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ABSTRACT:

Most icebergs present in northern latitudes originate from western Greenland glaciers, from where they drift into Baffin Bay,
circulating north along Greenland coast and south along Canadian coast. Some of them drift more southwards up to Newfoundland,
where they frequently cross shipping routes. Furthermore, the Arctic summer sea ice coverage significantly decreased over the last
three decades. This has attracted numerous attentions from maritime end-users. To keep Arctic shipping routes safe, the monitoring
of sea ice and icebergs is crucial. For this purpose, satellite-based Synthetic Aperture Radar (SAR) is well suited. Equipped with an
active radar antenna, SAR satellites provide image data of the ocean and frozen waters independent of weather conditions, cloud
cover or absence of daylight. In this paper, we present a processor for sea ice classification and (subsequent) iceberg detection based
on TerraSAR-X imagery. In the classification step, texture features are extracted from the images and fed into a neural network,
indicating areas of low sea ice concentration. Then, an adapted Constant False Alarm Rate (CFAR) detector is executed in order to
detect icebergs. In the end, sea ice boundary and iceberg positions are output. Our experiments deal with HH polarized TerraSAR-X
images taken in spring season in the Baffin Bay off the western Greenland coast, where both, sea ice and icebergs are present. Our
results exemplify how a comprehensive ice processor with complementary information can be set up for near real time (NRT)

service in ice infested waters.

1. INTRODUCTION

Due to climate warming Arctic shipping routes that were
formerly impassable are becoming an option for navigation. To
safeguard the travel through such ice-infested waters, reliable
and up-to-date information about degree and type of ice
coverage are pivotal. The discovery and extraction of natural
resources in Arctic waters add yet another motivation to
generate navigation assistance products for maritime users.
Satellite-borne synthetic aperture radar (SAR) is well suited for
this purpose, since it is available even over remote Arctic
waters, independent of cloud cover and sunlight.

In this paper, we propose a new processor that is intended to
assist navigation of ships in polar waters. Based on SAR data
provided by the German Radar satellite TerraSAR-X (TS-X),
the processor generates charted information about ice type and
icebergs. The implementation is geared towards operational use
with regards to processing and delivery time and format for
maritime users on ships.

The following Section 2 outlines the algorithmic concept. The
key ideas of the implementation for ice type classification and
iceberg detection and the procedural interconnection are
discussed.

This machinery is applied to TerraSAR-X images taken in
spring season off the western Greenland coast, where both, sea
ice and icebergs are present. We discuss experimental results in
Section 3. The positive outcomes in terms of accuracy clearly
indicate the power of our concept and justify increased efforts in
the same direction to further improve the overall quality and
operational usefulness of our processor.

2. ALGORITHMIC APPROACH
2.1 Basic concept

Sea ice classification based on SAR images has long been a
focus of research ever since the advent of satellite borne SAR.
Generally, the first task centers around finding suitable
mathematical characterization of image portion (segments,
neighborhoods). In a second step, one then attempts to find a
functional relationship between such quantifiers and the
different ice types. In the case of supervised classification,
finding or fitting such a functional relationship is referred to as
training. Such generic methods have been tested in various
flavors for sea ice classification successfully (Tsatsoulis 2004,
Bogdanov 2005, Breivik, 2012, Zakhvatkina 2013, Clausi 2002,
Clausi 2004, Scheuchl 2003, Ressel 2014).

In our particular implementation, we carry out sea ice
classification on a calibrated, down sampled TerraSAR-X
image. From this image, texture features are automatically
extracted to characterize a small neighborhood of each pixel of
the image. Similarly to our former work (Ressel, 2014), the
texture features of these neighborhoods are then ingested into a
suitable classifier. The output of this classification process is an
ice chart that depicts the dominant sea ice types in an easily
comprehensible way.

The areas that are found to be ice free or with low ice
concentration are further handed over to the iceberg detection
algorithm. In order to detect small icebergs, this second step
processes the high resolution TerraSAR-X image. For detection,
we make use of the Constant False Alarm Rate (CFAR)
detector, applying the iterative censoring concept of (Gao,
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2009). The concept has been used for target detection, but not
for iceberg detection so far.

Finally, iceberg positions are output and added to the ice chart
generated by the sea ice classification step.

Figure 1 outlines the data flow of our processor.
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Figure 1. Data flow of the proposed processor

2.2 Seaice classification

The algorithm utilizes a texture based, supervised classification
approach: In a first step, for each image pixel, a vector of
texture characteristics is extracted. A suitable classifier then
attributes to each pixel a certain ice class, yielding an ice chart
over the entire image.

The texture characterization we apply is the classical gray level
co-occurrence matrix (GLCM) as described in (Haralick, 1973).
Other procedures for texture description that have been applied
for SAR images of sea ice are wavelets (Liu, 1991; Yu, 2002),
autocorrelation features (Karvonen, 2005), and Gabor wavelets
(Clausi, 2000). Due to their reported suitability for sea ice
classification (Bogdanov, 2005; Zakhvatkina, 2013; Clausi,
2000) we chose these texture features for our classification
procedure. For the GLCM approach, we computed for every
pixel neighborhood (eg. 11x11, 31x31) of the image the
histogram C(i,j) of gray level pairs of adjacent pixels. To reduce
the memory consumption, 2-D histograms are computed for
reduced grayscales of 4 bits, 5 bits or 6 bits. For our purposes,
the reduction to 6 bits proved to be the optimal gray level
degradation (see Ressel, 2015). From these histograms C(i,j), a
number of statistical parameters are computed that correspond
to significant visual traits of the local texture. These parameters
(in our implementation we use entropy, energy, contrast,

homogeneity, dissimilarity, correlation) constitute the entries of
the texture feature vector:

enopy  H = 3"C(i j)log(Cl. ) ®

energy

E=> ci, ) @

contrast  Con =i - iPc(, j) )

ij

homogeneity  Hmq — #Ci,' ©)]
9 iz,-:u\i—j\z (i, J)

dissimilarity  pDjss = >li- j\C(i, i) ©®)
i

correlation cory :zwc(i, i) ®©

ij x“y

with = >iC(i, j) 7
¥

o =Xl aiop k) ©

and for y respectively.

These GLCM based parameters are complemented by the local
mean, local 2™, 3%, and 4™ moment of the gray values of the
pixel neighborhood.

The generation of a suitable classifier requires a training
procedure prior to its application. To this end, texture vectors
from images are taken where the depicted ice types are well-
known. These templates of texture vectors in conjunction with
correct ice type output are used to fit an ansatz function. This
fitting comprises the training step. In our case we employed a
neural network classifier, a statistical approach that matches the
nonlinear nature of the task. The implementation relied on an
open source neural network library, namely the FANN library
(Nissen, 2005), which was integrated with our implementation
of GLCM feature extraction.

When applying a classifier to a new SAR image with ice
coverage, one has to ensure that the dominant sea ice types in
the image and in the classifier match. For this reason, a library
of seasonally and geographically adapted classifiers needs to be
developed, from which one can then choose the most
appropriate classifier for a particular image.

For the generation of training data and validation data, we rely
on in-situ data, ice charts and expert judgement. To limit the
arbitrariness inherent in this statistical approach we also
subdivide the training samples into subsamples to obtain neural
networks for each of these different subsamples. As a quality
measure we then cross compare each neural network’s output of
the validation data with the expert-based, correct output for this
dataset. In case ice charts for the location and time of the
acquisition are available, one can also compare visually the
quality of the classifier output. Given the inexact, statistical
nature of texture-based neural network classification, such
qualitative assessment serves as an important plausibility check.
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Containing variability of texture appearance with these
precautionary measures, one can then, for example, generate a
classifier trained on one SAR image and apply it to SAR images
of the following days in the same region. Such classification
configurations have been successfully applied on time series
(Ressel, 2015) and are an appropriate method for automated sea
ice charting during campaigns into ice-infested areas (eg. Lance
campaign in March 2014 near Svalbard).

The incidence angle of the acquisition exhibits optimal
performance for incidence angles greater than 35°. In near range
and mid-range results are less reliable due to highly variable,
more random texture of different ice types, in particular for
open water portions.

For time critical applications, avoiding computational overhead
is prioritized over higher resolution. Furthermore, scales of
characteristic textures of ice types appear on a much coarser
level than the full resolution would permit. For these reasons,
the classification process currently implemented is carried out in
reduced resolution.

Use of pre-trained classifiers for new images naturally needs a
match between dominant ice types in the image and in the
classifier, as well as between other mentioned side conditions
(e.g. geography, season, incidence angle range). Therefore, to
take these aspects into account, the deployment of a human
operator with sufficient technical background for ice charting
and experience with the classifier are essential for the successful
application of our ice type classification product.

2.3 lceberg detection

There are several studies on automated iceberg detection from
SAR images. First and foremost, the Constant False Alarm Rate
(CFAR) detector is used: From a sliding window, statistical
properties of open water are estimated. Based on this estimate,
pixels that yield an intensity value unusually high (compared to
open water) are indicated as iceberg pixels. That is, the detector
performs pixel-based thresholding. The threshold calculation
relies on a constant probability of false alarm (PFA) given by
the user, as well as on assumptions about the expected
probability density function of the intensities in the surrounding
(in our case: in open water). Generally, the threshold T is
obtained by solving the relation

PFA= J'Tm p(a)da ©)

where p(a) represents the probability density function of the
surrounding intensity.

The probability density function of open water used in this work
is approximated with a Log-normal distribution. Its mean Wyater
and standard deviation oy, are estimated from pixel values in
a sliding window, which is hollow square shaped (Figure 2).
Then, the threshold is calculated with the equation
T = luwater + k . Gwater (10)

in which k denotes a design parameter that controls the PFA
equivalently. Finally, a pixel is defined as part of an iceberg in
case its value is greater than the threshold T. Otherwise it is
defined as open water.

lerraSAR-X
input image

Estimation of the statistical
properties of open water
pixel values from the
sliding window margin

Binary
output image

Figure 2. Basic principle of the CFAR detector

The CFAR detector has proven its usefulness already for ship
detection (Scharf, 1991; Vachon, 1997; Brusch, 2011) and later
has been applied to iceberg detection (Gill, 2001; Power, 2001).
In (Buus-Hinkler, 2014), an adapted CFAR detector is utilized
for detailed studies on iceberg frequency in Greenland waters.
(Howell, 2004) applied the CFAR detector to dual polarized
images, where each channel is processed separately.
Subsequently, the detections are merged.

Unfortunately, the CFAR detector fails in areas of high iceberg
density. As soon as a neighboring iceberg is located in the
sliding window, the algorithm no longer gathers the statistical
properties of open water, but of a mixture of open water and ice.
In all likelihood, the values Myater aNd Gyater, and therefore the
threshold T are estimated too high. As can be seen in Figure 3,
missed hits follow from this circumstance.

To overcome this problem, we execute the CFAR detector
iteratively. In each iteration step, Hyaer aNd oygser are re-
estimated. For re-estimate, we exclude pixels that have been
identified in the previous iteration step to be part of an iceberg.
In so doing, the new estimate is less corrupted and more iceberg
pixels get detected.

In Figure 4, the iterative process is tested with the example
iceberg cluster of Figure 3. After two iteration steps, all icebergs
are detected. Obviously, the estimated values Hyater and oyater
converge towards the correct mean and standard deviation of
open water pixel values. In future work, the convergence rate
will be investigated.

TerraSAR-X
input image

Standard CFAR detector
binary output image

Figure 3. Standard CFAR detector applied to a section of a
TerraSAR-X image with high iceberg density
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2. 1teration
binary output image

standard CFAR detector output
(identical to 1. iteration output)

12. iteration
binary output image

3. iteration
binary output image

Figure 4. lterative CFAR detector applied to the example
iceberg cluster shown in Figure 3.

In our tests shown in Section 3, the iceberg detector is carried
out with two iteration steps consistently.

2.4 Fusion

The CFAR detector needs a priori knowledge about the type of
intensity distribution in the surrounding of an iceberg. For open
water, we approximate with a Log-normal distribution. In sea
ice covered areas, however, such an assumption is
inappropriate. In fact, the assumption of one single distribution
type is insufficient due to high variability of different
backscatter patterns for different ice types. Furthermore, the
discrimination of iceberg pixels from sea ice cannot rely easily
on mere thresholding i.e. the underlying assumption of CFAR
that iceberg pixels lie in the tail of the intensity distribution of
the surroundings does no longer hold for sea ice backscatter
distributions. In sea ice, sizable portions of sea ice can have a
backscatter behavior similar to icebergs.

Therefore, we apply the CFAR detector only in areas of low ice
concentration, building on the output of the ice classification
step (Section 2.2). The integration of the two processors is thus
not merely a successive execution of both processors but the
second crucially exploits knowledge from the output of the first
step.

3. TEST RESULTS

The test images we discuss are taken in late spring season off
the western Greenland coast. We concentrate on HH polarized
TerraSAR-X acquisitions only.

The first sample image is taken in TerraSAR-X ScanSAR mode
on 2014/04/21. The incidence angle for the total image ranges
from 35 to 45 degrees, and for the image section shown in
Figure 5 (on the left) from 40 to 45 degrees.

The Danish Meteorological Service (DMI) reported as daily
average a wind speed of 6 m/s and a temperature between -8 °C
and -12 °C without precipitation at the nearby weather station of
Aasiaat. The ice situation for the preceding day (2014/04/20) is
displayed in Figure 7 along with the location of the image
section we processed.

The second sample image is taken in WideScanSAR mode on
2014/05/24. The incidence angle for the total image ranged
from 35 to 49 degrees, for the image section shown in Figure 6
(on the left) from 44 to 49 degrees.

The DMI reported as daily average a wind speed of 6 m/s and a
temperature between +8°C and -9°C with 1mm of
precipitation at the nearby weather station of Aasiaat. The ice
situation for the following day (2014/04/25) is displayed in
Figure 8 along with the location of the image section.

For the dominant ice types in both sample images we identified
only smooth ice, which consisted mostly of first year ice floes
(and some nilas), rough-surfaced ice types consisting mostly of
brash and young ice floes, and open water.

For the first image (2014/04/21), these ice types can also be
discerned in the intensity images (see Figure 5, left hand side).
The resulting ice chart matches the ice situation on the day
before (according to the DMI ice report) quite well. In the open
water portion, a low concentration of ice floes is depicted by the
sparsely dispersed occurrences of ice in Figure 5. The iceberg
detection algorithm automatically detects 3941 icebergs from
the image. As can be seen in Figure 5 (on the bottom right) also
within iceberg clusters and near to sea ice covered areas,
icebergs become detected reliably due to the utilization of the
iterative concept. In future work, the false alarm rate of the
detector will be investigated.

The length of detected icebergs is estimated automatically. It
ranges from small (15 m to 60 m) to very large (over 213 m).

Similarly, the output for the WideScanSAR image of
2014/05/24 (Figure 6) matches well the ice situation of the
following day (compare DMI ice chart depicted in Figure 8).
The iceberg detection algorithm outputs 2445 icebergs and size
categories between small and very large.

4. CONCLUSIONS

In this paper, we proposed the process chain of an integrated sea
ice classification and iceberg detection algorithm based on
TerraSAR-X images. In a first step, a texture based neural
network classifier identifies different ice types. During the
second step of the process, icebergs are detected in the open
water portions that were identified in the previous step. For
iceberg detection, we employed an iterative CFAR detector.

The processing of two sample images in the Baffin Bay
exemplify how iceberg detection and sea ice classification
output are mutually complementary to obtain a more
comprehensive picture of the ice situation in a particular
maritime region.
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Figure 5. Section of a calibrated TerraSAR-X ScanSAR image taken on 2014/04/21 over Baffin Bay off the western Greenland coast
(left, top row), corresponding output of the sea ice classification step (in the middle, top row) and output of the processor including
iceberg positions and sizes (right, top row). Color coding for ice classification: blue: open water; brown: brash, young ice; purple:
first year ice, nilas. White arrows indicate direction north. The white rectangle in the top row images delineates the location of
zoomed subimages in the bottom row.
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Figure 6. Section of a calibrated TerraSAR-X WideScanSAR image taken on 2014/05/24 over Baffin Bay off the western Greenland
coast (left, top row), corresponding output of the sea ice classification step (in the middle, top row) and output of the processor
including iceberg positions and sizes (right, top row). Color coding for ice classification: blue: open water; brown: brash, young ice.
White arrows indicate direction north. The white rectangle in the top row images delineates the location of zoomed subimages in the
bottom row.
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Color code Ice concentration & definition

No seaice

< 1/10, open water

1/10-3/10, very open driftice

4/10-6/10, open driftice

| 7/10-8/10, closedriftice
9/10-94/10, very close driftice

| 10/10, fastice
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Figure 7. Ice concentration according to DMI for 2014/04/20.
Egg code for segments according to WMO. The blue rectangle
indicates the location of the TerraSAR-X image shown in
Figure 5.
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No sea ice

< 1/10, open water

1/10-3/10, very open driftice

4/10-6/10, open driftice

| 7/10-8/10, closedriftice

9/10-94/10, very close driftice
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A Icebergs
A Many icebergs

Figure 8. Ice concentration according to DMI for 2014/05/25.
Egg code for segments according to WMO. The blue rectangle
indicates the location of the TerraSAR-X image shown in
Figure 6.
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