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ABSTRACT: 

 

The availability of a large number of data acquired by satellite sensors with different spatial and spectral resolutions has always 

required an evaluation of their synergistic use. The integration of dataset of images coming from different sources can be an optimal 

solution for the study of various environmental problems which need a continuous monitoring (coastal development, forest 

evolution, land use changes etc.). The Classe pinewood, an important safeguarded biodiversity hot spot near Ravenna city (Italy), is 

historically affected by the groundwater salinization. Since changes in the water concentration are able to induce variations of the 

leaf properties and vegetation cover, recognizable by surveys carried out with different spectral bands, the comparison between 

ASTER and Worldview-2 data was performed using the (Normalized Difference Vegetation Index) NDVI. For each satellite data, 

the same Areas of Interest (AOIs) were selected within the most widespread cover, Thermophilic Deciduous Forest (TDF). The 

NDVI was calculated, statistically evaluated and the AOI rankings were built. In order to evaluate the difference between the results 

provided by the two images, statistical tests were applied on the average NDVI values. Finally the calculated NDVI were compared 

with groundwater salinity data collected during a contemporary field monitoring campaign. Based on groundwater salinity the same 

AOIs ranking was reached for both satellite sensors. This study suggests the opportunity to employ the medium resolution Aster 

images in continuity with high resolution WarldView-2 dataset. 
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1.1 INTRODUCTION 

The availability of a constantly increasing number of satellites 

observing the Earth (Bailey et al., 2001) require tools and 

procedures to integrate the results obtained from data with 

different spectral and spatial resolutions (Wald et al., 1997; 

Chander et al., 2008). The main purpose is to achieve the 

continuity of data by temporal infill for the monitoring and 

modelling of natural resources (Yin et al., 2012). In fact, the use 

of data from different sensors can maximize the chances of 

obtaining a cloud-free image and to meet time requirements for 

information. In particular, several studies reported the inter-

comparison of the Normalized Difference Vegetation Index 

(NDVI) data (Thenkabail, 2004; Abuzar et al., 2014). 

Many researchers used the NDVI as a biophysical indicator to 

analyze indirect effects of environmental changes (Aguilar et al. 

2012; Barton, 2012), including those due to processes of 

salinization (Naumann et al. 2008; Zhang et al. 2011). The 

delineation of type and status of vegetation could provide a 

spatial overview of salinity distribution (Dehaan and Taylor, 

2002; Tilley et al. 2007) and support land planners to reduce the 

risk resulting from salinization (Wiegand et al. 1994). Increased 

water salinity induces changes in chlorophyll concentration and 

therefore a photosynthesis slowdown (DeLaune et al. 1987). By 

measuring the relative difference between responses of 

chlorophyll and cellular structure in the red and near-infrared 

bands (Peñuelas, 1998), the NDVI analyses the greenness and 

al. productivity (Reed et 1994) of the plants.  

The roman-time Classe pinewood (Ravenna, Italy), selected as 

study area, has been affected by groundwater salinization for 

several years (Antonellini et al. 2008). Included in the Po Delta 

Park, with other natural features of this region (wetlands, dunes, 

river mouths), it is classified as a protected area (EU site of 

importance and special area of conservation), in conformity 

with the Council Directive 92/43/EEC 

(http://ec.europa.eu/environment/nature/legislation/habitatsdirec

tive/). Here, natural and anthropogenic land subsidence, low 

topography and the artificial drainage system led to a 

widespread saltwater intrusion (Antonellini et al. 2008). 

Antonellini and Mollema (2010) found that groundwater 

salinity and the water table level are the main causes of a 

progressive degradation of this ancient pine forest and of the 

coastal zones. Furthermore, according to the results of Giorgi 

and Lionello (2008), climate change will have a large influence 

on the water budget of Mediterranean countries, leading to an 

increase in the dry periods and to a subsequent increase of sea 

water intrusion. 

Therefore, in order to monitor the temporal evolution of the 

pine forest health status and groundwater quality an upgradable 

dataset is necessary. Furthermore, the availability of comparable 

data from different sensors would provide comprehensive and 

continuous information over time. In this work, a comparison 

between two multispectral satellite data has been conducted 

with the aim to assess their potential integrated use. The 

presented analysis is based on ASTER and Worldview-2 (below 

WV-2) images, acquired in May 2011. In order to study the 

possible advantages of high spatial resolution in face of the 
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medium resolution, the same procedure to identify portions of 

pinewood affected by groundwater salinization (Barbarella et 

al., 2015) was applied to each satellite data and the results were 

statistically compared (Pu and Landry, 2012). Given that, 

within the Classe pinewood, the same stressed areas were 

recognized, this study can suggest the use of the medium 

resolution in continuity with high resolution dataset. 

 

2. STUDY AREA 
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Figure 1. Classe pinewood (a) and the Areas of Interest (b) 

 

The historical Classe pinewood (Fig. 1 (a)), included in the Po 

Delta Regional Park (Ravenna, Italy) because of its 

considerable plant and animal biodiversity, is 5 km long and 2 

km large (900 ha). The pine forest is mainly surrounded by 

agricultural land except for the South-East part where it borders 

with the Ortazzo freshwater lagoon. The thickness of the 

underlying aquifer varies from a minimum of 6 to a maximum 

of 22 m (Amorosi et al. 1999).  

Because of the low topography (about 2 m amsl) the area is 

strongly drained and a pumping station is present in the western 

part of the pinewood. Furthermore, the Bevano River and Fosso 

Ghiaia channel flow respectively in the southern boundary and 

in the center of the pinewood. Those two channels are directly 

open to the sea and especially during drought period, seawater 

can encroach the riverbed and reach the pineforest (Antonellini 

et al. 2008).  

Based on the official vegetation map from Regione Emilia 

Romagna (1999), two main vegetation types are present in the 

Classe pineforest: “Thermophilic Deciduous Forest” (below 

TDF) and “Thermophilic Evergreen Forest” (below TEF). The 

main species found in both classes are Quercus robur, Quercus 

pubescens, Fraxinus ornus, Populus alba, Ulmus minor, Salix 

cinerea. The only difference between TDF and TEF is the 

presence of Quercus ilex (evergreen species) which indicates a 

drier and more elevated habitat. Because of its wider extension 

the TDF was selected as the target vegetation in this study. The 

Pinus pinea species is not classified in the vegetation map 

because it is not able to reproduce itself inside these natural 

area. Moreover this species, planted by monks in the 13th AD 

(Ginanni, 1774), is stressed because it grows outside of its 

original climax (Piccoli et al. 1991). 

 

3. METHODS 

Before comparing the ASTER (VNIR sensor only, spatial 

resolution of 15m) and the WV-2 data (spatial resolution of 

2m), the procedure developed on the nearby San Vitale 

Pinewood (Barbarella et al., 2015) was applied to each satellite 

data. Since the two images were acquired respectively on 

05/18/2011 and on 05/29/2011, the atmospheric correction to 

retrieve surface reflectance was required (Yuan and Niu 2008, 

Abuzar et al., 2014). This pre-processing step was performed by 

the MODTRAN4 module as implemented into ENVI FLAASH 

(FLAASH Module, 2009). 

For both ASTER and WV-2 images, the NDVI was calculated 

with ENVI software (below NDVI_A11 and NDVI_W11 

respectively) for the same four Areas of Interest (AOIs, Fig. 

1(b)), selected inside the TDF class (N, C1, C2, S). For each 

AOI, the NDVI values were statistically evaluated (mean, 

standard deviation). In order to understand if the difference 

between results provided by the two satellite data was 

significant, a statistical test was applied on the average NDVI 

values. In this case, considering that the two unknown 

population variances are not assumed to be equal, the Student's 

t-test (Eq. 1) was used to verify whether the population means 

were different, based on the statistic: 
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and for the degree of freedom (v) computation the Welch 
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Subsequently, the frequency histograms of AOI NDVI values 

were plotted to explain the data distributions and higher order 

moments, Skewness and Kurtosis shape factors, were obtained 

to evaluate a possible deviation from the Guassian trend. In 

every image, using the AOI with the highest average NDVI, the 

NDVI value corresponding to the 5% of the pixels was used as 

threshold to compare the health vegetation status. Later, the 

percentages of pixels that fall below this limit were classified as 

stressed vegetation in all the other AOIs. Finally, the AOI 

rankings for each satellite image was carried out (Steps shown 

in the right column of flow chart., Fig 2). 

In order to compare the results obtained from the two different 

sensors, further phases have been added to the original 

procedure (Steps shown in the left column of flow chart, Fig 2). 

The first analysis consisted in the statistical comparison of the 

average NDVI values for each AOI.  

Afterwards, to compare the two satellite data at the same spatial 

resolution, the WV-2 pixels (2m) were resampled and re-

projected to the ASTER projection and pixel size (15m). Based 

on the same AOIs the statistical NDVI analysis were repeated. 

The availability of NDVI values comparable for all pixels 
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allowed to assess the correlation pixel by pixel between the two 

images. 
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Figure 2. Flow chart of the whole procedure used to compare 

ASTER and WV-2 data 

Finally, to validate the ASTER and WV-2 ranking salinity data 

collected from contemporary groundwater monitoring campaign 

were used.  

During the Spring 2011, electrical conductivity and water table 

depth measures were collected within and surrounding the 

Classe pine forest from shallow piezometers (10 locations), 

surface water bodies (16 locations) and drainage channels (13 

locations), (Fig. 1(a)). Electrical conductivity was converted 

into salinity using UNESCO methodology (1983) while water 

table depth was referred to the mean sea level. In order to 

produce the salinity maps only the top aquifer salinity were 

used. Firstly because of its contact with the trees roots and 

secondly because of its role in the supply of water during the 

evaporation processes (Buscaroli and Zannoni, 2010). 

An interpolated grid was created for the month corresponding to 

the image acquisition dates (May 2011). Starting from sparse 

points, the Kriging algorithm with linear variogram was applied 

to obtain a continuous pattern (Akkala et al. 2010) using the 

software SURFER 11. The spacing of nodes is identical to the 

geometric resolutions of the satellite data. The saline contour 

line maps were overlaid with the AOIs location to highlight 

zones of pinewood affected by saltwater intrusion. Later from 

the original grid file, salinity values were extracted for each 

node within the AOIs boundaries. After this, means, standard 

deviations, minimums and maximums were computed for every 

area. Thus, the relation between NDVI and groundwater salinity 

data was analysed for each image. To study the relationship 

between the average NDVI (Y) and salinity (X) values, the 

errors that affect both variables must be considered. Therefore, 

assessing the linear fit, the use of the traditional formulas that 

consider the independent variable (X) as error-free was not 

correct. Accordingly, in this study, the following regression 

model was applied. The linear function: 

 

Y=α+β X                                                                          (3) 

 

has been combined with a more complex statistical model.  

For a generic point it was possible to consider that the value of 

the coordinate measured was affected by a normally distributed 

error, i.e.   k = Xk+εXk and    k = Yk+εYk, where  εkϵN (0,σεk
2) , 

ηkϵN (0,σηk
2) , cov(εi, ηj)=0  with i, j, k =1,2,..n. 

Substituting each unknown regression parameter with an 

approximate value and an unknown correction, 

ao+abob, andeliminating the infinitesimal of 

higher order b vx,  the linear function became 
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with k = 1,2, .. n. 

For all points the functional model was: 
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That is: 
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with the associated stochastic model 
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The model solution obtained by applying the method of 

weighed least squares was: 
1 1 1( ) ] ( )t t t t

l lu B AQ A B B AQ A f                                (8) 

 

with the cofactor matrix of the unknowns given by 
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To initialize the interactive process, the fit according to 

traditional formulas was considered while the end of the 

iteration criterion was based on the negligible increase of the 

estimated parameters. 

 

4. RESULTS AND DISCUSSION 

The result section is divided into three subparagraphs: ASTER 

and WV-2 comparison; ASTER and resampled WV-2 

comparison  and  the finding validation by groundwater salinity 

data. 

 

4.1 ASTER and WV-2 comparison 

The NDVI results relative to ASTER and WV-2 images are 

reported as a map in figure 3. It is possible to see, according to 

the chromatic scale, an apparent improvement in the 

NDVI_W11. This last aspect could be related to the mediation 

of the reflectance value assigned to the Aster pixel 

corresponding to a larger area on the ground compared to the 

pixel of the WV-2.  
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Figure 3. Classe NDVI maps  

 

For each AOI, the mean and the standard deviation of 

vegetation index values are shown in table 1. Within the same 

scene the four AOIs are statistically separated. In each satellite 

data, N and S AOIs are identified as less stressed areas  

while C1 and C2 AOIs show the lower average NDVI values. 

 

AOI 

NDVI_A11 NDVI_W11 

N° 

pixel 
Mean/St. Dev. 

N° 

pixel 

Mean/St. 

Dev. 

N 2029 0.811 / 0.025 114826 0.831 / 0.048 

C1 1239 0.763 / 0.030 70271 0.788 / 0.046 

C2 551 0.773 / 0.024  22908 0.819 / 0.029 

S 3104 0.809 / 0.033 176248 0.832 / 0.055 

 

Table 1. Basic statistics of NDVI values  

 

To evaluate the difference between results shown in Table 1 the 

Student t-test was applied. 

Given N, C1, C2, S AOIs, the sample consisted of the NDVI 

values for the two data. Due to the different resolution, the 

largeness of samples differed by one or two orders of 

magnitude. Moreover, the element number of the samples was 

elevated. The results reported in Table 2 show that the NDVI 

averages are significantly different for each AOI. In fact, the 

NDVI differences exceeded the limit t= 3.3 corresponding to 

the significance level of = 0.1 % conservatively assumed for 

the test.  

 

AOI t v 

N 34.9 2300.6 

S 37.9 3413.9 

C2 66.6 1302.5 

C1 19.0 613.9 

 

Table 2. Student t-test results relative to the average NDVI 

differences 

 

The real distribution of NDVI_A11 and NDVIW11 values were 

analyzed by relative frequency histograms shown in Fig.4. 

Regarding the NDVI_A11 graphs, it is possible to distinguish 

three different histogram shapes related to several AOI 

behaviors. The most stressed area has a right tail, while the 

healthiest shows a left tail. The intermediate area does not show 

any tail. Instead, from the NDVI_W11 graphs is less evident the 

presence of tail, but S and C1 AOIs show a bimodal trend and, 

probably due to the different vegetation species present in TDF. 

In the histograms, the grey line represents the NDVI value 

corresponding to the 5th percentile computed in the AOI with 

the highest average NDVI value, i.e. the N area for ASTER 

image (0.767) and the S area for in the WV-2 data (0.742). For 

each data, the percentage of pixels below this limit was 

calculated for the remaining AOIs (Tab. 3). For the NDVI_A11, 

the percentages of pixels below the limit increases moving from 

the areas with higher average NDVI values (N and S) towards 

the lower NDVI values (C1 and C2). 
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Figure 4. Relative frequency histograms of NDVI values. Based 

on average NDVI the AOIs are reported in descending order  

 

This behaviour is less evident in the NDVI_W11 histograms 

where the worst area (C2) has only 12% of pixel below the 

threshold.  

 

  % pixels of stressed vegetation 

 Threshold  N S C1 C2 

NDVI_A11 N: 0.767 5.00 11.60 59.00 47.60 

NDVI_W11 S: 0.742 3.40 5.00 12.00 1.20 

 

Table 3. Percentage of pixels below the threshold determined on 

the AOI with higher average NDVI value 
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Additional information can be obtained by studying the 

Skewness and Kurtosis shape factors (Tab. 4).The NDVI_A11 

Skewness results confirm that the N and S areas have a left tail, 

whereas C2 have a right tail.  

 

AOI Shape Factors NDVI_A11 NDVI_W11 

N 
Skewness -0.594 -2.640 

Kurtosis 0.528 15.474 

C1 
Skewness 0.432 -0.847 

Kurtosis -0.153 3.784 

C2 
Skewness 1.194 -0.641 

Kurtosis 1.752 5.090 

S 
Skewness -0.466 -1.253 

Kurtosis 0.079 4.547 

 

Table 4. Higher order moment results  

 

With regard to the NDVI_A11 Kurtosis results, they are close 

to zero, with the C1 factor negative, demonstrating that their 

value distribution get closer the Gaussian distribution. Instead, 

the NDVI_W11 Skewness results are negative for all AOIs and 

S and N have the longest tail. Finally, all the Kurtosis values are 

largely positive showing that their NDVI value distributions 

moves away from Gaussian due to more acute peaks around the 

mean. 

The following rankings were derived from the previous results 

(Tab.5). Based on the average NDVI the AOIs are reported in 

descending order. 

 

Order NDVI_A11 NDVI_W11 

1 N S 

2 S N 

3 C2 C2 

4 C1 C1 

 

Table 5. ASTER and WV-2 AOI ranking based on average 

NDVI values. 

 

Table 5 shows that both satellite data recognize as the more 

suffering areas the AOIs located between two drainage channel 

crossing the pine forest, i.e. C1 and C2. However, areas N and S 

are inverted in the two rankings. Therefore, in order to assess if 

the difference between N and S average NVDI values could be 

considered negligible, the previous Student t-test was separately 

applied on each satellite data. From Table 1, it is possible to 

deduce that the difference between N and S average NDVI 

values in absolute terms is of 0.002 for NDVI_A11 and of 

0.001 for NDVI_W11. 

 

 
t 

N-S NDVI_A11 2.5 

N-S NDVI_W11 -5.2 

 

Table 6. Student t-test results relative to the N and S average 

NDVI differences for each image. 

 

For the Aster data, the test result is lower than the limit t= 3.3 

corresponding to the significance level of = 0.1 % assumed for 

the test. Instead, for the WV-2 image the equality hypothesis 

between the two average NDVI values is not acceptable (Tab. 

6). The problem is probably related to the large amount of data 

that, reducing the standard deviation in the denominator, raises 

the relationship value. 

 

4.2 ASTER and resampled WV-2 comparison 

After the WV-2 pixels resampling and re-projection to the 

ASTER projection and pixel size (15m), the new AOI average 

NDVI values were equal to the average NDVI values of no-

resampled WV-2 AOIs (Tab. 7). 

 

Resampled WV-2 

AOI N° pixel  Mean  Dev. St  

N 2029 0.8323 0.0494 

S 3104 0.8316 0.0541 

C1 1239  0.7879  0.0299 

C2 551 0.8199 0.0161 

 

Table 7.Basic statistics of NDVI values for the resampled WV-2 

 

In this case, the result of the Student t-test (t=0.5) applied on 

the new N and S average NDVI difference demonstrated that 

the new NDVI averages of the two WV-2 AOIs could be 

considered equal. Therefore the previous AOI rankings obtained 

from the two sensors can be considered coincident. 

The availability of NDVI values comparable between ASTER 

and WV-2 allowed the pixel to pixel correlation between the all 

AOI pixels of NDVI_A11 and all AOI pixels of resampled 

NDVI_W11 (Fig. 5). The graph shows that the limited  

NDVI_A11 range of variability (0.683 - 0.890) corresponds to a 

very large range of values assumed by NDVI_W11(0.283- 

0.992). The likely cause is the original WV-2 high spatial 

resolution that makes the satellite data more sensitive to the 

vegetation variability within the TDF class. However, the global  

regression line coefficient is high, almost 0.84 demonstrating a 

good correlation between the two satellite images. 
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Figure 5. Pixel to pixel correlation between the all AOI pixels 

of NDVI_A11 and the all AOI pixels of resampled NDVI_W11. 

 

However, the single AOI behavior is different. While for the 

pixel to pixel linear correlations of N, S and C1 areas the 

angular coefficient ranges from 0.71 to 0.99, the C2 coefficient 

(0.2) proves the almost total invariance of the NDVI_W11 

compared to NDVI_A11. This anomalous behavior is evident 

also in Fig.6. The graph shows the relationship between the 

average NDVI_W11 AOI values and the average NDVI_A11 

AOI values. The error bars are a graphical representation of the 

standard deviations of each average value while the red line is 
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the regression line relative to N, S and C1 values. The linear 

correlation between the average NDVI values  of these areas is 

remarkable, instead the C2 behavior, excluded from the 

calculation, differs greatly. For comparison, the bisector 

indicated by the dashed line was reported.  
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Figure 6. Relationship between the average NDVI_W11 AOI 

values and the average NDVI_A11 AOIs values 

 

4.3 Result validation by groundwater salinity data 

Despite the different spatial resolution that implies a different 

response at individual pixel level, both satellite data provided 

the same AOI ranking, recognizing N and S areas as the areas 

covered by healthier vegetation while C1 and C2 those covered 

by more suffering vegetation. 

2

AOI
Isosaline g/l

 
 

Figure 7. Overlay between the Classe AOI locations and the 

groundwater salinity isosalines (g/l) of May 2011 

 

These findings were validated by the contemporaneous 

groundwater salinity data. Figure 7 shows the spatial salinity 

distributions relative to May 2011 through the isosaline.  

The AOIs characterized by higher salinity (from 5 to 8 g/l) were 

C1 and C2 while a wider salinity variability range involved the 

remaining AOIs. Everywhere in the pine forest the surface 

salinity is below 12 g/l. The mean and the standard deviation 

salinity values extracted for each AOI are reported in Tab. 9. 

The maxinum average salinity value for May 2011 was recorded 

within the C1 area (6.94 g/l) whereas S and N had the lower 

average salinity values, respectively, 3.46 and 3.94 g/l. 

Salinity(g/l) 

AOI N° pixel Mean (g/l) Dev. St 

N 2029 3.94 1.27 

C1 1239 6.94 0.77 

C2 3104 5.99 0.95 

S  551 3.46 2.84 

 

Table 9. Basic statistics of salinity values of the Classe AOIs 

 

For every satellite data, the relationship between the average 

salinity and NDVI values of each AOI were verified (Fig. 8 and 

Fig. 9). Taking into account that the salinity standard deviations 

were highly variable between the AOIs while the NDVI 

standard deviations were comparable from sample to sample, 

within each satellite data, the Equation 6 was applied. 

The slope of the regression line is negative for both considered 

images, confirming the relation between lower NDVI and 

higher salinity values and vice versa.  

However, the variability range of the NDVI_W11 regression 

line slope is wider than that of NDVI_A11. 
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Figure 8. Correlation between the average NDVI_A11 and 

groundwater salinity values for Classe AOIs  

 

Finally, after all the assessments made, a comparison of the AOI 

rankings in terms of NDVI_A11, NDVI_W11 and groundwater 

salinity data can be done. Table 10 shows a perfect agreement 

between the results obtained. 

In particular, the most stressed areas (C1 andC2) are  located in 

the portion of pinewood define by the two drainage channels. 

This consideration agree with the findings of Antonellini et al., 

(2008) who identify drainage channels as accountable of 

vertical seepage of saline water from the bottom part of the 

aquifer. 
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Figure 9. Correlation between the average NDVI_W11 and 

groundwater salinity values for Classe AOIs 

 
 

Order NDVI_A11/W11 Salinity 

1 S S 

2 N N 

3 C2 C2 

4 C1 C1 

 

Table 10. Comparison between the rankings of AOIs in terms of 

NDVIs and salinity. The AOIs are reported in descending order. 

 

CONCLUSIONS 

 

The same NDVI ranking has been obtained considering both 

satellite datasets keeping the original spatial resolution, unless 

the areas N and S which are inverted. However the Student t-

test reveals that the average AOIs NDVI calculated from 

ASTER data is statistically different from the average AOIs 

NDVI calculated from WV-2 data. The same test repeated to 

assess if the difference between the average NDVI values of N 

and S shows a significant difference for WV-2 image. For 

ASTER image the histogram analysis identifies the left tails for 

the less stressed AOIs and right tails for the most stressed; this 

different shape is less evident for WV-2 data. In the same way 

the percentage of pixels below the 5% threshold can be used as 

measure of stress conditions only for ASTER image; in fact for 

WV image the percentage of pixels are not related with the 

average AOIs NDVI. 

After the WV re-sampling and re-projection to the ASTER 

resolution, the ranking was the same and the statistical 

evaluation of N and S average NDVI revealed that can be 

considered equal. The correlation between ASTER and 

resampled WV-2 shows high values for the regression line 

coefficients which considerably improve using the average 

AOIs NDVI, excluding C2. From the validation with the 

groundwater salinity emerges that the previous AOIs ranking 

based on average NDVI perfectly agree with the ranking of 

salinity, i.e. N and S AOIs have the lower average salinity and 

the higher NDVI values while the contrary for C1and C2. 

Finally, the use of the NDVI analysis allowed to identify the 

AOIs more affected by groundwater salinization based on the 

groundwater monitoring data. The same NDVI ranking has been 

obtained considering either by keeping the original spatial 

resolution of the satellite data that with the WV-2 re-sampling 

and re-projection. After these findings is possible to conclude 

that ASTER and WV-2 sources can be integrated with the aim 

to study environmental problems which require a long dataset 

even back in time. 
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