
UTILIZING THE GLOBAL LAND COVER 2000 REFERENCE DATASET FOR A 
COMPARATIVE ACCURACY ASSESSMENT OF GLOBAL 1 KM LAND COVER MAPS 

 
M. Schultz a, N.E. Tsendbazar a, M.Herold a,*, M.Jung b, P. Mayaux c, H. Goehmann d 

 
a. Laboratory of Geo-Information Science and Remote Sensing, Wageningen University – (michael.schultz, nandin.tsendbazar, 

martin.herold)@wur.nl 
b. Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry - Martin.Jung@bgc-jena.mpg.de 

c. Institute for Environment and Sustainability, European Commission, Joint Research Centre - philippe.mayaux@jrc.ec.europa.eu 
d. Institute of Geography, University of Jena – hendrik.goehmann@uni-jena.de 

 
 

KEY WORDS: global land cover, accuracy assessment, comparison, reference dataset, landscape heterogeneity 
 
 
ABSTRACT: 
 
Many investigators use global land cover (GLC) maps for different purposes, such as an input for global climate models. The current 
GLC maps used for such purposes are based on different remote sensing data, methodologies and legends. Consequently, 
comparison of GLC maps is difficult and information about their relative utility is limited. The objective of this study is to analyse 
and compare the thematic accuracies of GLC maps (i.e., IGBP-DISCover, UMD, MODIS, GLC2000 and SYNMAP) at 1 km 
resolutions by (a) re-analysing the GLC2000 reference dataset, (b) applying a generalized GLC legend and (c) comparing their 
thematic accuracies at different homogeneity levels. The accuracy assessment was based on the GLC2000 reference dataset with 
1253 samples that were visually interpreted. The legends of the GLC maps and the reference datasets were harmonized into 11 
general land cover classes. There results show that the map accuracy estimates vary up to 10-16% depending on the homogeneity of 
the reference point (HRP) for all the GLC maps. An increase of the HRP resulted in higher overall accuracies but reduced accuracy 
confidence for the GLC maps due to less number of accountable samples. The overall accuracy of the SYNMAP was the highest at 
any HRP level followed by the GLC2000. The overall accuracies of the maps also varied by up to 10% depending on the definition 
of agreement between the reference and map categories in heterogeneous landscape. A careful consideration of heterogeneous 
landscape is therefore recommended for future accuracy assessments of land cover maps. 
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1. INTRODUCTION 

The consistent and continuous observation of land cover is one 
of the most important foundations for understanding the Earth’s 
environment and ecosystems (Verburg et al., 2011). Currently, 
several global land cover datasets (GLC) have been developed 
and these datasets are evolving towards higher spatial resolution 
(Gong et al., 2013; Mora et al., 2014) . Most GLC maps were 
developed by individual groups as one-time efforts and the 
subsequent mapping standards reflect the varied interests, 
requirements and methodologies of the originating programs 
(Herold et al., 2006). These differences of GLC maps and the 
effects of their quality on the model outcome are not always 
considered when selecting a map as an input for specific 
modeling applications (Verburg et al., 2011). Uncertainties of 
GLC maps can result in considerable differences in modeling 
outcomes (Hibbard et al., 2010; Nakaegawa, 2011; Verburg et 
al., 2011).  
 
The accuracies of GLC maps are assessed using independent 
validation datasets and regional maps or cross validated against 
training datasets. The results of accuracy assessments of 
previous maps indicate that overall area-weighted accuracy is 
around  70% for the existing GLC maps (Defourny et al., 2012). 
However, the use of different approaches in the GLC map 
production (e.g., classification scheme, data sources and 
algorithms) as well as in validation data collection (e.g., 
sampling scheme, data source and method of reference 
classification) raise inconsistency issues and make map 
comparisons difficult. Several comparative analyses of land 

cover maps were conducted at regional levels (Heiskanen, 2008; 
Wu et al., 2008) and global level (Giri et al., 2005; Jung et al., 
2006; McCallum et al., 2006; See & Fritz, 2006; Fritz et al., 
2011). However, most studies used thematic per-pixel 
agreement among the maps to assess and compare datasets 
without quantifying their uncertainties. These efforts assume 
thematic agreement among datasets as surrogate for more 
certain land cover characterization. This assumption is generally 
applicable in particular in areas where there is agreement among 
the datasets (Herold et al., 2008).  Till date, there has been no 
systematic study that compares the thematic accuracy of 
existing GLC maps in order to identify best available maps for 
GLC. 
  
This study aims to compare GLC maps and highlight general 
patterns of uncertainty in them in order to support informed use 
of GLC maps. We used the Global Land Cover 2000 
(GLC2000) GLC reference sites (Mayaux et al., 2006) for 
comparative accuracy assessment of  five GLC maps with 1 km 
resolution (IGBP-DISCover, UMD, MODIS, GLC2000 and 
SYNMAP). This reference dataset has been developed using a 
flexible land cover characterization based on classifiers of the 
UN Land Cover Classification System (LCCS) (Di Gregorio, 
2005). Utilizing this reference dataset and existing 1 km GLC 
maps, the objectives of this paper are to: 

• Process and analyze the GLC 2000 reference dataset  
• Harmonize the land cover classes into a generalized 

GLC legend of eleven classes based on LCCS  
• Perform a global comparative accuracy assessment of 

five GLC maps  
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2. DATA AND METHODS  

2.1 Global land cover maps 

Five existing GLC maps were analysed and compared in this 
study. Descriptions of these maps are shown in Table 1. 
 

Map name 
Time of 

data 
collection 

Input data Classification 
method 

Classificat
ion scheme Reference 

IGBP-
DISCover 

1992-1993 
 

AVHRR: 
Monthly NDVI 

from 10 day 
composites 

Unsupervised 
clustering 

IGBP 17 
classes 

(Loveland 
et al., 
2000) 

UMD land 
cover 

AVHRR: 
Monthly NDVI 

and 5 bands 
from 10 day 
composites 

Supervised 
classification 

tree 

Simplified 
IGBP 14 
classes 

(Hansen et 
al., 2000) 

MODIS 
land cover 

Jan-DEC 
2001 

MODIS: 16 day 
composites of 7 
bands and EVI 

Supervised 
decision tree 

IGBP, 
UMD and 

others 

(Strahler et 
al., 1999; 
Friedl et 

al., 2002) 
 

GLC2000 Nov 1999- 
Dec 2000 

SPOT4-VGT: 
Monthly to 3 

monthly NDVI 
composites 

Optimal 
classification 

methods 

LCCS 22 
classes 

(Bartholom
é & 

Belward, 
2005) 

SYNMAP 2000 IGBP-DIS, 
GLC2000, 

MODIS 

Land cover 
data fusion 

LCCS 47 
classes 

(Jung et 
al., 2006) 

Table 1. Description of GLC maps used in comparative 
accuracy assessment 
 
The IGBP-Discover map was based on monthly global NDVI-
AVHRR composites for the period April 1992-March 1993 
(Loveland et al., 2000). Similar to the IGBP map, the GLC map 
of the University of Maryland (UMD) used NDVI-AVHRR 
time series (Hansen et al., 2000). The MODIS GLC maps used 
the enhanced spectral information from the MODIS sensor. This 
map is based on a supervised classification approach with a 
multi-temporal decision tree algorithm to assign the most 
probable class for each location based on the IGBP 
classification scheme (Friedl et al., 2002). The development of 
the Global Land Cover 2000 (GLC 2000) map combined and 
harmonized 19 regional land cover maps that were based on 1 
km SPOT4-VEGETATION data from November 1999 to 
December 2000 (Bartholomé & Belward, 2005). The regional 
maps were merged to one GLC map with LCCS-based 22 
classes. The SYNMAP product was derived as synergy map 
among existing GLC maps described above with a legend 
suitable for carbon modeling purposes (Jung et al., 2006). 
 
2.2 A generalized global land cover legend for comparative 
analysis 

The land cover categories of the maps were harmonized into a 
generalized 11 classes based on LCCS in order to reduce the 
thematic heterogeneity among the maps. The LCCS, a language 
for building, translating and comparing land cover legends, 
provides a flexible system to describe land cover features at any 
scale or level of detail with an absolute level of standardization 
of class definitions between different users  (Di Gregorio, 2005; 
Herold et al., 2006). The generalization process builds on the 
LCCS translation work documented in Herold et al. (2008).  
The original legends for GLC2000 and SYNMAP are based on 
LCCS classifiers and are, thus, easily translated into a common 
LCCS-based generalized legend. The LCCS-translations for the 
IGBP and the UMD legends followed the method of Herold et 
al. (2008). From the legend translations to LCCS, the common 

denominator of all included legends results in a set of eleven 
aggregated classes (AGL11), which is shown in Table 2.  
 
The legend translation was problematic for a few classes due to 
the thematic differences between the maps. For instance, forest 
definition was different among the maps, i.e., minimum tree 
cover should be at least 15 %  for the GLC2000 and SYNMAP 
whereas, it is 60 % for the IGBP and UMD. This difference 
could be resolved by labeling the IGBP classes 8 and 9 and the 
UMD classes 6 and 7 as tree categories. These categories, as 
well as, tree class with no specifics in leaf type and longevity 
(e.g. mixed forest or IGBP savannah classes) were combined to 
the class Mixed/Other trees. The category “Other 
shrub/herbaceous vegetation” represents non-tree vegetation 
with no further specifications of life form, leaf type and 
longevity. This category basically reflects non-forested wetlands 
in maps except SYNMAP and UMD that do not categorize this 
land cover type.  
 
2.3 Processing of GLC2000 reference dataset 

We used a reference dataset that was developed for the accuracy 
assessment of the GLC2000 map. The design procedures for 
deriving the reference dataset are described in Mayaux et al. 
(2006). The sampling design used two-stage stratified clustered 
sampling. The stratification was based on the proportion of 
priority classes and on the landscape complexity. The Landsat 
World Reference 2 System was used as primary sampling frame 
to derive 253 Primary Sampling Units (Figure 1). Within each 
PSU, five Secondary Sampling Units (SSU) with 3x3km area 
were derived. In total, 1265 SSU were interpreted by 
international experts using Landsat scenes. Land cover type 
within each 3x3 km box was characterized according to LCCS 
classifiers (Mayaux et al., 2006). 
 

 
Figure 1. Sampling design for primary (PSU) and secondary 

samples (SSU) for the GLC2000 reference dataset 
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Generalized 
land cover 
class (AGL 11) 

LCCS-Label IGBP classes GLC2000 classes UMD classes SYNMAP 
classes* 

1. Evergreen 
Needleleaf 
Trees 

A12-A3.A20.B2.XX.D2.E1 & 
A12-A3.A10.B2.XX.D2.E1 

Evergreen 
Needleleaf 

Forest 

Tree Cover, needle-
leaved, evergreen 

Evergreen 
Needleleaf 

Forest 

1,10,19,28 

2. Evergreen 
Broadleaf 
Trees 

A12-A3.A20.B2.XX.D1.E1 &  
A12-A3.A10.B2.XX.D1.E1 

Evergreen 
Broadleaf 

Forest 

Tree Cover, 
broadleaved, evergreen;  
Tree Cover, regularly 
flooded, fresh  water;  
Tree Cover, regularly 
flooded, saline water 

Evergreen 
Broadleaf 

Forest 

4,13,22,31 

3. Deciduous 
Needleleaf 
Trees 

A12-A3.A20.B2.XX.D2.E2 & 
A12-A3.A10.B2.XX.D2.E2 

Deciduous 
Needleleaf 

Forest 

Tree Cover, needle-
leaved, deciduous 

Deciduous 
Needleleaf 

Forest 

2,11,20,29 

4. Deciduous 
Broadleaf 
Trees 

A12-A3.A20.B2.XX.D1.E2 & 
A12-A3.A10.B2.XX.D1.E2 

Deciduous 
Broadleaf 

Forest 

Tree Cover, 
broadleaved, deciduous, 
closed; 
Tree Cover, 
broadleaved, deciduous, 
open 

Deciduous 
Broadleaf 

Forest 

5,14,23,32 

5. Mixed / 
Other Trees 

A12-A3.A20.B2 & A24-
A3.A20.B2 

Mixed Forest, 
Woody 

Savanna, 
Savanna, 

Cropland/Nat
ural 

Vegetation 

Tree Cover, mixed leaf 
type; 
Mosaic: Tree cover / 
Other natural 
vegetation; 
Shrub Cover, closed-
open, evergreen; 
Mosaic: Cropland/Tree 
Cover/Other natural 
veg. 

Mixed Forest, 
Woodland, 

Wooded 
Grassland 

3,6-9,12,15-
18,21,24-
27,30,33-36 

6. Shrubs A12-A4.A20.B3 Closed 
Shrubland, 

Open 
Shrubland 

Shrub Cover, closed-
open, evergreen; 
Shrub Cover, closed-
open, deciduous 

Closed 
Shrubland, 

Open 
Shrubland 

37-40 

7. Herbaceous 
vegetation 

A12-A2.A20.B4 Grasslands Herbaceous Cover, 
closed-open 

Grassland 41,43 

8. Cultivated 
and managed 
vegetation / 
agriculture 
(incl. mixtures) 

A11 & A23 Cropland Cultivated and managed 
areas; 
Mosaic: Cropland / 
Shrub or Grass Cover 

Cropland 42,44 

9. Other 
shrub/herbace
ous vegetation 

A24-A2 & A24-A4 Permanent 
Wetlands 

Regularly flooded 
Shrub and/or 
Herbaceous Cover 

-- -- 

10. Other 
Land (Urban, 
open Water, 
Snow and Ice) 

B27-A1 , B28-A1, B15, B27-
A2, B27-A3, B28-A2 and B28-
A3 

Urban and 
Built up, 

Snow and Ice, 
Water 

Water Bodies (natural 
& artificial);  
Snow and Ice (natural 
& artificial);  
Artificial surfaces and 
associated areas 

Urban and 
built up, 
Water 

(&Goodes 
interrupted 

area) 

46,47 

11. Barren B16 Barren Sparse Herbaceous or 
sparse Shrub Cover; 
Bare Areas 

Barren 45 

Table 2. Different GLC legends (for SYNMAP classes see Jung et al 2006)*
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Three step analyses have been performed to ensure the quality 
and consistency of the GLC2000 reference dataset (Figure 2).  
 

 
Figure 2. Steps followed for the quality and consistency check 

of  the GLC2000 reference dataset 
 
Firstly, we re-interpreted randomly selected 10% of all sample 
sites as a quality check. To guide the visual interpretation,  the 
Landsat scenes were classified using ISODATA classification to 
estimate the class percentages. In total 126 samples were 
processed and 95% of all considered samples had the same class 
descriptions as the reference dataset. Secondly, we conducted a 
consistency check in the legend for the whole dataset (Figure 3). 
We translated the GLC2000 class descriptions into AGL11 
legend and compared this AGL11 classes with LCCS classifier 
information of the GLC2000 data to identify inconsistencies in 
the reference dataset legend description. The LCCS classifier 
information in the reference dataset was not always detailed and 
stringent enough to allow a proper translation in particular for 
different forest types. Finally, we reinterpreted the entire 
reference dataset using Landsat data and very high resolution 
satellite images from Google Earth in order to assess the 
consistency of AGL11 translation. All samples marked as 
problematic in the first quality assessment were thoroughly 
reinterpreted. In total 1253 samples were flagged as finally 
usable. The remaining 12 were omitted since they did not have 
sufficient land cover information in the original dataset. 
 
2.4 Accuracy analysis and reporting  

The thematic accuracies of the GLC maps were calculated using 
confusion matrices. The confusion matrices were adjusted by 
accounting for the spatial extent of classes on the map to create 
area weighted confusion matrices. Area weighted overall 
accuracy and class-specific accuracies were derived following 
the method described by Card (1982). The variance and 
confidence level of the accuracies were calculated using the 
equations for stratified random sampling (Card, 1982; Olofsson 
et al., 2013). Area estimation of land cover classes (true 
marginal map proportion) were corrected based on the area 
weighted confusion matrices.  
 

 
Figure 3. Internal consistency check: Process of translating the 
LCCS classifiers from the GLC2000 reference dataset into the 

11 generalized classes 
 
Comparison of the reference categories and the map categories 
involved the consideration of the spatial heterogeneity in the 
sample unit area. Reference land cover category is for 3x3 km 
SSU area which equals to  3x3 pixels for the maps. The 
homogeneity of the reference point (HRP) was calculated 
describing how many different map categories correspond to the 
reference category which  reflects the landscape heterogeneity. 
If all nine pixels have the same map class, the HRP would be 
one; if all nine pixels represent different classes, the value 
reaches the minimum of zero. The accuracy analysis was 
performed for a range of spatial heterogeneities, i.e. for all 
reference sample covering the full range of possible HRPs 
versus reference sample units corresponding to only 
homogenous map classes. In the latter case, there are less 
reference SSUs used since all heterogeneous SSUs are 
excluded.  
 
In addition, we assessed the accuracies in different validation 
cases depending on how the agreement between the reference 
and map category was defined. The map is labelled as correct 
when (a) validation case 1: map class of the central pixel and 
the majority of the pixels within the SSU area fit the reference 
class, (b) validation case 2: map class of the majority of the 
pixels are the same as the reference class and c) validation case 
3: map class of at least one pixel within the 3x3 SSU area 
matches the reference class. Validation case 2 was regarded as 
standard option, while validation case 1 (pessimistic) and 3 
(optimistic) were also computed for comparison purposes. 
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3. RESULTS  

3.1 Accuracy comparison of the GLC maps 

The overall accuracy of the GLC maps and number of samples 
used for the assessment are shown in Figure 4. The overall 
accuracies were 59%, 55%, 58%,  63% and 71% for the UMD, 
IGBP, MODIS, GLC2000 and the SYNMAP respectively at 
HRP level 0.  The overall accuracy of the  SYNMAP was the 
highest at any HRP followed by the GLC2000. In contrast,  the 
IGBP provided the lowest accuracies at all level of HRP. 
Because the number of sample used to assess the MODIS map 
decreased significantly at higher HRP levels, its confidence in 
the overall accuracy was the lowest. The ranking of the overall 
accuracy between all the maps remained similar at all HRP 
range, except the MODIS at high HRP level. 
 
The overall accuracy of the GLC map was dependent upon the 
applied HRP. A high level of the HRP resulted in higher overall 
accuracies of the maps (Figure 4). An increase of the HRP level 
also resulted in reduced number of accountable samples which 
led to high confidence intervals of the accuracies (Figure 4). 
The increase of overall accuracy was 9-14% at the HRP 0.9 
level when compared with the HRP level 0. When the HRP was 
above 0.5 the variation among the number of available sample 
sites for each GLC maps increased. For instance, the difference 
between the number of sample sites used for the accuracy 
assessments of the IGBP and the MODIS maps reached more 
than 200. Small number of available sample sites at high HRP 
level may show that these two are more heterogeneous 
compared with the other maps.  
 

 
Figure 4. Relationship of HRP, overall accuracy and number of 

used samples 
 
Class specific accuracies of the GLC maps indicate that 
evergreen broadleaf trees, barren and other land covers classes 
were mapped with relatively high accuracy for the maps. On the 
other hand, mixed forest, shrubs and herbaceous classes were 
classified with low accuracy. The all maps had higher user’s 
accuracy than producer’s accuracy for deciduous needleleaf 
class which indicates under-mapping.  
 
3.2 Validation cases  

The overall accuracies of the maps were calculated at four 
different HRP levels for the three validation cases (different 
definition of agreement between reference and map categories) 
(Figure 5). Previously it was observed that an increased HRP 
level resulted in higher overall accuracies but reduced accuracy 
confidence (Figure 4). This was also true when comparing the 
accuracy for different validation cases (Figure 5). As expected, 
the accuracies were the lowest for validation case 1 
(pessimistic) and highest for validation case 3 (optimistic). On 
average, the overall accuracies were 3.8% higher for validation 

case 2 than those of validation case 1, while the overall 
accuracy was around 7% higher for validation case 3 than those 
of validation case 2 at HRP of 0. An average of 8-10% 
differences in overall accuracies of the maps were recorded 
depending on how the agreement between the reference and 
map categories is defined. The difference in the definition of 
agreement had a strong influence (up to 20% difference) in the 
overall accuracy of the MODIS map. Similar trend can also be 
observed at HRP level 0.3 and 0.6.  
 

 
Figure 5. Overall accuracy for the maps in different validation case and 

HRP levels. 
 
At HRP level 0.9, on the other hand, validation cases did not 
result in different overall accuracies for the maps because all the 
validation cases were the same at complete homogeneous areas. 
Since an increased HRP resulted in reduced number of used 
sample sites, an increase of accuracy uncertainty (confidence 
interval) can also be observed, lowest at a HRP of 0 and highest 
at 0.9. 
 
3.3 Marginal proportions of land cover classes 

Area estimation of land cover classes (true marginal map 
proportion) of the GLC maps were adjusted based on the area 
weighted confusion matrices (Figure 6). Class proportions were 
varied among the maps. For instance, evergreen needle leaf 
trees occupy around 4% of the world land area according to the 
IGBP and MODIS maps, but this class occupies 8% of the 
world land area for the GLC2000 and 11% in the case of the 
SYNMAP. Similarly, mixed/other trees occupy around 18-21% 
according to the IGBP, UMD and MODIS maps, while around 
7% in the case of the  GLC2000 and SYNMAP. These 
differences are mostly related to the harmonization issues 
mentioned in section 2.2.  
 
Average confidence interval in the true marginal map 
proportion estimates of the SYNMAP classes (±1.5%)  were the 
least compared to other datasets, while the IGBP, GLC2000 and 
MODIS maps had an average confidence interval of 2.4-2.7%. 
The confidence interval of the UMD map’s marginal proportion 
estimates were the largest, varying ±4% on average. The 
variation in marginal map proportion estimates of deciduous 
needle trees and broadleaf trees were much higher than the 
actual estimates for the IGBP, UMD and MODIS maps. 
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Figure 6. True marginal proportions of the land cover classes 

for each datasets. 
 

4.  DISCUSSION  

4.1 Legend harmonization issues  

The study showed that LCCS is useful in the harmonization of 
different GLC maps. The use of LCCS accommodates a set of 
standardized tools for synergistic usage of current and future 
mapping efforts.  
 
However, a shortcoming of this harmonization is a reduced 
thematic detail of the GLC maps. For instance,  the SYNMAP 
loses more than three quarters of all of its classes due to the 
legend harmonization. Furthermore, forested classes and other 
shrub/herbaceous vegetation class were problematic for the 
legend harmonization. The SYNMAP and GLC2000 legends 
(15-100%) represent different forest cover threshold than the 
IGBP legend (60-100%). This is a significant difference in the 
definition of forest classes and this thematic inconsistency can 
have an impact on the validity of the accuracy estimates and 
area estimation. An AGL11 class, ‘Other shrub/herbaceous 
vegetation’ is presented only in  the GLC2000 and IGBP 
legend. Although, legend harmonization aims to reduce the 
influence of thematic heterogeneity as much as possible, these 
inconsistencies are a general limitation in comparing separately 
developed GLC maps.   
 
4.2 Re-applicability of GLC2000 reference dataset 

The GLC2000 reference dataset was used to compare 5 GLC 
maps with 1 km spatial resolution, and this study showed the 
possibility of re-using an existing GLC reference dataset with 
additional considerations such as consistency checking, legend 
translation, and sample re-interpretation. Since this reference 
dataset was based on LCCS legend with classifier information, 
legend translation into AGL11 was possible, although some 
inconsistencies remained.  
 
The GLC2000 reference dataset was derived using a 
stratification based on the proportion of priority classes and on 
the landscape heterogeneity, and this makes the dataset a map 
dependent. The purpose of a stratification is to increase the 
precision of the accuracy assessment (Stehman, 2009). 
Although, there was no significant difference between the 
standard errors of the map accuracy estimates (Figure 4), the 
precision of the accuracy estimates for the GLC maps other than 
GLC2000 may not be optimum, and it is likely to be over-
estimated. Nonetheless, the GLC2000 reference dataset can give 
statistical accuracy estimates since it is based on a probability 
sampling and provides a large number of samples.  

 
The GLC2000 reference samples have a spatial support area of 
3x3 km which covers 9 pixels of the GLC maps. Large sample 
units can be advantageous when avoiding the impact of 
positional errors (Stehman & Wickham, 2011). However, this 
large sample unit area creates a problem in heterogeneous 
landscape (Stehman & Wickham, 2011) and this is discussed in 
section 4.3.  
 
In terms of temporal coverage, the use of GLC2000 reference 
dataset to compare the GLC maps was appropriate since most of 
the maps (except the IGBP and UMD) and reference dataset 
were produced for year 2000. The GLC2000 reference dataset 
was created through a visual interpretation of satellite images, 
and thus, it is subject to human variability and bias. However, 
our consolidation of 10% of the samples showed that 95% of 
the subsample matched with the original interpretation. This 
suggests the reliability of the reference data. Moreover, with our 
additional processing of the dataset e.g. translating and re-
interpretation, the current version of the GLC2000 reference 
dataset can provide a reliable reference information for land 
cover.  
 
A GLC reference dataset that can be used for comparison of 
different GLC maps should be derived independently from any 
GLC maps, based on probability sampling and commonly 
accepted legends like LCCS. Datasets should have MMU that is 
suitable for any map and flexible sample unit size. Forthcoming 
validation datasets such as the LC-CCI and GOFC-GOLD meet 
these requirements (Achard et al., 2011; Olofsson et al., 2012). 
Nevertheless, the value of the existing GLC validation datasets 
should not be neglected considering that the existing datasets 
provide a valuable information and their creation took 
considerable efforts and resources (Tsendbazar et al., 2014). 
This consolidated dataset is now available to the public through 
the Reference Data Portal of the Global Observation for Forest 
Cover and Land Dynamics (GOFC-GOLD)(GOFC-GOLD, 
2014). 
 
4.3 Comparison of GLC maps and impact of the 
heterogeneity  

Previous comparison studies focused on spatial (dis)agreement 
between different maps (Hansen & Reed, 2000; Giri et al., 
2005; Fritz et al., 2011). However, these studies do not inform 
on which map provides better quality. A comparative accuracy 
assessment providing information on the best available maps is 
challenging due to the lack of reference dataset that is 
applicable to multiple maps. Our study tackles this issue by 
providing quantitative comparisons of the accuracy of different 
GLC maps using existing GLC2000 reference dataset. With 
processing of the GLC2000 reference data and harmonization, it 
was possible to conduct a comparative accuracy assessment of 
GLC maps.  
 
The analysis shows that the overall accuracies of the GLC maps 
varied from 58-71% at HRP level 0. The SYNMAP and 
GLC2000 maps had highest accuracies followed by the 
MODIS. The same trend could be shown with increased HRP 
levels.  
 
As the SYNMAP is a synergetic map based on the other GLC 
maps, it is expected that the overall accuracy will be higher than 
the others (Jung et al., 2006). This study proves that the 
SYNMAP is comparably better than the other maps even 
though, independent validation of this map has not been done.  
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We evaluated the accuracy of the GLC maps using different 
sample sets depending on the HRP levels. Our analysis showed 
that with increasing level of homogeneity overall accuracy 
increases by 10-16% for all the GLC maps (Figure 4). This 
coincides the general tendency of having high classification 
accuracy in homogeneous landscape and low in heterogeneous 
landscape (Fritz & See, 2008; Defourny et al., 2012). 
Heterogeneous landscapes are the main driver for inconsistency 
in the land cover maps, and it is identified as a major challenge 
for GLC mapping (Hansen & Reed, 2000; Jung et al., 2006; 
McCallum et al., 2006; Herold et al., 2008; Wu et al., 2008). 
To overcome this issue, an accuracy assessment should be based 
on reference datasets derived from very high spatial resolution 
images allowing a detailed matching analysis. However, the 
GLC2000 reference dataset employed in this analysis does not 
have such characteristics.   
 
As HPR level increases, only homogeneous samples were used 
for the accuracy assessment thus, this decreases sample size 
substantially (Figure 4). Such decreased sample size may have 
an impact on the robustness of the assessment. This can be 
especially of concern since sampling design of GLC2000 has 4 
strata, 2 for heterogeneous landscape and 2 for homogeneous 
areas. With increasing HRP levels, there is likely a biased 
representation of the stratums (less sample for heterogeneous 
landscape). Nonetheless, the use of accuracy estimates based on 
only homogeneous samples for further applications is strongly 
discouraged since such estimates can be misleading.  
 
For heterogeneous samples consisting of two or more land 
cover types, definition of agreement between the reference and 
map categories becomes complex (Mayaux et al., 2006; 
Defourny et al., 2010). Since GLC2000 sample units have large 
area (3x3 map pixels), we used three different definitions of 
agreement depending on how heterogeneous land cover types 
are treated. Validation case 1 (pessimistic) resulted in lowest 
accuracy estimates for all GLC products, whilst validation case 
3 (optimistic) resulted in the highest accuracy estimates 
(difference is up to 10%) (Figure 5). This also shows that the 
landscape heterogeneity influences the definition of agreement 
between reference and map categories which impacts the final 
accuracy estimates.  
 

5. CONCLUSION AND RECOMMENDATIONS 

This study re-analysed the GLC2000 reference dataset for 
comparative accuracy assessments of 5 GLC maps with 11 
classes. With the comprehensive re-analysis of the GLC2000 
reference dataset and inherent LCCS based classifier 
information, this dataset was successfully used for conducting 
multiple accuracy assessments. Moreover, as a result of the re-
analysis, a reliable reference dataset of GLC was obtained and 
this consolidated dataset is now available to the public through 
GOFC-GOLD Reference Data Portal (GOFC-GOLD, 2014). 
  
For comparison, different legends of the GLC maps were 
harmonized into 11 general classes. Although, legend 
harmonization reduced the thematic heterogeneity as much as 
possible, these are still inconsistencies which are a general 
limitation in comparing separately developed GLC maps. Such 
inconsistencies could be dealt through joint efforts of 
institutions and international advocates of GLC mapping 
efforts, i.e, the GOFC-GOLD and CEOS-WGCV (Committee 
on Earth Observation Satellites - Working Group on Calibration 
& Validation).   
 

The comparative accuracy assessment showed that the 
SYNMAP had the highest accuracy followed by the GLC2000 
map based on the GLC2000 reference dataset. To help the GLC 
map users in selecting the best suitable maps for their 
applications, comparative accuracy assessments should be 
conducted per user perspective. This is because the GLC map 
users have different preferences on the land cover types; one 
class can be very important to one user while not for another 
user.  
 
This study also demonstrated the importance of appropriate way 
of handling landscape heterogeneity in accuracy assessments. 
How to handle heterogeneous sample sites with two or more 
land cover classes and the definition of agreement between 
reference and map categories in heterogeneous areas are proven 
to have high impact on the accuracy estimates, and this is one of 
the main source of uncertainty in the accuracy assessment. 
Future reference dataset should have MMU that is small enough 
to reflect all land cover types within sample unit area which can 
be useful in assessing map accuracies in heterogeneous areas.  
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