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ABSTRACT:

Change detection is one of the most important and widely requested applications of terrestrial remote sensing. Despite a wealth of
techniques and successful studies, there is still a need for research in remote sensing science. This paper addresses two important
issues: the temporal and spatial scales of change maps. Temporal scales relate to the time interval between observations for
successful change detection. We compare annual change detection maps accumulated over five years against direct change detection
over that period. Spatial scales relate to the spatial resolution of remote sensing products. We compare fractions from 30m Landsat
change maps to 250m grid cells that match MODIS change products. Results suggest that change detection at annual scales better
detect abrupt changes, in particular those that do not persist over a longer period. The analysis across spatial scales strongly
recommends the use of an appropriate analysis technique, such as change fractions from fine spatial resolution data for comparison
with coarse spatial resolution maps. Plotting those results in bi-dimensional error space and analyzing various criteria, the “lowest
cost”, according to a user defined (here hyperbolic) cost function, was found most useful. In general, we found a poor match between
Landsat and MODIS-based change maps which, besides obvious differences in the capabilities to detect change, is likely related to

change detection errors in both data sets.

1. INTRODUCTION

Change detection of land cover and land use is one of the
foremost applications of remote sensing data. Even though well
studied over the past five decades, there is still on-going
research in many fields such as method development (see
summaries in Lu et al. (2004) and Coppin et al (2004)),
combining spatial scales and multiple data sets (Colditz et al.
2012a), application-specific developments, e.g. for urban
planning (Tapiador and Casanova 2003), or robust regional to
continental change detection with automated methods (Pouliot
et al. 2014). For successful change studies one needs to
consider several factors, such as available resources, image
availability, accessibility to ground observations and ancillary
data, availability and experience with change detection
algorithms, area of expertise, intended use of the product, etc.
(Kennedy et al. 2009).

This study addresses two important issues: temporal and spatial
scales of change detection. The temporal scale of change is
important and one should select the appropriate data sets
carefully. For instance, abrupt change may only persist for a
short period of time while subtle change processes may not be
detectable at short temporal intervals. For temporal scales, the
study analyzes annual change products over five years which
were accumulated and compared to direct change detection
between the initial and final year. Differences in spatial scales
are studied using data of different spatial resolution; in this
study comparing change maps obtained from 30m Landsat data
to 250m MODIS products. Landsat change maps were
generated for minimum mapping units (MMUs) of lha, Sha,
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and 10ha. For adequate map comparison across spatial
resolutions an algorithm calculated the fraction of change from
fine spatial resolution data for each coarse cell, and several
criteria for defining the appropriate change fraction were tested.

2. DATA AND STUDY AREA

The Canada Centre for Remote Sensing (CCRS) of Natural
Resources Canada (NRCan) processed MODIS calibrated
radiances for the entire North American continent and provided
monthly image composites to an international research network.
Specifically, the following processing steps were carried out:
projection to Lambert Azimuthal Equal Area (LAEA),
downscaling to obtain images of 250m spatial resolution for all
7 reflective bands, and compositing to monthly data (for
overview see Latifovic et al. 2012). In this study we employed
monthly composites of MODIS data from 2005 to 2010.

Table 1 lists all Landsat images of path 046 — row 020 that were
analyzed in this study. All corresponding Landsat 7ETM+
images were composited to reduce data gaps in the primary
image by filling with valid pixels from a secondary image. In
2008, no cloud-free data were available for the period March to
May. Therefore a set, marked as 2008A, was used for change
detection with the composite of 2007 and 2008B with data from
2009; all other composites were employed for both pairs. All
images were preprocessed using LEDAPS (Masek et al. 2006)
for obtaining surface reflectance and FMASK (Zhu et al. 2012)
for detecting, clouds, shadow and invalid data due to the failure
of the scan-line corrector since May 2003.
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Year Sensor Primary Secondary
2005 L7 ETM" April 10™ April 26"
2006 L7 ETM" April 29" April 13®
2007 L7 ETM" March 15" April 16"
2008A L7 ETM" January 29" January 13"
2008B L7 ETM" August 24" November 28™
2009 L7 ETM" April 5" May 7
2010 L5 T™M January 26" NA

Table 1. Sensor and dates of Landsat images per year.

Figure 1. Study areas: the national terrestrial territory of Mexico
with its states and location of Landsat path-row 046-020 on the
Yucatan peninsula, marked in red.

In a first test, the national terrestrial territory of Mexico (1.972
Mio km?) will be analyzed using MODIS data. Next, the area of
path-row 046-020 will be studied in detail (Figure 1) using
Landsat and MODIS-based change detection products. This
region, located in the north-western portion of the Yucatan
peninsula and south of the city of Merida, depicts a transition
from deciduous to evergreen broadleaf tropical forests towards
the East. Slash-and-burn agriculture, such as frequently applied
to Milpas, is characteristic to fertilize poor karstic soils for a
short period of 3-5 years, planting maize, squash, and beans.

3. METHODS
3.1 Change detection

3.1.1 MODIS data: A base-line land cover classification
with 19 classes for North America (15 for Mexico) using a
standardized, LCCS-compatible legend was generated for the
year 2005 (Latifovic et al. 2012). For Mexico, supervised
decision tree (C5.0, Quinlan 1993) ensemble classifiers were
trained with a 121,000 sample points from field-based analysis
and on-screen digitalization (Colditz et al, 2012b). A first
version of this map was recently improved in selected areas
mainly for classes “urban and built-up” and “water” (Colditz et
al. 2014a).

An algorithm was developed to obtain potential areas of land
cover change using normalized bi-annual difference images for
all month and bands as well as additional data such as the
NDVI and texture filters for improved edge detection. An
algorithm was trained with Landsat images for a large area in
northern Mexico for the period 2005 to 2010. Optimization
resulted in the following thresholds: 1 and 99 percentile of each
difference image and a frequency of 25% from all features
(Colditz et al. 2014b).

Next, a map updating strategy was used to assign new land
cover classes to pixels flagged as potential change (Colditz et al.
2014a). Therefore there are two change products: (1) potential
change by biannual differences and (2) actual change for areas
with a change in the class label. In this study we employ maps
without minimum mapping unit, thus the smallest change object
is 6.25ha, the area of a 250m MODIS pixels.

3.1.2 Landsat data: Change from Landsat images was
detected by visual interpretation using two analysts: one
detected changes between 2005 and 2010 directly, the other
consecutive annual changes between all years. The analysts
digitized polygons at high spatial detail and also identified areas
which they could not map, either due to clouds or too large data
gaps between scan lines. To ensure consistency, a third analyst
verified and, if necessary, revised polygons. For standardized
products, MMUs of 1ha, 5ha, and 10ha were applied.

3.2 Change analysis

From each sensor two data change sets were generated: (1)
direct land cover change between 2005 and 2010 without
analyzing the years in between and (2) annual consecutive land
cover change between 2005 and 2010 (2005-2006, 2006-2007,
2007-2008, 2008-2009, and 2009-2010). The latter was
aggregated to accumulated annual change between 2005 and
2010 and compared to direct land cover change for the same
period. For MODIS there are potential change maps, for
Landsat change products were obtained at lha, Sha, and 10ha
between 2005 and 2010.

3.2.1 Change area and polygons: The area of each change
map, effectively the number of pixels detected as change, is
calculated and expressed in area as square kilometre and
percent. In addition, the number of patches of change, i.e. a
pixel or group of connected pixels surrounded by pixels of no
change, was calculated using the eight-neighbour rule and
reported as simple count and number of patches per square
kilometre. The relative numbers are useful to compare change
results across different temporal and spatial scales.

3.2.2 Change comparison at the same resolution: A simple
matrix (Figure 2) was used to compare two maps of no change
(0) and change (1) of the same resolution of which the common
change area (N;;) was analyzed. Specifically the error (E),
expressed in percent, of change in map A against B and vice
versa was calculated following equations (1) and (2).
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Figure 2: Matrix of correspondence between change (1) in map

A and B.
N
E =1-—1L (1)
! N1+
N
E, =1-—1L @)
B N.,



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-16-2

Potential change

Actual change

km? Area % Patches Patches/km’ km? Area % Patches Patches/km’

2005 - 2006 6187.94 0.3156 7647 0.0039 1500.31 0.0765 4519 0.0023
2006 - 2007 5621.94 0.2867 8094 0.0041 1643.06 0.0838 5542 0.0028
2007 - 2008 5103.06 0.2602 7433 0.0038 1571.31 0.0801 5034 0.0026
2008 - 2009 6265.50 0.3195 8268 0.0042 2196.25 0.1120 6228 0.0032
2009 - 2010 6535.25 0.3333 8300 0.0042 1996.25 0.1018 5866 0.0030
2005 - 201.0 16861.56 0.8598 22237 0.0113 6572.88 0.3352 14166 0.0072
accumulative

i?r?:it_ 2010 7023.31 0.3582 12258 0.0063 3304.94 0.1685 9206 0.0047

Table 2. Area and patches for potential and actual change of MODIS data at the national scale.
3.2.3 Change comparison at different resolutions: accumulative annual change. This indicates that longer time

Analyzing change of maps with different spatial resolution is
more complicated. We employed an algorithm which calculates
the area proportions (or fractions) of change from a fine spatial
resolution map in a coarse spatial resolution grid (Colditz et al.
2012a). Next, we calculate the matrix of Figure 2 and errors of
equations (1) and (2) for all potential fractions (0% to 100% at
1% intervals) and present this result in bi-dimensional space
(Ea, Eg). There are several ways to determine the best change
fraction, e.g. the 50% fraction, i.e. at least 50% of the coarse
cell were mapped as change in the fine spatial resolution pixel,
the fraction at which E, and Eg are equal (if they intersect), or
the lowest cost using a cost function such as the hyperbolic in
equation 3. In addition, the Pareto boundary for the lowest
achievable error bound (Boschetti et al. 2004) was calculated
for each fine spatial resolution set.

Cost(x)=1-[(1-E,){1-E,)] @&
4. RESULTS AND ANALYSIS

4.1 MODIS based change at the national scale

The MODIS-based change detection was developed for the
national area of Mexico and therefore shall be analyzed first for
this extent. Table 2 shows the area in square kilometres and
percent and patches as absolute number and per square
kilometre. The area of potential change is, on average, three
times larger than actual change of class labels. Even though
there are more patches of potential change than actual change,
the average ratio of 1.46 is lower than for area.

Notable is also the sum of annual changes between 2005 and
2010, which is much larger than the accumulated change area,
e.g. 29,713km” compared to 16,861km’ for potential change.
This indicates that a significant area was mapped several times
as change. Figure 3A shows the percent of area that was
detected one to five times as change in annual change maps. For
potential change, 42% of the area was at least twice detected as
change and 3.3% of the change pixels were detected in all bi-
annual change maps. It is clear that actual change was less
likely detected several times and this number could be further
reduced be applying rules of change persistency similar to
Pouliot et al. (2009).

The third notable result is that direct change between 2005 and
2010 is clearly lower than accumulative annual change. In fact,
many potential annual changes are only slightly smaller than
2005-2010 direct change. For actual change the difference is
higher but direct change is still only half of the area of

spans between dates may not detect several changes that occur
at shorter intervals.

The change maps between 2005 and 2010 obtained by direct
comparison and accumulative annual changes were compared
and summarized in a matrix similar to Figure 2. Table 3 shows
the respective errors for accumulative and direct change. It is
clear that the error is higher for accumulative change as a 2.5
times larger area was detected, thus at best the error cannot be
lower than 60%. Still, only half of the that area (21.9% of
accumulative change) was also found with direct change. Errors
for direct change are lower but still approximately half of the
total change area. This indicates that both maps are clearly
different and mark changes at distinct temporal scales.

4.2 MODIS-based change for Yucatan

Table 4 reports change areas and patches from MODIS for the
study site on the Yucatan peninsula. The total area (column
Yucatan) corresponds to the valid area of Landsat data (>50%
of valid area proportion) and relative numbers such as area in
percent and patches by area are relative to this number.
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Figure 3. Proportion of change pixels detected one to five times
in bi-annual change maps for Mexico (A) and Yucatan (B).

Error Mexico Yucatan
Potential Actual Potential Actual

Accumulative 78.15 77.88 65.07 44.69

Direct 47.53 56.01 63.67 65.98

Table 3. Error between direct change and accumulative annual
change maps between 2005 and 2010 for Mexico and Yucatan.
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Change Yucatan Potential change Actual change
km? km? Area %  Patches Patches/km® km? Area %  Patches Patches/km’
2005 — 2006 14364 1.44  0.0100 48 0.0033 0.94  0.0065 25 0.0017
2006 — 2007 13807 10.75  0.0779 72 0.0052 7.06  0.0511 47 0.0034
2007 — 2008 27250 6.50  0.0239 65 0.0024 2.13 0.0078 32 0.0012
2008 — 2009 26697 32.69 0.1224 363 0.0136 9.19 0.0344 100 0.0037
2009 — 2010 32515 6.13 0.0188 65 0.0020 3.06  0.0094 40 0.0012
2005 - 20.10 33712 52.06 0.1544 255 0.0076 22.38  0.0664 106 0.0031
accumulative
i?r?:itﬁ 2010 32466 45.69  0.1407 182 0.0056 3325 0.1024 119 0.0037
Table 4. Area and patches for potential and actual change of MODIS data for Yucatan.
Change Yucatan lha Sha 10ha
5 5, Area Patches > Area Patches » Area Patches
km km % Patches Jkm’ m % Patches Jkm? km 9% Patches Jkm’

2005 — 2006 13845 3248 0.23 667 0.0482 21.73 0.15 182 0.0131 17.08 0.12 106 0.0077
2006 — 2007 13300 2693 0.20 446 0.0335 21.58 0.16 170 0.0128 17.34 0.13 98 0.0074
2007 — 2008 26418 26.01 0.09 415 0.0157 21.19 0.08 201 0.0076 1646 0.06 118 0.0045
2008 — 2009 25782 2621 0.10 675 0.0262 17.53 0.06 201 0.0078 11.43 0.04 84 0.0033
2009 — 2010 32056 15.39 0.04 316 0.0099 10.80 0.03 91 0.0028 7.16 0.02 35 0.0011
2005 - 20.10 33337 12398 0.37 2264 0.0679 9045 0.27 760 0.0228 67.52 0.20 404 0.0121
accumulative
2005 -2010
direct 31843 50591 1.58 7709  0.2421 393.05 1.23 2889  0.0907 285.51 0.89 1150 0.0361

Table 5. Area and patches for changes of Landsat with 1ha, Sha and 10ha minimum mapping unit for Yucatan.

In comparison to area percentages at the national scale, MODIS
detected clearly less changes in the Yucatan site. However, the
number of patches per area did not reduce notably, which
indicates that the area of change patches is much smaller in
Yucatan than at the national scale.

The percentage of annual changes detected several times is
lower. In fact, Figure 3B depicts only some notable double and
almost no triple detection for potential changes while all actual
changes occurred only once.

The correspondence between direct and accumulative change
maps between 2005 and 2010 in Table 3 show an reversal in the
magnitude of errors with a the higher area of accumulative
versus direct change for the potential change maps and vice
versa for actual change. Overall, however, the errors are still
quite high at the local level for Yucatan.

4.3 Landsat-based change

Annual Landsat-based change areas for the Yucatan site (Table
5) depict area proportions similar to the national scale of
MODIS but clearly higher than those of the local level. An
average decrease of 25% in change area is indicated between 1
and 5ha MMU and 45% between 1 and 10ha. Across all
minimum mapping units, however, there is the four times higher
area for direct changes between 2005 and 2010 as compared to
accumulative annual changes for the same period, a
contradictory result on comparison to the findings obtained
from MODIS.

The numbers of patches reduce, on average, by 65% between 1
and 5ha and 82% between 1 and 10ha. This marked decrease

indicates a high number of small polygons. In comparison to
MODIS at the national scale the number of change patches per
square kilometre is approximately a magnitude higher for 1ha,
roughly the same for Sha which is similar to the 6.25ha area of a
250m MODIS pixel, and a magnitude lower for 10ha. This
indicates the importance of spatial resolution for detecting
change.

The comparison of Landsat change maps of accumulative
annual changes and direct changes between 2005 and 2010
(Table 6) shows the expected pattern: a high error for direct
changes due to the much larger area detected as changes. The
numbers vary only slightly among minimum mapping units.
There was no noteworthy multiple detection of Landsat pixels
in annual change maps.

4.4 Comparison of Landsat and MODIS-based change

Comparison between 30m Landsat and 250m MODIS products
requires a technique which relates the fine spatial resolution
data to coarse spatial resolution cells. In this study we calculate
the fraction of change from Landsat products with different
MMUs for each 250m cell and compare this result to potential
change from MODIS.

Error lha Sha 10ha
Accumulative 43.97  41.90  40.88
Direct 86.86 87.25 86.68

Table 6. Error between direct change and accumulative annual
change maps between 2005 and 2010 for 1ha, Sha and 10ha
minimum mapping units.
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Figure 4. MODIS-Landsat error plots for Pareto boundaries (A) as best achievable result and Landsat-MODIS data comparison (B)
using direct and aggregated annual change between 2005 and 2010 from MODIS potential changes and Landsat change with 1ha,
Sha and 10ha MMU.

There are multiple criteria to define the most appropriate
fraction and corresponding errors which we will explore in the
following. The simplest is to only consider coarse cells with a
fraction of at least 50% of change from Landsat. Another option
is to select the intersection between both errors for a set of
fractions. Third, one may choose the minimum cost according
to a user-defined (here hyperbolic) cost function for the bi-
dimensional error space. In the following we will first assess the
results for the Pareto boundary and then for the actual MODIS-
Landsat change data.

4.4.1 Error for Pareto boundary: The Pareto boundary
forms a line of optimal classifications for a set of different
fractions. The asymmetric curves in Figure 4A indicate a
skewed error distribution and Table 7 shows best result for
above-mentioned criteria. Assuming “change fraction >= 50%”
the error for Landsat is almost twice as high as for MODIS.
Employing the criterion of an equal error between Landsat and
MODIS resulted in lower costs than the 50% threshold. All
selected change fractions were smaller than 50% which
indicates that cells with less than 50% change proportion in
Landsat are deemed sufficient for defining change in MODIS.
The lowest cost criterion decreases the cost slightly as
compared to the intersection between both errors, which in all
cases also resulted in an even lower change fraction. This
indicates that using the 50% fraction is clearly inappropriate in
this analysis, i.e. change fractions of approximately 30% should
be employed. Also, the error for Landsat dropped further and is
often just half as much as for MODIS. This result is meaningful
as change detection with Landsat should be more accurate than
with MODIS.

The direct change detection between 2005 and 2010 shows
generally lower costs and comparatively lower errors than
accumulative annual change detection between those years. It
becomes also clear that Landsat products with larger MMUs,

which reduce the noise in change detection maps, resulted in
lower costs and thus smaller errors.

4.4.2 MODIS-Landsat change data: In comparison to the
Pareto boundary, change comparison between MODIS and
Landsat shows high errors (Figure 4B, Table 8). For
accumulative changes, assuming the 50% threshold, errors for
MODIS and Landsat were almost equal, thus these results are
very similar to criterion of error intersection. For direct
comparison between 2005 and 2010 Landsat, errors were very
high and MODIS moderate. However, the errors curves of both
data sets never intersected with increasing change fractions and
thus the equal error measure cannot be used for assessment. The
lowest cost resulted in fractions between 30 and 40% for
accumulative change and above 90% for direct change. Notable
is the higher error for Landsat than MODIS, which could
indicate issues in the Landsat data set.

Accumulative Direct

lha S5ha 10ha 1lha Sha  10ha
Change fraction >= 50%
Cost 70.78 62.40 55.89 64.46 55.19 46.06
Landsat error  59.25 48.31 40.81 5223 40.41 31.22
MODIS error  28.29 27.26 2548 25.61 24.81 21.58
Equal error between Landsat and MODIS
Fraction 35 39 40 37 42 44
Cost 65.98 58.57 53.50 60.55 52.57 44.58
Error 41.36 35.56 31.66 36.50 30.40 2593
Lowest cost
Fraction 26 27 33 29 29 33
Cost 64.62 56.93 5245 59.40 51.05 43.62
Landsat error  29.60 21.21 2486 27.89 18.55 16.66
MODIS error 49.74 4534 36.72 43.70 39.91 32.36

Table 7. Cost, fraction and error statistics (all in percent) for the
Pareto boundary.
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Accumulative Direct
lha Sha 10ha lha Sha 10ha
Change fraction = 50%
Cost 97.76 97.72 97.63 9586 95.69 94.76
Landsat error  87.15 86.42 84.83 9238 92.06 90.23
MODIS Error  82.59 83.19 86.39 45.69 45.69 4637

Equal error between Landsat and MODIS
Fraction 60 58 52 NA NA NA

Cost 97.88 97.88 97.64 NA NA NA
Error 85.59 85.59 8475 NA NA NA
Lowest cost

Fraction 42 35 32 93 93 93
Cost 97.57 9746 9743 93.67 93.67 93.65
Landsat error  88.35 88.70 87.20 80.71 80.71 80.66
MODIS error  79.11 77.35 79.95 67.17 67.17 67.17

Table 8. Cost, fraction and error statistics (all in percent) for
MODIS versus Landsat change data.

Similar to Pareto boundary assessment, the errors were lower
for direct change detection than accumulative change and
slightly diminished with larger MMUs, however, this effect was
less notable.

5. DISCUSSION AND CONCLUSIONS

A major presumption for all successful change detection studies
using spatial data sets is near-to-perfect spatial co-registration
(Lu et al. 2004, Boschetti et al. 2004, Colditz et al. 2014b). In
this study we only performed visual comparisons among
different data sets. We could not find noteworthy spatial
displacements, which confirms the generally good spatial
registration of MODIS and Landsat data (Wolfe et al. 2002,
Masek et al. 2006) and thus good co-registration between both
sensors. An approach for quantitative analysis of spatial co-
registration between data sets of different spatial resolution was
shown in Colditz et al. (2012a) and applied to change detection
in Colditz et al. (2014b).

5.1 Annual versus five year intervals

There are notable differences in temporal scales that differed by
sensor products. For MODIS, accumulative annual change
showed larger change area than direct change between 2005 and
2010. Given that the data sets (MODIS monthly composites)
and change detection method (bi-annual normalized difference
images) were the same, the reason is related to the time
intervals. This pattern was expected as many changes occur
abruptly and may persist only for a short interval. For instance,
plots for the above-mentioned slash-and-burn agriculture only
exist a few years before the land is abandoned and secondary,
mostly shrubby vegetation regrows before tropical forest takes
over in several successional stages. Some changes may not be
observable even at annual scales, e.g. burnt areas in pastures
and low shrubby vegetation (Ressl et al. 2009, Colditz et al.
2014).

Even though annual accumulative changes detect larger total
area than direct changes over several years, the locality of
changes differs. The main reason is that change detection at
annual intervals can hardly reveal subtle change processes at a
slower pace over several years. Despite the availability of trend-
based and time series analysis techniques for detecting change
processes (Kennedy et al. 2010, Latifovic and Pouliot 2014,

Verbesselt et al. 2010), bi-annual difference images over longer
time scales may be an alternative.

Landsat change results show a contrary pattern with more
changes detected for direct comparison between 2005 and 2010
than accumulative annual changes. In this case the reason is
likely related to differences in visual change detection. Even
though we intended to harmonize visual digitalization among
different analysts, the issue could not be fully resolved. The
analyst that detected changes between 2005 and 2010 directly
worked approximately three weeks on this data set while the
other, responsible for annual change detection between 2005
and 2010, spent less than two weeks for all five data sets (two
days per bi-annual data set). Post-processing and applying
minimum mapping units could not fully resolve the differences
in the level of detail between both data sets.

5.2 Spatial resolution

The number of patches depends on the spatial resolution and
minimum mapping unit. The reduction of small patches was
illustrated for Landsat which highly affected the number of
patches but only moderately the area. Notable is also the
similarity between the patches per square kilometre for Landsat
with Sha MMU and MODIS with a cell size of 6.25ha at the
national level.

Relating spatial scales is still an emerging topic with only a few
studies. For the dichotomous case as in this study (change / no
change) we adapted algorithms from file monitoring (Boschetti
et al. 2004, Ressl et al. 2009, Csiszar et al. 2006, Morisette et
al. 2005). The Pareto boundary, adapted to spatial data in the
field of remote sensing by Boschetti et al. (2004), indicates the
optimal line for a set of change fractions. The area below this
curve cannot be reached due to differences in the spatial
resolution between both data sets. The lower errors for Landsat
data with larger MMU are therefore meaningful as the
difference in resolution diminishes with increasing MMUs of
finer spatial resolution data. Nevertheless, in absolute terms the
Pareto boundary is still high, in comparison to Boschetti et al.
(2004) or Colditz et al. (2014b).

The analysis of different criteria for defining an appropriate
change fraction analysed three approaches. The rationale for
choosing the 50% threshold is simply that of the majority rule,
i.e. the class that makes up the largest proportion of area will be
assigned. Although valid in some cases this assumption does
not hold up to reality due to an uneven probability distribution
function. For instance, a pixel in coarser resolution data may be
flagged even though the area proportion that corresponds to this
class is much smaller, a case frequently found in fire mapping
(Ressl et al. 2009). Choosing the equal value between both
errors may be desirable in some cases but many studies prefer to
minimize one of the two errors (Colditz et al. 2014b). The
intersection may even not exist as we have shown for direct
comparisons. The lowest cost could be a viable alternative;
however the actual fraction and errors highly depend on the
selected cost function. This study and others (Boschetti et al.
2004, Colditz et al. 2014b) have deemed useful the hyperbolic
cost function as defined in equation 3.

In general there is a poor relation between Landsat and MODIS
change detection products, also noted by the high difference
between Landsat-MODIS data comparison and the Pareto
boundary, which is related to two major facts. First, MODIS
change was extracted from a product designed for the national
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scale which in some areas works well but in this site relatively
poor, mainly due to changes that are too small to detect at 250m
spatial resolution, that cannot be discerned spectrally, that occur
on different time scales, as well as remaining data issues due to
frequent cloud cover during rainy season from May to
September (Colditz et al. 2014b). The second reason is the
approach of visual analysis of Landsat with two different
analysts that worked at different levels of detail. This introduced
inconsistencies to our data set which we could not fully resolve.
It would have been desirable to obtain automatically detected
changes with Landsat or even higher spatial resolution data, but
opportunities are limited due to inconsistent image acquisition.
For instance, Landsat 5TM was turned off over the study area
from 2002 to 2009 and Landsat 7ETM+ images suffer from
scan-line off data gaps in addition to frequent could cover and
shadows. In order to obtain larger areas of valid data two
images were composited. The selected image dates, which differ
in 2008 and 2010 from the normal pattern of choosing images at
the end of the dry season, illustrate the difficulties of finding
appropriate data.
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