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ABSTRACT:

Global warming-related climate changes have significantly impacted the growth of terrestrial vegetation. Quantifying the
spatiotemporal characteristic of the vegetation’s response to climate is crucial for assessing the potential impacts of climate change
on vegetation. In this study, we employed the normalized difference vegetation index (NDVI) and the standardized precipitation
evapotranspiration index (SPEI) that was calculated for various time scales (1 to 12 months) from monthly records of mean
temperature and precipitation totals using 511 meteorological stations in China to study the response of vegetation types to droughts.
We separated the NDVI into 12 time series (one per month) and also used the SPEI of 12 droughts time scales to make the
correlation. The results showed that the differences exist in various vegetation types. For needle-leaved forest, broadleaf forest and
shrubland, they responded to droughts at long time scales (9 to 12 months). For grassland, meadow and cultivated vegetation, they
responded to droughts at short time scales (1 to 5months). The positive correlations were mostly found in arid and sub-arid
environments where soil water was a primary constraining factor for plant growth, and the negative correlations always existed in
humid environments where temperature and radiation played significant roles in vegetation growth. Further spatial analysis indicated
that the positive correlations were primarily found in northern China, especially in northwestern China, which is a region that always
has water deficit, and the negative correlations were found in southern China, especially in southeastern China, that is a region has
water surplus most of the year. The disclosed patterns of spatiotemporal responses to droughts are important for studying the impact

of climate change to vegetation growth.

1. INTRODUCTION

Drought is one of the most complex natural hazards, and it has
affected economy, agriculture, and society (Beguer & et al.2010;
Wilhite, 2000). Drought is expected to increase in frequency
and severity due to global warming (Dai, 2013; Seneviratne et
al., 2012), and it is significant to investigate the response of
vegetation growth to drought (Wu et al., 2013; Wagle et al.,
2014). Since the 20" century, many efforts have been made to
investigate drought by developing many drought indices, and
there are three popular drought indices including the Palmer
drought severity index (PDSI; Palmer, 1965), the standardized
precipitation index (SPl; McKee et al., 1993) and the
Standardized Precipitation Evapotranspiration Index (SPEI;
Vicente-Serrano et al., 2010). The PDSI is based on the supply
and demand concept of the water balance equation, but the main
disadvantage is that it has a fixed temporal scale and an
autoregressive characteristic (Guttman, 1998). The SPI is based
on the cumulative precipitation available and incorporates
different time scales (Vicente-Serrano, 2014), but it also
includes the precipitation information, and omit other variables
such as the temperature and the evapotranspiration that can
influence the drought (Vicente-Serrano, 2010). The SPEI is
based on the monthly water balance derived from precipitation
and potential evapotranspiration (PET) and incorporates the
advantages of both the PDSI (sensitivity to the evaporative
demand) and the SPI (reflecting multi-scale characteristics)
(Vicente-Serrano et al, 2014). This study employed the SPEI as
the climatic drought indicator to investigate the climate
conditions. As the climatic drought indices were used the
meteorological observations and incorporated little vegetation
and soil information in determining the vegetation response (Mu
et al., 2013). We also used the remote sensing data to reflect the

vegetation activity in this study. The normalized difference
vegetation index (NDVI; Rouse et al., 1974) is sensitive to
vegetation growth and environmental stress, and it is a good
indicator for monitoring terrestrial vegetation activities (Zhang
et al., 2014). Previous studies have concentrated in the
responses of forests to drought (Madrigal-Gonz&ez J et al.,
2014; Mendivelso et al., 2014), and few studies have
investigated the impact of drought on other vegetation types.
This study employed the correlation between the NDVI and the
SPEI at various time scales and found the major time scales of
SPEI for different vegetation types to investigate the responses
of vegetation growth to the climate change.

2. DATA AND METHODS
2.1 Climatic data

This study employed the monthly precipitation and the monthly
average temperature data during the period 1960 - 2013 from
the National Climate Center of the China Meteorological
Administration (CMA). The homogeneity and reliability of the
monthly meteorological data have been previously checked and
controlled by the CMA (Yu et al., 2014). As there are missing
values in the meteorological data, the 5-year running means
before and after these missing data were applied to ensure that
the time series was continuous. If the meteorological data were
missing for more than 12 consecutive months of a specific
station, the station was removed out of the analysis. The
representative vegetation type for each meteorological station
was determined from a 1:1000000 vegetation map of the
People’s Republic of China (Zhang et al., 2007). 511
meteorological stations covering most regions in China
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involved six major land cover types including needle-leaved
forest, broadleaf forest, shrubland, grassland, meadow and
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cultivated vegetation were picked up for the study (Fig. 1).

i

Figure 1. Spatial distribution of meteorological stations and the related vegetation types

2.2 Remote sensing data

Remote sensing data has been playing a significant role in
monitoring drought-related vegetation condition (Henricksen
and Durkin, 1986; Jain et al., 2009). Many vegetation indices
have been developed to reflect vegetation characteristics, and
the most widely used vegetation index is the Normalized
Difference Vegetation Index (NDVI) (Tucker, 1979). The
NDVI dataset used in this study was obtained from the Global
Inventory Modelling and Mapping Studies inventory (Tucker et
al., 2005) for the period 1982 - 2011. This dataset has the
longest time series and it is appropriate to assess vegetation
variability and trends (Beck et al., 2011). The GIMMS NDVI
dataset is a bimonthly composite NDVI product at an 8-km
spatial resolution (Tucker et al., 2004; Tucker et al., 2005), and
it was transformed into a monthly composited dataset based on
the maximum value composite to correspond with the resolution
of the SPEI.

2.3 Multi-scalar climate drought indicator: SPEI

The Standardized Precipitation Evapotranspiration Index (SPEI;
Vicente-Serrano et al., 2010) was calculated based on the
monthly records of mean temperature and precipitation totals at
meteorological stations over China for the period 1960 - 2013.
The SPEI was used to reflect water conditions at different time
scales. Mathematically, the SPEI uses primarily the monthly
differences  between precipitation and the potential
evapotranspiration (PET). There are three major steps to
calculate the SPEI at different time scales. The first is to
calculate the PET based on the formula of Thornthwaite (1948),
and the second is to calculate the accumulated deficit or surplus
in the climate water balance at different time scales, and the last
is to normalize the water balance into a log-logistic probability
distribution to obtain the SPEI index series (Vicente-Serrano,
2010). The SPEI is a standardized value, and it could be
compared with other SPEI values over time and space. The

various time scales of SPEI is from 1- to 12- months, and these
time scales can be grouped into three categories. The short time
scales are from 1 to 5 months, and the medium time scales are
from 6 to 8 months, and the long time scales are from 9 to 12
months.

2.4 Statistical methods

Twelve GIMMS-NDVI series (i.e., one series per month) were
obtained for each meteorological station, and the various time
scales (1 to 12 months) were also employed to make the
correlation. Pearson correlation analysis between the SPEI at
various time scales and the variation of NDVI (NDVlyuiation)
that equals to the value of NDVI minus the average value of
NDVI for each meteorological station were employed to reflect
the responses of vegetation growth to the drought. There were
144 correlation coefficients for each meteorological station (12
monthly NDVI series by 12 SPEI series at different time scales),
and the correlation coefficients that satisfy the significance
threshold (o < 0.05) were selected to reflect the responses of
vegetation growth to droughts. The maximum value of the 144
correlation coefficients at each meteorological station was
retained to analyse the spatial distribution of China. The SPEI
time scales for different vegetation types are summed up to
reflect the responses of vegetation growth to the drought, and
the maximum correlation coefficient was also kept for further
study. All correlation coefficients employed in this study passed
the significance test with a significance level of 0.05.

3. RESULTS
3.1 The correlation between the NDV 4 iation aNd the SPEI
The correlation analysis between the NDV |, iation @and the SPEI

at different time scales was employed to investigate the
responses of vegetation growth to climate change. For the
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needle-leaved forest, the broadleaf forest and the shrubland, the
correlation coefficients are mainly negative. These three
vegetation types always locate in humid sites, with higher
average annual precipitation than average annual potential
evapotranspiration (PET). The grassland has higher water
deficits, and the correlation coefficients are mainly positive. The

meadow has better water conditions than the grassland, so the
percentage of positive correlation is lower than the grassland.
The cultivated vegetation always located in sub-arid sites, with
more positive correlation coefficients than the negative. The
meteorological stations for each vegetation type are summed up
in Table 1.

Vegetation type Number of stations Percentage of correlation coefficients
positive negative

Needle-leaved forest 40 26.17% 73.83%
Broadleaf forest 26 14.61% 85.39%
Shrubland 47 25.73% 74.27%
Grassland 39 78.58% 21.42%
Meadow 32 46.26% 53.74%
Cultivated vegetation 327 62.31% 37.69%

Table 1. The station-based correlations between the NDVIs and the SPEIs

3.2 The different SPEI time scales for vegetation types

Different vegetation types have their own characteristics to

reflect their responses to drought at different time scales (Fig. 2).

For the needle-leaved forest, the broadleaf forest and the
shrubland, they have more percentages of SPEI concentrated in
the long time scales. The specific percentages of the
needle-leaved forest, the broadleaf forest and the shrubland are
about 49.39%, 53.33% and 39.52%. For the grassland, the
meadow and the cultivated vegetation, the highest percentages
of the SPEI are mainly in the short time scales. For the

grassland, the correlation has about 38.10% in the short time
scales and 35.70% in the long time scales. For the meadow, the
correlation has about 39.73% in the short time scales and 36.03%
in the long time scales. For the cultivated vegetation, the
correlation has about 36.79% in the short time scales and 35.48%
in the long time scales. To sum up, the needle-leaved forest, the
broadleaf forest and the shrubland concentrate in the long time
scales. For the grassland, the meadow and the cultivated
vegetation, they have majored in the short time scales, but they
also have some percentages of SPEI in the long time scales that
are a little lower than the short time scales.
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Figure 2. The different time scales for various vegetation types

3.3 The spatial characteristics between the NDV4iation @and
the SPEI

The maximum correlation coefficient for each meteorological
station was employed to reflect the spatial distribution of the
relationship between the drought and the climate drought
indicator (Fig.3). The meteorological station-based correlation
coefficients were interpolated into grids using an ordinary
Kriging method with a spatial resolution of 8 km. The negative

correlation has majored in the southeast China where also have
positive balance in China. There are still some sites that have
negative correlation in northeast China, with the major
vegetation types are forests. The forests also have positive water
balance and they are not too sensitive to the water deficit. Most
regions in China has positive correlation coefficients between
the NDVlyuiaion @nd the SPEI, and among all the vegetation
types, the sites in the North China especially in the northwest
China have the largest positive correlation coefficients.
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Figure 3. The spatial distribution of the maximum correlation coefficients in China

4. DISCUSSION

The standardized precipitation evapotranspiration index (SPEI)
as a site-specific climate drought indicator and the GIMMS
NDVI as a vegetation growth indicator were used to reflect the
responses of vegetation growth to climate change in China. The
correlation analysis was employed between the SPEI at different
time scales and the NDVlgiaion 10 investigate the impact of
climate change on vegetation growth. For the needle-leaved
forest, the broadleaf forest and the shrubland, they always have
more precipitation and positive water balance (water surplus)
compared with the other vegetation types. So they have
relatively lower correlation coefficients and even the negative
correlations. These vegetation types are not typically affected
by water deficits because the growing season temperature is the
main constraint on growth (Briffa et al., 1998), and moreover,
the radiation can also affect vegetation growth (Vicente-Serrano
et al., 2014). The needle-leaved forest, the broadleaf forest and
the shrubland are related to the long time scales, mostly because
they have deep root systems and they can tolerate the water
deficit for the short time scales. For the grassland, the meadow
and the cultivated vegetation, they mainly have lower
precipitation and more PET and always have water deficit. The
positive correlation coefficients of these are higher than the
other three vegetation types, and they are more sensitive to the
short time scales. But the grassland, the meadow and the
cultivated vegetation also have some percentages of SPEI in the
long time scales that are a little lower than the short time scales
which can be investigated in further study. To investigate the
spatial distribution of the correlation coefficients in China, the
maximum correlation coefficients are depicted in Fig. 3.

Positive correlation coefficients are primarily concentrated in
northern China, especially in northwestern China, where the
corresponding water balance is primarily negative (water
deficit). Negative correlation coefficients are mainly
concentrated in southern China, especially in southeastern
China, which corresponds to regions with primarily positive
water balance (water surplus).

5. CONCLUSIONS

In this study, we investigated the spatiotemporal responses of
different vegetation types across China during the period
1982-2011based on the correlations between the NDVlyuiation
and the SPEI with different time scales. The results indicate that
the responses in vegetation growth to the SPEI vary for different
vegetation types. In general, the needle-leaved forest, the
broadleaf forest and the shrubland are mainly concentrated in
the long time scales, and the grassland, the meadow and the
cultivated vegetation are related to the short time scales. The
positive correlations were mostly found in arid and sub-arid
environments where soil water was a primary constraining
factor for plant growth, and the negative correlations always
located in humid environments where temperature and radiation
played significant roles in vegetation growth. The spatial
analysis indicates that the positive correlations were primarily
found in northern China, especially in northwestern China, and
the negative correlations were found in southern China,
especially in southeastern China. These findings are helpful to
adopt the appropriate strategies to mitigate the impact of climate
change on vegetation growth.
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