

Multiresolution representation of oblique airborne photogrammetry-based 3D city models in Digital Earth

Jianming Liang^{a, b}, Jianhua Gong^{a, b*}, Yucheng Dai^{a, c}, Jin Liu^{a, c}

^a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences,
P.O. Box 9718, Beijing 100101, China

^b Zhejiang-CAS Application Center for Geoinformatics, Zhejiang 314100, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

THEME: Data and information systems and spatial data infrastructure. Special session of "Geospatial Information Analysis in Digital Earth".

KEY WORDS: Oblique airborne photogrammetry, 3D city models, Multiresolution representation, Digital Earth, Object-based identification

ABSTRACT:

Oblique airborne photogrammetry (OAP) is a highly cost-effective and yet practicable approach to 3D city reconstruction, especially when a light-weight unmanned aerial vehicle (UAV) is employed. The diversified geometrical and textural information from OAP city models have great potential for enriching the geographic context of a Digital Earth (DE) system, but the big data volume makes it hard to interactively explore such models in full details. The traditional level-of-detail (LOD) terrain representations do not accommodate full-3D textured meshes, which are fundamental to the representation of OAP city models. In this paper, we investigate the algorithms and techniques which may potentially be employed to construct an efficient multiresolution representation of OAP city models, including such aspects into account as space partitioning, mesh simplification, data compression and rendering performance. We also explore the possibility of developing a semantic database for object-based classification and identification of OAP city models, as well as for storage and retrieval of the object-related attribute information.

* Corresponding author. Tel.: +86 010 64849299; fax: +86 010 64849299.
E-mail address: gongjh@radi.ac.cn