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ABSTRACT:

Many investigators use global land cover (GLC) maps for different purposes, such as an input for global climate models. The current
GLC maps used for such purposes are based on different remote sensing data, methodologies and legends. Consequently,
comparison of GLC maps is difficult and information about their relative utility is limited. The objective of this study is to analyse
and compare the thematic accuracies of GLC maps (i.e., IGBP-DISCover, UMD, MODIS, GLC2000 and SYNMAP) at 1 km
resolutions by (a) re-analysing the GLC2000 reference dataset, (b) applying a generalized GLC legend and (c) comparing their
thematic accuracies at different homogeneity levels. The accuracy assessment was based on the GLC2000 reference dataset with
1253 samples that were visually interpreted. The legends of the GLC maps and the reference datasets were harmonized into 11
general land cover classes. There results show that the map accuracy estimates vary up to 10-16% depending on the homogeneity of
the reference point (HRP) for all the GLC maps. An increase of the HRP resulted in higher overall accuracies but reduced accuracy
confidence for the GLC maps due to less number of accountable samples. The overall accuracy of the SYNMAP was the highest at
any HRP level followed by the GLC2000. The overall accuracies of the maps also varied by up to 10% depending on the definition
of agreement between the reference and map categories in heterogeneous landscape. A careful consideration of heterogeneous

landscape is therefore recommended for future accuracy assessments of land cover maps.

1. INTRODUCTION

The consistent and continuous observation of land cover is one
of the most important foundations for understanding the Earth’s
environment and ecosystems (Verburg et al., 2011). Currently,
several global land cover datasets (GLC) have been developed
and these datasets are evolving towards higher spatial resolution
(Gong et al., 2013; Mora et al., 2014) . Most GLC maps were
developed by individual groups as one-time efforts and the
subsequent mapping standards reflect the varied interests,
requirements and methodologies of the originating programs
(Herold et al., 2006). These differences of GLC maps and the
effects of their quality on the model outcome are not always
considered when selecting a map as an input for specific
modeling applications (Verburg et al., 2011). Uncertainties of
GLC maps can result in considerable differences in modeling
outcomes (Hibbard et al., 2010; Nakaegawa, 2011; Verburg et
al., 2011).

The accuracies of GLC maps are assessed using independent
validation datasets and regional maps or cross validated against
training datasets. The results of accuracy assessments of
previous maps indicate that overall area-weighted accuracy is
around 70% for the existing GLC maps (Defourny et al., 2012).
However, the use of different approaches in the GLC map
production (e.g., classification scheme, data sources and
algorithms) as well as in validation data collection (e.g.,
sampling scheme, data source and method of reference
classification) raise inconsistency issues and make map
comparisons difficult. Several comparative analyses of land
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cover maps were conducted at regional levels (Heiskanen, 2008;
Wau et al., 2008) and global level (Giri et al., 2005; Jung et al.,
2006; McCallum et al., 2006; See & Fritz, 2006; Fritz et al.,
2011). However, most studies used thematic per-pixel
agreement among the maps to assess and compare datasets
without quantifying their uncertainties. These efforts assume
thematic agreement among datasets as surrogate for more
certain land cover characterization. This assumption is generally
applicable in particular in areas where there is agreement among
the datasets (Herold et al., 2008). Till date, there has been no
systematic study that compares the thematic accuracy of
existing GLC maps in order to identify best available maps for
GLC.

This study aims to compare GLC maps and highlight general
patterns of uncertainty in them in order to support informed use
of GLC maps. We used the Global Land Cover 2000
(GLC2000) GLC reference sites (Mayaux et al., 2006) for
comparative accuracy assessment of five GLC maps with 1 km
resolution (IGBP-DISCover, UMD, MODIS, GLC2000 and
SYNMAP). This reference dataset has been developed using a
flexible land cover characterization based on classifiers of the
UN Land Cover Classification System (LCCS) (Di Gregorio,
2005). Utilizing this reference dataset and existing 1 km GLC
maps, the objectives of this paper are to:
e  Process and analyze the GLC 2000 reference dataset
e  Harmonize the land cover classes into a generalized
GLC legend of eleven classes based on LCCS
e  Perform a global comparative accuracy assessment of
five GLC maps
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2. DATA AND METHODS
2.1 Global land cover maps

Five existing GLC maps were analysed and compared in this
study. Descriptions of these maps are shown in Table 1.

Time of I .
Map name data Input data Classification C lassificat Reference
. method ion scheme
collection
IGBP- AVHRR: Unsupervised | IGBP 17 | (Loveland
DISCover Monthly NDVI |  clustering classes etal,
from 10 day 2000)
composites
UMD land 1992-1993 AVHRR: Supervised | Simplified | (Hansen et
cover Monthly NDVI | classification | IGBP 14 | al., 2000)
and 5 bands tree classes
from 10 day
composites
MODIS | Jan-DEC |MODIS: 16 day| Supervised IGBP, | (Strahler et
land cover 2001 composites of 7| decision tree | UMD and | al., 1999;
bands and EVI others Friedl et
al., 2002)
GLC2000 | Nov 1999- | SPOT4-VGT: Optimal LCCS 22 |(Bartholom
Dec 2000 | Monthlyto 3 | classification | classes 6 &
monthly NDVI methods Belward,
composites 2005)
SYNMAP 2000 IGBP-DIS, Land cover | LCCS47 | (Jung et
GLC2000, data fusion classes | al., 2006)
MODIS

Table 1. Description of GLC maps used in comparative
accuracy assessment

The IGBP-Discover map was based on monthly global NDVI-
AVHRR composites for the period April 1992-March 1993
(Loveland et al., 2000). Similar to the IGBP map, the GLC map
of the University of Maryland (UMD) used NDVI-AVHRR
time series (Hansen et al., 2000). The MODIS GLC maps used
the enhanced spectral information from the MODIS sensor. This
map is based on a supervised classification approach with a
multi-temporal decision tree algorithm to assign the most
probable class for each location based on the IGBP
classification scheme (Friedl et al., 2002). The development of
the Global Land Cover 2000 (GLC 2000) map combined and
harmonized 19 regional land cover maps that were based on 1
km SPOT4-VEGETATION data from November 1999 to
December 2000 (Bartholomé & Belward, 2005). The regional
maps were merged to one GLC map with LCCS-based 22
classes. The SYNMAP product was derived as synergy map
among existing GLC maps described above with a legend
suitable for carbon modeling purposes (Jung et al., 2006).

2.2 A generalized global land cover legend for comparative
analysis

The land cover categories of the maps were harmonized into a
generalized 11 classes based on LCCS in order to reduce the
thematic heterogeneity among the maps. The LCCS, a language
for building, translating and comparing land cover legends,
provides a flexible system to describe land cover features at any
scale or level of detail with an absolute level of standardization
of class definitions between different users (Di Gregorio, 2005;
Herold et al., 2006). The generalization process builds on the
LCCS translation work documented in Herold et al. (2008).
The original legends for GLC2000 and SYNMAP are based on
LCCS classifiers and are, thus, easily translated into a common
LCCS-based generalized legend. The LCCS-translations for the
IGBP and the UMD legends followed the method of Herold et
al. (2008). From the legend translations to LCCS, the common

denominator of all included legends results in a set of eleven
aggregated classes (AGL11), which is shown in Table 2.

The legend translation was problematic for a few classes due to
the thematic differences between the maps. For instance, forest
definition was different among the maps, i.e., minimum tree
cover should be at least 15 % for the GLC2000 and SYNMAP
whereas, it is 60 % for the IGBP and UMD. This difference
could be resolved by labeling the IGBP classes 8 and 9 and the
UMD classes 6 and 7 as tree categories. These categories, as
well as, tree class with no specifics in leaf type and longevity
(e.g. mixed forest or IGBP savannah classes) were combined to
the class Mixed/Other trees. The category “Other
shrub/herbaceous vegetation” represents non-tree vegetation
with no further specifications of life form, leaf type and
longevity. This category basically reflects non-forested wetlands
in maps except SYNMAP and UMD that do not categorize this
land cover type.

2.3 Processing of GLC2000 reference dataset

We used a reference dataset that was developed for the accuracy
assessment of the GLC2000 map. The design procedures for
deriving the reference dataset are described in Mayaux et al.
(2006). The sampling design used two-stage stratified clustered
sampling. The stratification was based on the proportion of
priority classes and on the landscape complexity. The Landsat
World Reference 2 System was used as primary sampling frame
to derive 253 Primary Sampling Units (Figure 1). Within each
PSU, five Secondary Sampling Units (SSU) with 3x3km area
were derived. In total, 1265 SSU were interpreted by
international experts using Landsat scenes. Land cover type
within each 3x3 km box was characterized according to LCCS
classifiers (Mayaux et al., 2006).
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Figure 1. Sampling design for primary (PSU) and secondary
samples (SSU) for the GLC2000 reference dataset
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Generalized LCCS-Label IGBP classes GLC2000 classes UMD classes SYNMAP
land cover classes*
class (AGL 11)
1. Evergreen Al12-A3.A20.B2.XX.D2.E1 & Evergreen Tree Cover, needle- Evergreen 1,10,19,28
Needleleaf Al12-A3.A10.B2.XX.D2.E1 Needleleaf leaved, evergreen Needleleaf
Trees Forest Forest
2. Evergreen Al12-A3.A20.B2.XX.D1.E1 & Evergreen Tree Cover, Evergreen 4,13,22,31
Broadleaf Al12-A3.A10.B2.XX.D1.E1 Broadleaf broadleaved, evergreen; Broadleaf
Trees Forest Tree Cover, regularly Forest
flooded, fresh water;
Tree Cover, regularly
flooded, saline water
3. Deciduous Al12-A3.A20.B2.XX.D2.E2 & Deciduous Tree Cover, needle- Deciduous 2,11,20,29
Needleleaf Al12-A3.A10.B2.XX.D2.E2 Needleleaf leaved, deciduous Needleleaf
Trees Forest Forest
4. Deciduous Al12-A3.A20.B2.XX.D1.E2 & Deciduous Tree Cover, Deciduous 5,14,23,32
Broadleaf Al12-A3.A10.B2.XX.D1.E2 Broadleaf broadleaved, deciduous, Broadleaf
Trees Forest closed; Forest
Tree Cover,
broadleaved, deciduous,
open
5. Mixed / Al12-A3.A20.B2 & A24- Mixed Forest, Tree Cover, mixed leaf Mixed Forest, 3,6-9,12,15-
Other Trees A3.A20.B2 Woody type; Woodland, 18,21,24-
Savanna, Mosaic: Tree cover / Wooded 27,30,33-36
Savanna, Other natural Grassland
Cropland/Nat  vegetation;
ural Shrub Cover, closed-
Vegetation open, evergreen;
Mosaic: Cropland/Tree
Cover/Other natural
veg.
6. Shrubs Al2-A4.A20.B3 Closed Shrub Cover, closed- Closed 37-40
Shrubland, open, evergreen; Shrubland,
Open Shrub Cover, closed- Open
Shrubland open, deciduous Shrubland
7. Herbaceous  Al12-A2.A20.B4 Grasslands Herbaceous Cover, Grassland 41,43
vegetation closed-open
8. Cultivated All & A23 Cropland Cultivated and managed Cropland 42,44
and managed areas;
vegetation / Mosaic: Cropland /
agriculture Shrub or Grass Cover
(incl. mixtures)
9. Other A24-A2 & A24-A4 Permanent Regularly flooded -- --
shrub/herbace Wetlands Shrub and/or
0us vegetation Herbaceous Cover
10. Other B27-Al, B28-Al, B15, B27- Urban and Water Bodies (natural Urban and 46,47
Land (Urban, A2, B27-A3, B28-A2 and B28- Built up, & artificial); built up,
open Water, A3 Snow and Ice,  Snow and Ice (natural Water
Snow and Ice) Water & artificial); (&Goodes
Artificial surfaces and interrupted
associated areas area)
11. Barren B16 Barren Sparse Herbaceous or Barren 45

sparse Shrub Cover;
Bare Areas

Table 2. Different GLC legends (for SYNMAP classes see Jung et al 2006)*
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Three step analyses have been performed to ensure the quality
and consistency of the GLC2000 reference dataset (Figure 2).

GLC2000 Reference-Database

GLC2000 LCCS
classes (1-22) classifier (22)

1. Quality Assessment
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Figure 2. Steps followed for the quality and consistency check
of the GLC2000 reference dataset

Firstly, we re-interpreted randomly selected 10% of all sample
sites as a quality check. To guide the visual interpretation, the
Landsat scenes were classified using ISODATA classification to
estimate the class percentages. In total 126 samples were
processed and 95% of all considered samples had the same class
descriptions as the reference dataset. Secondly, we conducted a
consistency check in the legend for the whole dataset (Figure 3).
We translated the GLC2000 class descriptions into AGL11
legend and compared this AGL11 classes with LCCS classifier
information of the GLC2000 data to identify inconsistencies in
the reference dataset legend description. The LCCS classifier
information in the reference dataset was not always detailed and
stringent enough to allow a proper translation in particular for
different forest types. Finally, we reinterpreted the entire
reference dataset using Landsat data and very high resolution
satellite images from Google Earth in order to assess the
consistency of AGL11 translation. All samples marked as
problematic in the first quality assessment were thoroughly
reinterpreted. In total 1253 samples were flagged as finally
usable. The remaining 12 were omitted since they did not have
sufficient land cover information in the original dataset.

2.4 Accuracy analysis and reporting

The thematic accuracies of the GLC maps were calculated using
confusion matrices. The confusion matrices were adjusted by
accounting for the spatial extent of classes on the map to create
area weighted confusion matrices. Area weighted overall
accuracy and class-specific accuracies were derived following
the method described by Card (1982). The variance and
confidence level of the accuracies were calculated using the
equations for stratified random sampling (Card, 1982; Olofsson
et al., 2013). Area estimation of land cover classes (true
marginal map proportion) were corrected based on the area
weighted confusion matrices.
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Figure 3. Internal consistency check: Process of translating the

LCCS classifiers from the GLC2000 reference dataset into the
11 generalized classes

Comparison of the reference categories and the map categories
involved the consideration of the spatial heterogeneity in the
sample unit area. Reference land cover category is for 3x3 km
SSU area which equals to 3x3 pixels for the maps. The
homogeneity of the reference point (HRP) was calculated
describing how many different map categories correspond to the
reference category which reflects the landscape heterogeneity.
If all nine pixels have the same map class, the HRP would be
one; if all nine pixels represent different classes, the value
reaches the minimum of zero. The accuracy analysis was
performed for a range of spatial heterogeneities, i.e. for all
reference sample covering the full range of possible HRPs
versus reference sample units corresponding to only
homogenous map classes. In the latter case, there are less
reference SSUs used since all heterogeneous SSUs are
excluded.

In addition, we assessed the accuracies in different validation
cases depending on how the agreement between the reference
and map category was defined. The map is labelled as correct
when (a) validation case 1: map class of the central pixel and
the majority of the pixels within the SSU area fit the reference
class, (b) validation case 2: map class of the majority of the
pixels are the same as the reference class and c) validation case
3: map class of at least one pixel within the 3x3 SSU area
matches the reference class. Validation case 2 was regarded as
standard option, while validation case 1 (pessimistic) and 3
(optimistic) were also computed for comparison purposes.
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3. RESULTS
3.1 Accuracy comparison of the GLC maps

The overall accuracy of the GLC maps and number of samples
used for the assessment are shown in Figure 4. The overall
accuracies were 59%, 55%, 58%, 63% and 71% for the UMD,
IGBP, MODIS, GLC2000 and the SYNMAP respectively at
HRP level 0. The overall accuracy of the SYNMAP was the
highest at any HRP followed by the GLC2000. In contrast, the
IGBP provided the lowest accuracies at all level of HRP.
Because the number of sample used to assess the MODIS map
decreased significantly at higher HRP levels, its confidence in
the overall accuracy was the lowest. The ranking of the overall
accuracy between all the maps remained similar at all HRP
range, except the MODIS at high HRP level.

The overall accuracy of the GLC map was dependent upon the
applied HRP. A high level of the HRP resulted in higher overall
accuracies of the maps (Figure 4). An increase of the HRP level
also resulted in reduced number of accountable samples which
led to high confidence intervals of the accuracies (Figure 4).
The increase of overall accuracy was 9-14% at the HRP 0.9
level when compared with the HRP level 0. When the HRP was
above 0.5 the variation among the number of available sample
sites for each GLC maps increased. For instance, the difference
between the number of sample sites used for the accuracy
assessments of the IGBP and the MODIS maps reached more
than 200. Small number of available sample sites at high HRP
level may show that these two are more heterogeneous
compared with the other maps.
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1900 B I il - GEP #samples
% 1700 1 : I ] — ; ~ = 4‘ o7 - O0IS #samples
g t 1 1 : * ‘ - . GLC 2000 #zamples:
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E : S 3 by T g UMD accuraey
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with 95 % confidence intarval
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Class dominance within reference 3x3 pixel neighborhood (%)
Figure 4. Relationship of HRP, overall accuracy and number of
used samples

Class specific accuracies of the GLC maps indicate that
evergreen broadleaf trees, barren and other land covers classes
were mapped with relatively high accuracy for the maps. On the
other hand, mixed forest, shrubs and herbaceous classes were
classified with low accuracy. The all maps had higher user’s
accuracy than producer’s accuracy for deciduous needleleaf
class which indicates under-mapping.

3.2 Validation cases

The overall accuracies of the maps were calculated at four
different HRP levels for the three validation cases (different
definition of agreement between reference and map categories)
(Figure 5). Previously it was observed that an increased HRP
level resulted in higher overall accuracies but reduced accuracy
confidence (Figure 4). This was also true when comparing the
accuracy for different validation cases (Figure 5). As expected,
the accuracies were the lowest for validation case 1
(pessimistic) and highest for validation case 3 (optimistic). On
average, the overall accuracies were 3.8% higher for validation

case 2 than those of validation case 1, while the overall
accuracy was around 7% higher for validation case 3 than those
of validation case 2 at HRP of 0. An average of 8-10%
differences in overall accuracies of the maps were recorded
depending on how the agreement between the reference and
map categories is defined. The difference in the definition of
agreement had a strong influence (up to 20% difference) in the
overall accuracy of the MODIS map. Similar trend can also be
observed at HRP level 0.3 and 0.6.
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Figure 5. Overall accuracy for the maps in different validation case and
HRP levels.

At HRP level 0.9, on the other hand, validation cases did not
result in different overall accuracies for the maps because all the
validation cases were the same at complete homogeneous areas.
Since an increased HRP resulted in reduced number of used
sample sites, an increase of accuracy uncertainty (confidence
interval) can also be observed, lowest at a HRP of 0 and highest
at0.9.

3.3 Marginal proportions of land cover classes

Area estimation of land cover classes (true marginal map
proportion) of the GLC maps were adjusted based on the area
weighted confusion matrices (Figure 6). Class proportions were
varied among the maps. For instance, evergreen needle leaf
trees occupy around 4% of the world land area according to the
IGBP and MODIS maps, but this class occupies 8% of the
world land area for the GLC2000 and 11% in the case of the
SYNMAP. Similarly, mixed/other trees occupy around 18-21%
according to the IGBP, UMD and MODIS maps, while around
7% in the case of the GLC2000 and SYNMAP. These
differences are mostly related to the harmonization issues
mentioned in section 2.2.

Average confidence interval in the true marginal map
proportion estimates of the SYNMAP classes (+1.5%) were the
least compared to other datasets, while the IGBP, GLC2000 and
MODIS maps had an average confidence interval of 2.4-2.7%.
The confidence interval of the UMD map’s marginal proportion
estimates were the largest, varying +4% on average. The
variation in marginal map proportion estimates of deciduous
needle trees and broadleaf trees were much higher than the
actual estimates for the IGBP, UMD and MODIS maps.
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for each datasets.

4. DISCUSSION
4.1 Legend harmonization issues

The study showed that LCCS is useful in the harmonization of
different GLC maps. The use of LCCS accommodates a set of
standardized tools for synergistic usage of current and future
mapping efforts.

However, a shortcoming of this harmonization is a reduced
thematic detail of the GLC maps. For instance, the SYNMAP
loses more than three quarters of all of its classes due to the
legend harmonization. Furthermore, forested classes and other
shrub/herbaceous vegetation class were problematic for the
legend harmonization. The SYNMAP and GLC2000 legends
(15-100%) represent different forest cover threshold than the
IGBP legend (60-100%). This is a significant difference in the
definition of forest classes and this thematic inconsistency can
have an impact on the validity of the accuracy estimates and
area estimation. An AGL11 class, ‘Other shrub/herbaceous
vegetation’ is presented only in the GLC2000 and IGBP
legend. Although, legend harmonization aims to reduce the
influence of thematic heterogeneity as much as possible, these
inconsistencies are a general limitation in comparing separately
developed GLC maps.

4.2 Re-applicability of GLC2000 reference dataset

The GLC2000 reference dataset was used to compare 5 GLC
maps with 1 km spatial resolution, and this study showed the
possibility of re-using an existing GLC reference dataset with
additional considerations such as consistency checking, legend
translation, and sample re-interpretation. Since this reference
dataset was based on LCCS legend with classifier information,
legend translation into AGL11 was possible, although some
inconsistencies remained.

The GLC2000 reference dataset was derived using a
stratification based on the proportion of priority classes and on
the landscape heterogeneity, and this makes the dataset a map
dependent. The purpose of a stratification is to increase the
precision of the accuracy assessment (Stehman, 2009).
Although, there was no significant difference between the
standard errors of the map accuracy estimates (Figure 4), the
precision of the accuracy estimates for the GLC maps other than
GLC2000 may not be optimum, and it is likely to be over-
estimated. Nonetheless, the GLC2000 reference dataset can give
statistical accuracy estimates since it is based on a probability
sampling and provides a large number of samples.

The GLC2000 reference samples have a spatial support area of
3x3 km which covers 9 pixels of the GLC maps. Large sample
units can be advantageous when avoiding the impact of
positional errors (Stehman & Wickham, 2011). However, this
large sample unit area creates a problem in heterogeneous
landscape (Stehman & Wickham, 2011) and this is discussed in
section 4.3.

In terms of temporal coverage, the use of GLC2000 reference
dataset to compare the GLC maps was appropriate since most of
the maps (except the IGBP and UMD) and reference dataset
were produced for year 2000. The GLC2000 reference dataset
was created through a visual interpretation of satellite images,
and thus, it is subject to human variability and bias. However,
our consolidation of 10% of the samples showed that 95% of
the subsample matched with the original interpretation. This
suggests the reliability of the reference data. Moreover, with our
additional processing of the dataset e.g. translating and re-
interpretation, the current version of the GLC2000 reference
dataset can provide a reliable reference information for land
cover.

A GLC reference dataset that can be used for comparison of
different GLC maps should be derived independently from any
GLC maps, based on probability sampling and commonly
accepted legends like LCCS. Datasets should have MMU that is
suitable for any map and flexible sample unit size. Forthcoming
validation datasets such as the LC-CCI and GOFC-GOLD meet
these requirements (Achard et al., 2011; Olofsson et al., 2012).
Nevertheless, the value of the existing GLC validation datasets
should not be neglected considering that the existing datasets
provide a valuable information and their creation took
considerable efforts and resources (Tsendbazar et al., 2014).
This consolidated dataset is now available to the public through
the Reference Data Portal of the Global Observation for Forest
Cover and Land Dynamics (GOFC-GOLD)(GOFC-GOLD,
2014).

4.3 Comparison of GLC maps and
heterogeneity

impact of the

Previous comparison studies focused on spatial (dis)agreement
between different maps (Hansen & Reed, 2000; Giri et al.,
2005; Fritz et al., 2011). However, these studies do not inform
on which map provides better quality. A comparative accuracy
assessment providing information on the best available maps is
challenging due to the lack of reference dataset that is
applicable to multiple maps. Our study tackles this issue by
providing quantitative comparisons of the accuracy of different
GLC maps using existing GLC2000 reference dataset. With
processing of the GLC2000 reference data and harmonization, it
was possible to conduct a comparative accuracy assessment of
GLC maps.

The analysis shows that the overall accuracies of the GLC maps
varied from 58-71% at HRP level 0. The SYNMAP and
GLC2000 maps had highest accuracies followed by the
MODIS. The same trend could be shown with increased HRP
levels.

As the SYNMAP is a synergetic map based on the other GLC
maps, it is expected that the overall accuracy will be higher than
the others (Jung et al., 2006). This study proves that the
SYNMAP is comparably better than the other maps even
though, independent validation of this map has not been done.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-154-1

We evaluated the accuracy of the GLC maps using different
sample sets depending on the HRP levels. Our analysis showed
that with increasing level of homogeneity overall accuracy
increases by 10-16% for all the GLC maps (Figure 4). This
coincides the general tendency of having high classification
accuracy in homogeneous landscape and low in heterogeneous
landscape (Fritz & See, 2008; Defourny et al., 2012).
Heterogeneous landscapes are the main driver for inconsistency
in the land cover maps, and it is identified as a major challenge
for GLC mapping (Hansen & Reed, 2000; Jung et al., 2006;
McCallum et al., 2006; Herold et al., 2008; Wu et al., 2008).
To overcome this issue, an accuracy assessment should be based
on reference datasets derived from very high spatial resolution
images allowing a detailed matching analysis. However, the
GLC2000 reference dataset employed in this analysis does not
have such characteristics.

As HPR level increases, only homogeneous samples were used
for the accuracy assessment thus, this decreases sample size
substantially (Figure 4). Such decreased sample size may have
an impact on the robustness of the assessment. This can be
especially of concern since sampling design of GLC2000 has 4
strata, 2 for heterogeneous landscape and 2 for homogeneous
areas. With increasing HRP levels, there is likely a biased
representation of the stratums (less sample for heterogeneous
landscape). Nonetheless, the use of accuracy estimates based on
only homogeneous samples for further applications is strongly
discouraged since such estimates can be misleading.

For heterogeneous samples consisting of two or more land
cover types, definition of agreement between the reference and
map categories becomes complex (Mayaux et al., 2006;
Defourny et al., 2010). Since GLC2000 sample units have large
area (3x3 map pixels), we used three different definitions of
agreement depending on how heterogeneous land cover types
are treated. Validation case 1 (pessimistic) resulted in lowest
accuracy estimates for all GLC products, whilst validation case
3 (optimistic) resulted in the highest accuracy estimates
(difference is up to 10%) (Figure 5). This also shows that the
landscape heterogeneity influences the definition of agreement
between reference and map categories which impacts the final
accuracy estimates.

5. CONCLUSION AND RECOMMENDATIONS

This study re-analysed the GLC2000 reference dataset for
comparative accuracy assessments of 5 GLC maps with 11
classes. With the comprehensive re-analysis of the GLC2000
reference dataset and inherent LCCS based classifier
information, this dataset was successfully used for conducting
multiple accuracy assessments. Moreover, as a result of the re-
analysis, a reliable reference dataset of GLC was obtained and
this consolidated dataset is now available to the public through
GOFC-GOLD Reference Data Portal (GOFC-GOLD, 2014).

For comparison, different legends of the GLC maps were
harmonized into 11 general classes. Although, legend
harmonization reduced the thematic heterogeneity as much as
possible, these are still inconsistencies which are a general
limitation in comparing separately developed GLC maps. Such
inconsistencies could be dealt through joint efforts of
institutions and international advocates of GLC mapping
efforts, i.e, the GOFC-GOLD and CEOS-WGCV (Committee
on Earth Observation Satellites - Working Group on Calibration
& Validation).

The comparative accuracy assessment showed that the
SYNMAP had the highest accuracy followed by the GLC2000
map based on the GLC2000 reference dataset. To help the GLC
map users in selecting the best suitable maps for their
applications, comparative accuracy assessments should be
conducted per user perspective. This is because the GLC map
users have different preferences on the land cover types; one
class can be very important to one user while not for another
user.

This study also demonstrated the importance of appropriate way
of handling landscape heterogeneity in accuracy assessments.
How to handle heterogeneous sample sites with two or more
land cover classes and the definition of agreement between
reference and map categories in heterogeneous areas are proven
to have high impact on the accuracy estimates, and this is one of
the main source of uncertainty in the accuracy assessment.
Future reference dataset should have MMU that is small enough
to reflect all land cover types within sample unit area which can
be useful in assessing map accuracies in heterogeneous areas.
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