issues, which require further study, the first step
towards the development and implementation of HGWSs can be
considered successful. The elaborated software and data
exchange schemas indicate the principal possibility of
implementing a relatively simple technique of geoprocessing
Web services execution on the server or client side by the user’s
choice.

ACKNOWLEDGEMENTS

The study was partially supported by Russian Foundation for
Basic Research (RFBR), research project No. 13-05-12079
ofi_ m.

REFERENCES

Coene Y., Marchetti P.G., Smolders S., 2007. Architecture and
Standards for a Distributed Digital Library of Geospatial
Services. Third Italian Research Conference on Digital Library
Systems (IRCDL 2007) Padova 29-30 January 2007 Proceedings
pp- 52-60.

Governor J., Hinchcliffe D., Nickull D., 2009. Web 2.0
Architectures: What entrepreneurs and information architects
need to know. O'Reilly, 276 p.

Kazakov E.E., 2013. Approaches to Implementation of Web
Services for Pro-cessing and Analysis of Remote Sensing Data.
In Proceedings of the Earth Remote Sensing From Space:
Algorithms, Technology, Data - Young Scientists Workshops
(Altai State University, Barnaul, Russia, October 2 - 6, 2013).
pp- 82-86. Issued in Russian, accessible at
http://elibrary.asu.ru/xmlui/bitstream/handle/asu/203/read.7boo
k

Keens S. (ed.), 2007. Discussions, findings, and use of WPS in
OWS-4. OGC Discussion Paper. OGC 06-182r1. Version 0.9.1,
2007-05-10.

Panidi E.A., 2013. Geoservices for Online Remote Sensing Data
Processing. In Proceedings of the Earth Remote Sensing From
Space: Algorithms, Technology, Data - Young Scientists
Workshops (Altai State University, Barnaul, Russia, October 2 -
6, 2013). pp. 74-81. Issued in Russian, accessible at
http://elibrary.asu.ru/xmlui/bitstream/handle/asu/203/read.7boo
k

Panidi E.A., 2014. Towards Client-Side Web Processing
Services. Proceedings. OSGeo's European Conference on Free
and Open Source Software for Geospatial, Independent
Innovation for INSPIRE, Big Data and Citizen Participation
(FOSS4G-Europe 2014) July 15-17 2014 Jacobs University,
Bremen, Germany. Issued online, accessible at
http://europe.foss4g.org/2014/content/toward-client-side-web-
processing-services.html

Schut P. (ed.), 2007. OpenGIS Web Processing Service.
OpenGIS Standard. OGC 05-007r7. Version 1.0.0, 2007-06-08.

Software & Information Industry Association, 2001. Software As
A Service: Strategic Backgrounder. Washington, D.C., USA.

Revised March 2015

