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ABSTRACT: 

 

Forest’s net primary productivity (NPP) is a key index in studying interactions of climate and vegetation, and accurate prediction of 

NPP is essential to understand the forests’ response to climate change. The magnitude and trends of forest NPP not only depend on 

climate factors (e.g., temperature and precipitation), but also on the succession stages (i.e., forest stand age). Although forest stand 

age plays a significant role on NPP, it is usually ignored by remote sensing-based models. In this study, we used remote sensing data 

and meteorological data to estimate forest NPP in China based on CASA model, and then employed field observations to inversely 

estimate the parameter of maximum light-use efficiency (εmax) of forests in different stand ages. We further developed functions to 

describe the relationship between maximum light-use efficiency (εmax) and forest stand age, and estimated forest age-dependent NPP 

based on these functions. The results showed that εmax has changed according to forest types and the forest stand age. For deciduous 

broadleaf forest, the average εmax of young, middle-aged and mature forest are 0.68, 0.65 and 0.60 gC MJ-1. For evergreen broadleaf 

forest, the average εmax of young, middle-aged and mature forests are 1.05, 1.01 and 0.99 gC MJ-1. For evergreen needleleaf forest, 

the average εmax of young, middle-aged and mature forests are 0.72, 0.57 and 0.52 gC MJ-1.The NPP of young and middle-aged 

forests were underestimated based on a constant εmax. Young forests and middle-aged forests had higher εmax, and they were more 

sensitive to trends and fluctuations of climate change, so they led to greater annual fluctuations of NPP. These findings confirm the 

importance of considering forest stand age to the estimation of NPP and they are significant to study the response of forests to 

climate change.  

 

 

1. INTRODUCTION 

 

The vegetation is the main body of the biosphere, and it is 

significant to regulate the global carbon balance (Piao et al., 

2001). Net Primary Production (NPP) is one of the main 

components of the carbon cycle (Piao et al., 2008; Liang et al., 

2015) and also an indicator to the ecosystem performance 

(Lobell et al., 2002). Climate change has deeply affected the 

ecosystem and NPP has become a significant tool to reflect the 

variation of the ecosystem (Hao et al., 1998; Liu et al., 2015). In 

general, the forest ecosystem NPP accounted for 35% of the 

global and 65% of the terrestrial ecosystem NPP (Gower et al., 

1996; Waring and Schlesinger, 1985). The variation in forest 

NPP will change the atmospheric CO2 concentration and further 

affect the climate change (Want et al., 2011). The difference in 

the forest stand ages and forest types are critical factors to the 

forest ecosystem, and it is essential to investigate the variation 

of the forest NPP with the forest stand ages among forest types 

(Chen et al., 2003; Song and Woodcock, 2003; Kashian et al., 

2006). The Carnegie-Ames-Stanford Approach (CASA) model 

(Potter et al., 1993) based on the remote sensing data is widely 

used to simulate the spatial distribution of the NPP and it can 

also be employed to monitor NPP at different scales (Li et al., 

2009). The accuracy of the estimated NPP based on the CASA 

model has been mostly affected by the maximum light-use 

efficiency (εmax), and it exists differences among forest types 

and the forest stand ages (Zhu et al., 2006; Hui et al., 2012 ). 

The maximum light-use efficiency could influence the carbon 

sink of the ecosystem, and reflect the forest ecosystem 

productivity (Zhou et al., 2010). Potter and Field think that the 

maximum light-use efficiency of all the vegetation types around 

the world is 0.389 gC/MJ, and Raymond et al believe that the 

upper limit of the maximum light-use efficiency is 3.5 gC MJ-1. 

Thus, it is essential to determine the maximum light-use 

efficiency based on the forest stand ages among forest types 

(Potter et al., 1993; Raymond et al., 1994; Field et al., 1995, 

1998). In this study, the CASA model was employed to estimate 

NPP in China from 1982 to 2005. We calculated the maximum 

light-use efficiency of forests in the forest stand ages based on 

the estimated NPP and the field observation NPP. The 

relationship between the maximum light-use efficiency and the 

forest stand ages could be developed to reflect the impact of 

change in the forest stand ages on the maximum light-use 

efficiency, and the estimated age-dependent NPP could also be 

calculated based on the relationship. 

 

 

2. DATA AND METHODS 

 

2.1 Remote sensing data 

 

Many vegetation indices based on the remote sensing data have 

been developed to monitor vegetation dynamics, and the most 

widely used is the Normalized Difference Vegetation Index 

(NDVI). The NDVI dataset used in this study was obtained 

from the Global Inventory Modelling and Mapping Studies 

inventory (Tucker et al., 2005) during the period 1982 to 2005. 

This dataset has a long time series and it is helpful to be applied 

to reflect the vegetation information (Beck et al., 2011). The 

spatial resolution of the dataset is 8 km, and the temporal 

resolution is 15 days. To match with other data, the GIMMS 

NDVI dataset is composited based on the maximum value 

composite (MVC). The MVC technique retains the highest 

value for each pixel, and the images are relatively cloud-free, 
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with the ability to reflect the vegetation dynamics (Eidenshink, 

1992; Holben, 1986). 

 

2.2 Meteorological data and the land cover map 

 

This study employed the monthly average temperature, the 

monthly precipitation data and the monthly total solar radiation 

data during the period 1982 to 2005 from the National Climate 

Centre of the Chinese Meteorological Administration (CMA). 

The homogeneity and reliability of the monthly meteorological 

data have been previously checked and controlled by the CMA 

(Yu et al., 2014). The related longitude, latitude and the altitude 

of the meteorological stations are also used in this study to 

interpolate the meteorological data based on the GIS methods. 

The cell size matches with the NDVI dataset. The Land Cover 

map used in this study was originated from the MODIS 

Landcover dataset, and the classification of the vegetation type 

was chosen type 1 (ISTP). 

 

2.3 Field observation data of NPP  

 

The NPP field observation data originates from the forest 

inventory data and Luo’s study based on the 1266 forest plots 

from 1982 to 2005. It includes the forest stand age, the LAI, the 

total biomass, the longitude, latitude and altitude of the 

observation sites. It is used to correct the maximum light-use 

efficiency (εmax) of the CASA model among different forest 

types in the forest stand ages. Based on the available field 

observation of the NPP, the forest types that considered in this 

study include the deciduous broadleaf forest (DBF), the 

evergreen needleleaf forest (ENF) and the evergreen broadleaf 

forest (EBF). 

     

2.4 CASA model 

 

Carnegie-Ames-Stanford Approach (CASA) model (Potter et al., 

1993) can estimate monthly NPP with satellite data, monthly 

temperature, precipitation and soil properties (Liu et al., 2015; 

Zhang et al., 2015). The CASA model can simulate the spatial 

distribution and the variation of NPP on a regional scale and it 

has been widely used to monitor the NPP for various spatial 

scales. In CASA model, the NPP is the function of Absorbed 

Photosynthetic Active Radiation (APAR), the maximum 

light-use efficiency (εmax), the effect of the temperature stress 

index (Tε) and the moisture stress factor (Wε). For a given 

geographic coordinate (x) at month t, NPP is calculated as, 
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where Rs is the incoming shortwave radiation, FPAR is the 

fraction of photosynthetic active radiation absorbed by 

vegetation, which is determined from the satellite data (NDVI). 

Other model parameters, such as the annual maximum and 

minimum NDVI for each vegetation type, are considered 

corresponds to the 95% and 5% quantiles of the probability 

distribution of the monthly NDVI in each vegetation type 

(Liang et al., 2015). 

     

2.5 Statistical methods 

 

The estimate NPP based on the CASA model is largely affected 

by the maximum light-use efficiency (εmax). In this study, we 

employed the field observation NPP to correct the εmax for the 

forest stand ages among forest types. 

 

     
       

    
                             (4) 

     

where NPP is the field observation data of NPP, NPPm is the 

estimated NPP based on the meteorological data and the remote 

sensing data (NDVI), εa is the fixed value for all the vegetation 

types and all the forest age, and here the value is 0.43. 

The NPPm is separated by the forest types and the forest stand 

ages, thus the εmax for different forest types and the forest stand 

ages have different values. The εmax of various field observation 

sites are grouped by the forest types and the forest stand ages.  

To investigate the relationship between the forest stand ages and 

the εmax, the forest stand ages were separated into 12 groups. 

The forest stand ages that less than 15 years are regarded as 

group 1, and the forest stand ages between the 15years and the 

30 years were regarded as group 2,…, and the forest stand ages 

more than 165 years are regarded as group 12. 

     

 

3. RESULTS 

     

3.1 The estimated NPP of the forest types 

 

Based on the remote sensing data and the meteorological data, 

the NPP of China from 1982 to 2005 was estimated. Based on 

the available filed observation data of NPP, the selected forest 

types include the evergreen needleleaf forest (ENF), the 

evergreen broadleaf forest (EBF) and the deciduous broadleaf 

forest (DBF). The spatial distribution of the forest types is 

shown in Fig.1. 
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Figure 1． The spatial distribution of three selected forests in China 

 

 

The forest types NPP(gC m-2a-1) 

ENF 388 

EBF 438 

DBF 420 

 

Table 1 The estimated NPP based on the constant εmax for three forest types 

 

The forest is major in South China, and there are still some 

forests in Northeast China. The evergreen needleleaf forest 

mainly distributes in the east of China, and some north regions 

in China. The evergreen broadleaf forest is mainly in the South 

China, and also some places in the east China. The deciduous 

broadleaf forest is usually located in South China, and the 

northeast China. 

The estimated NPP based on the constant maximum light-use 

efficiency (εmax) vary for different forest types. For the 

evergreen needleleaf forest, the average NPP during the period 

1982 to 2005 is about 388 gC m-2 a-1. For the evergreen 

broadleaf forest, the average NPP is about 438 gCm-2a-1. For the 

deciduous broadleaf forest, the average NPP is about 420 

gCm-2a-1 (Table 1). The evergreen broadleaf forest has the 

largest NPP than the other two forest types, and the evergreen 

needleleaf forest has the least NPP based on the constant εmax. 

         

3.2 The relationship between the maximum light-use 

efficiency (εmax) and the forest stand ages  

 

The maximum light-use efficiency (εmax) of different stand ages 

is based on the field observation data NPP. The field 

observation data NPP is separated by different forest types, and 

then grouped by the forest stand ages. The number of the study 

sites in different forest stand ages is also summed up. Here we 

investigate three forest types including the evergreen broadleaf 

forest (EBF), the deciduous broadleaf forest (DBF) and the 

evergreen needle forest (ENF). The relationship between the 

εmax and the forest stand ages for three forest types ate shown in 

Fig. 2.
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Figure 2 The relationship between the forest stand age and the maximum light-use efficiency (εmax) of three forest types 

 

From Fig.2, The regression equation of the evergreen needleleaf 

forest is y=-0.108 * ln(x) + 1.0177. The determination of the 

correlation coefficients (R2) is 0.3897. The εmax has decreased as 

the forest ages increase, but the relationship between the εmax 

and the forest stand ages are non-linear. The regression equation 

of the evergreen broadleaf forest is y=-0.0007 * x + 1.0713. The 

R2 is 0.218. The εmax has decreased as the forest stand ages 

increase, and the relationship is linear. The regression equation 

of the deciduous broadleaf forest is y=-0.0014 * x + 0.7. The R2 

is 0.4723. The εmax has decreased as the forest ages increase, 

and the slope is higher than the evergreen broadleaf forest. The 

relationship between the εmax and the forest stand ages are also 

linear.  

     

3.3 The maximum light-use efficiency (εmax) of forests in 

different stand ages 

 

The corrected maximum light-use efficiency (εmax) has indicated 

that the great differences exist among different forest types. 

Based on the research data about the forest stand ages in China, 

the forest stand ages are first separated by the forest types, and 

then grouped by the young forest, middle-aged forest and the 

mature forest. For the deciduous broadleaf forest, the average 

εmax of young, middle-aged and mature forest are 0.68, 0.65 and 

0.60 gC MJ-1. For the evergreen broadleaf forest, the average 

εmax of young, middle-aged and mature forests are 1.05, 1.01 

and 0.99 gC MJ-1. For the evergreen needleleaf forest, the 

average εmax of young, middle-aged and mature forests are 0.72, 

0.57 and 0.52 gC MJ-1. In general, the average εmax of evergreen 

broadleaf forest is larger than the deciduous broadleaf forest, 

and the minimum of the average εmax is the evergreen needleleaf 

forest. The average εmax of young forest is higher than the 

middle-aged forest, and the mature forest has the lowest εmax. 

 

3.4 The estimated forest age-dependent NPP  

 

The maximum light-use efficiency (εmax) of the young, 

middle-aged and the mature forests are separated by the forest 

stand ages, and the forest types including the evergreen 

needleleaf forest, the evergreen broadleaf forest and the 

deciduous broadleaf forest are also considered in the study. 

Based on the estimated NPP of forest types and the εmax of 

different stand ages, the estimated NPP of different stand ages 

are calculated. For the evergreen needleleaf forest, the estimated 

NPP of young, middle-aged and mature forest are about 650 gC 

m-2a-1, 514 gC m-2a-1 and 469 gC m-2a-1. For the evergreen 

broadleaf forest, the estimated NPP of young, middle-aged and 

mature forest are about 1069 gC m-2a-1, 1028 gC m-2a-1 and 

1008 gC m-2a-1. For the deciduous broadleaf forest, the 

estimated NPP of young, middle-aged and mature forest are 

about 664 gC m-2a-1, 635 gC m-2a-1 and 586 gC m-2 a-1. 

     

     

4. DISCUSSION 

 

The NPP is the key indicator to reflect the ecosystem 

performance to the climate change, and the accurate estimate of 

NPP is significant to regulate the global carbon balance. The 

forest ecosystem is essential to the world carbon cycle, and the 

NPP of forest ecosystem has explained about 65% of the 

terrestrial ecosystem. The CASA model is widely used to 

monitor NPP, and the factor that has the largest effect on the 

estimated NPP based on the CASA model is the maximum 

light-use efficiency (εmax). The εmax varies for different 

vegetation types which have been investigated by many studies, 

but the εmax can also be different for the various stand ages of 

forest types. This study focused on the maximum light-use 

efficiency of the different stand ages among three forest types in 

China. The evergreen needleleaf forest and the evergreen 

broadleaf forest have the linear relationship between the forest 

stand ages and the εmax, and the deciduous broadleaf forest has 

the non-linear relationship. The determination of the 

relationship is based on the R2 of the equation, and the 

deciduous broadleaf forest has better result when applied the 

non-linear relationship. The evergreen broadleaf forest has the 

higher εmax than the evergreen needleleaf forest and the 
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deciduous broadleaf forest. The εmax of evergreen broadleaf 

forest is always underestimated by the constant εmax, which will 

also lead to the underestimate of NPP. The evergreen broadleaf 

forest has the maximum deviation of the NPP for the young, 

middle-aged and the mature forest. The εmax of the evergreen 

broadleaf forest among the young, middle-aged and the mature 

forest change little, but it also has the decreased trend as the 

forest stand ages increase. The εmax of evergreen needleleaf 

forest is a little estimated by the constant εmax, and the NPP is 

also underestimated. The εmax of the evergreen broadleaf forest 

among the young, middle-aged and the mature forest has the 

decreased trend, and the change is higher than the other two 

forest types. The εmax of deciduous broadleaf forest is 

underestimated, and it also has the decreased trend from the 

young forest to the mature forest. In general, the estimated NPP 

based on the constant εmax are underestimated especially for the 

young and middle-aged forest. For the evergreen needleleaf 

forest, the deviation of the NPP in young and middle-aged 

forest is about 262 gC m-2a-1 and 126 gC m-2a-1. For the 

evergreen broadleaf forest, the deviation of the NPP is about 

600 gC m-2a-1 for the young and middle-aged forest. For the 

deciduous broadleaf forest, the deviation of the NPP in young 

and middle-aged forest is about 240 gC m-2a-1. The evergreen 

broadleaf forest has the largest deviation in NPP, and the young 

forest for the forest types have higher deviation of NPP than the 

middle-aged forest and the mature forest. Young forests and 

middle-aged forests had higher εmax, and they are more sensitive 

to climate change. The NPP of young and middle-aged forest 

should consider the variation of the forest stand age.  

 

 

5. CONCLUSION 

 

This study employed both the meteorological data and the 

remote sensing data to estimate the NPP of three forest types 

including the evergreen needleleaf forest (ENF), evergreen 

broadleaf forest (EBF) and deciduous broadleaf forest (DBF) 

based on the CASA model. The original CASA model based on 

the fixed maximum light-use efficiency (εmax) does not consider 

the effect of the forest stand ages among forest types, and it will 

lead to the deviation in the estimate of NPP. This study first 

estimate the NPP based on the CASA model and then employed 

field observations to inversely estimate the parameter of 

maximum light-use efficiency of forests in different stand ages. 

The relationship between maximum light-use efficiency and the 

forest stand ages was functioned to estimate forest 

age-dependent NPP. The results showed that εmax has changed 

according to forest types and forest stand ages. The deciduous 

broadleaf forest, evergreen broadleaf forest and evergreen 

needleleaf forest all have decreased trend as the forest stand 

ages increase. The evergreen broadleaf forest has the higher εmax 

than the other two forest types. For deciduous broadleaf forest, 

the average εmax of young, middle-aged and mature forest are 

0.68, 0.65 and 0.60 gC MJ-1. For evergreen broadleaf forest, the 

average εmax of young, middle-aged and mature forests are 1.05, 

1.01 and 0.99 gC MJ-1. For evergreen needleleaf forest, the 

average εmax of young, middle-aged and mature forests are 0.72, 

0.57 and 0.52 gC MJ-1. The evergreen broadleaf forest has the 

largest deviation in NPP, and the young forest for the forest 

types have higher deviation of NPP than the middle-aged forest 

and the mature forest. Young forests and middle-aged forests 

had higher εmax, and they were more sensitive to trends and 

fluctuations of climate change, so they led to greater annual 

fluctuations of NPP. These findings confirm the importance of 

considering the forest stand ages to the estimation of NPP and 

they are significant to study the response of forests to climate 

change. 
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