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ABSTRACT:

This paper presents a powerful technology of color balance between images. It does not only work for small number of images but
also work for unlimited large number of images. Multiple adaptive methods are used. To obtain color seamless mosaic dataset, local
color is adjusted adaptively towards the target color. Local statistics of the source images are computed based on the so-called adaptive
dodging window. The adaptive target colors are statistically computed according to multiple target models. The gamma function is
derived from the adaptive target and the adaptive source local stats. It is applied to the source images to obtain the color balanced
output images. Five target color surface models are proposed. They are color point (or single color), color grid, 1st, 2nd and 3rd 2D
polynomials. Least Square Fitting is used to obtain the polynomial target color surfaces. Target color surfaces are automatically
computed based on all source images or based on an external target image. Some special objects such as water and snow are filtered
by percentage cut or a given mask. Excellent results are achieved. The performance is extremely fast to support on-the-fly color
balancing for large number of images (possible of hundreds of thousands images). Detailed algorithm and formulae are described. Rich
examples including big mosaic datasets (e.g., contains 36,006 images) are given. Excellent results and performance are presented. The
results show that this technology can be successfully used in various imagery to obtain color seamless mosaic. This algorithm has been

successfully using in ESRI ArcGis.

1. INTRODUCTION

Big mosaic dataset is becoming more and more important data
source for research and applications in remote sensing society. It
is useful but difficult to have color balancing or color correction
over a huge number of images to make the mosaic dataset color
seamless. Images of a mosaic dataset may be captured by
different sensors or different cameras, or captured from different
seasons and different time. Therefore, a lot of mosaic datasets
appear with problems of inconsistent color tones, uneven grey,
lightness, hue, luminance, contrast and cast, etc. To remove those
inconsistences and obtain color seamless result is a challenge.
Color balancing is one of the technologies to make color seamless
mosaic. Color balance can be made inside a single image to
remove color cast and inconsistency. It can be also applied to
multiple images to obtain global color consistency and color
seamless between images. This paper only focuses on color
balancing between images.

For the color balancing inside a single image, a lot of reference
papers can be found. The single-scale retinex, multi-scale retinex
and multi-scale retinex with color restoration achieve
simultaneous range compression, color consistency and lightness
rendition (Priyanka, J., etc., 2012). A number of methods
proposed to improve brightness distribution, color dodge, and
removing uneven illumination (Chunya, T., 2014, Li, Z., etc.,
Wang, M., 2005, Sherin, J., etc., 2014, Zhang, Z., 2011).

For the color seamless mosaicing, the immediate though may be
the blending of the overlapped areas in the adjacent images. The
larger the blending width, the more the color difference can be
reduced between images. In order to solve the large pixel blend
width problem such like images are not well co-registered or to
produce blurring or ghosting in the area of overlap, the
Differential Superposition Method (Yusuf Siddiqui, 2006) was
proposed to improve the blending results. Though blending can

reduce the color difference, it only applies to the overlap area.
The non-overlapped areas still keep the differences. In addition,
blending may create wrong pixels in the overlapped area if two
images were acquired from big different looking angles. For
color balancing between images, Uyttendaele, M., etc., 2001,
proposed continuously adjusting exposure across multiple
images in order to eliminate visible shifts in brightness or hue.
Xandri, R. etc., 2005, proposed their algorithm of two steps in
overlapping area: radiometric approximation and seam line based
single image generation. Wallis transform was used to adjust the
color difference between images (Sun, M.W., etc., 2008).

Many algorithms for color seamless mosaic may not work for
some cases. For example 1) The overlapping area is too small to
provide enough color correlation information if the overlapping
area is relied; 2) Images in the overlapping areas do not register
well if correlation is based; 3) There are big differences of
lightness, hue and cast between images; 4) The scale of images
is large or the number of images is big; 5) It is difficult to handle
some ground objects like water and snow.

In this paper, a Multiple Auto-adapting Color Balancing based on
gamma dodging is proposed. Multiple adapting methods are
employed to make the algorithm better fitting different
requirements of color seamless mosaicing. It works well for all
difficult cases listed in the above paragraph. This algorithm does
not rely on overlapping area even in case of images being
separated with a big distance. It also works in case of big
differences of lightness, hue and cast between images. There is
no limit of the number of images and scale. In addition, this
algorithm handles different ground objects very well even in the
areas of water and snow. Excellent results are achieved.
Examples are given in the last section of this paper. The
performance is extremely fast to support on-the-fly color
balancing for unlimited large number of images. This algorithm
has been successfully using in ESRI ArcGis (ESRI, 2013).
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2.  ALGORITHM

The algorithm consists of 1) Sub-algorithm of Adaptive Gamma
Dodging Correction Function; 2) Sub-algorithm of Adaptive
Local Mean Computation; 3) Sub-algorithm of Adaptive Target
Color Surfaces Function; 4) Sub-algorithm of Adaptive
Excluding Mask and Recursive Filtering in Excluding Area. In
order to generally support color balance for the inexhaustible
variety of imagery in different projects, multiple adaptive
methods are used in the algorithm to fit the different
requirements.

2.1 Adaptive Gamma Dodging Correction Function

Dodging is a traditional photogrammetric technique which is
used in color balancing algorithms. The gamma correction is a
nonlinear function. It can code and decode luminance or
tristimulus values to control the overall brightness, hue,
saturation and the ratios of red to green to blue of an image.
Therefore, it can be efficiently adopted in dodging methodology.
Eq.1 gives the gamma correction used in this algorithm.

Vour(L,j) = a X Vin(i’j)y(i'j) 1)
where v, (i, ) is the output pixel value at coordinate (i, j)
vin (i, ) is the input pixel value at coordinate (i, j)

y(i,) is adaptive gamma function at coordinate (i, j)
« is a constant

a is optional. vy, is usually normalized to 0.0 ~ 1.0. « is a ratio
to convert 0.0 ~ 1.0 to dynamic output range. The adaptive
gamma function is derived from the target and the source local
stats as shown in EQ.2.

o log(TG, )
vy, ) = /10g(M(i,j)) @

where T(i,j) is the Target Color Function to compute the
target color at coordinate (i, ),
M(i,j) is the Local Mean Function to compute the

local mean value at coordinate (i, j).

T(i,j) is the Target Color Function which gives the adaptive
target color at coordinate (i,j). M(i,j) is the Adaptive Local
Mean Function that gives the adaptive local color strength at
coordinate (i, j). Using the adaptive gamma function, each input
pixel value changes adaptively toward the target color.
Alternatively, each input pixel is dodged adaptively toward the
target color based on the adaptive local mean value of this pixel.
EQ.1 and EQ.2 are the kernel formulae of the algorithm. So,
instead of using a constant value in the regular gamma correction,
the adaptive values are used in this algorithm. For multiple bands
image, EQ.1 and EQ.2 are applied to each bands. The local mean
and target color will be described in the following sections.

2.2 Adaptive Local Mean Computation

The Adaptive Local Mean Function M(i,j) performs 1)
Computing the mean value of a small window that (i, j) belongs
to; 2) Applying bilinear interpolation of the mean values to obtain
the final adaptive local mean value at (i, j). The small window is
called Adaptive Dodging Widow (ADW). Each image is evenly
divided to a number of ADWs. The size of ADW is adaptively
derived by standard deviation of an image, see EQ.5 below. The
mean pixel value of each ADW is computed. All mean values of

ADW:s form a so-called Adaptive Local Mean Map (ALMM).
For each band of an image, such an ALMM is generated. Let LM
be the ALMM of a band in an image given in EQ.3, then

(1,)) €Ewpn N

LM(m,n) = 1/cm_n Zizj Vin (L, ) (i,)) & mask;,

®)

where  wy, , is the adaptive dodging window of mth column
and nt" row in the Adaptive Local Mean Map,

LM(m,n) is the local mean value of the adaptive
dodging Window wyy, ,,

mask;y, is the input mask,

v (i,7) is the input pixel value at (i, ) in wy 5,

Cm,n 1S the total pixel number in w,, , and not belongs
to the input excluding area mask.

The excluding area mask mask;,, provides areas that will not be
taken into account when the adaptive local mean is computed,
such like water, snow, etc. The final adaptive local mean value
M(i, j)is obtained by the bilinear interpolation of the ALMM.
This is given in EQ. 4.

SN LM(m,n), LM(m+1,n),\, . .
MG j) = BI (LM(m,n +1),LM(m+1,n+ 1)) 1)) € wmn (4)

where  BI is a bilinear interpolation operator.

For the sign + in EQ.4, + or — to use depends on the position
relation between (i, j) and the center of w,,,. Fig.1 graphically
illustrates an image and its ALMM used in EQ.3 and EQ.4.

Vin (1, 1)

jV

b. Part of
overlapped on the image.

a. Part of an image ALMM

Fig.1 Image and its Local Mean Map.

Fig.1.a gives a part of an image. Fig.1.b gives a part of ALMM
that is overlapped on the image in Fig.1.a. An ADW w,, ,, is
showed in a bolded rectangle. LM (m, n) is the mean value of all
pixels in w,, ,,. Four big dots show the centers of the four ADWs.
M(i, j) is obtained by bilinear interpolation of the four LM values
showed by the four dots in Fig.1.b.

The mean value of an ADW gives the local color strength of a
certain small area. To describe the lightness, hue and saturation,
the local mean value is statistically better than the individual
pixel value. All ALMMs of all bands of an image describes the
lightness, hue and saturation overall an image. The neighbouring
local mean values contribute the adjacent color component. The
bilinear interpolation benefits the color balance between pixels
and images. Therefore, it is greatly conducive to color seamless
mosaicking. Obviously, M(i,j) provides not only the color
strength of an individual pixel but also its surrounding color
strength for gamma correction in EQ.2.
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The size of ADW and the number of ADWs are insensitive in the
homogeneous ground area but is sensitive in the heterogeneous
ground area. The standard deviation of an image can be used to
describe how homogeneous the ground area is. The more
heterogeneous, the smaller size of ADW and the more number of
ADWs should be. Therefore, the size of ADW and the number of
ADWs are adaptively computed based on the image standard
deviation. The size of ADW, p, is given in form of a percentage
of the image size. It is the reciprocal ratio of the image standard
deviation as shown in EQ.5.

P U

Xz (5)
where  p is the percentage of the image size,

p is default percentage of the image size,

o is the total standard deviation of an image,

u is the total mean value of an image,
¢ is a constant ratio of mean to standard deviation.

p is predefined (e.g. 10%) according to a priori estimate of the
remote sensing imagery that a project works for. c is predefined
as 2.844. It is in favour of the ideal case that image mean value
is 128 and standard deviation is 45. Actually, 2.844 = 128 / 45.
The number of ADWs relies on the size of ADW. In order to have
more smooth result, let each ADW overlap its neighbouring
ADWs as shown in Fig.1.b. This is equivalently to have more
number of ADWSs without reducing the ADW size. The image
size is divided by ADW size to get the base number of ADWs in
horizontal and vertical directions. Then the base number is
expanded a percentage to get the final number of ADWSs. The
whole image is then divided by the final number to get all the
ADW centers as shown in Fig.1.b.

The size of the remote sensing imagery is usually big.
Considering the memory space and performance by not losing the
representation, all images are normalized to a small size (e.g.
approximately 256 by 256) by using a relatively big cell size. The
Adaptive Local Mean Map is computed from the normalized
image.

2.3 Sub-algorithm of Adaptive Target Color Surfaces
Function

In this algorithm, each input pixel is adaptively dodged towards
a target color. The target color guides the color balancing result.
The target color at (i, ) is determined by the Adaptive Target
Color Function T(i,j) in EQ.2. It is defined by assuming the
function can be modelled as a surface. Each band of imagery
corresponds to a target color surface. There are five target surface
models: single color, color grid, first order surface, second order
surface, and third order surface. The target surfaces can be
automatically computed form all input images or computed from
an external reference target image. They are described as follows.

®  Single Color — a constant plane

Single Color surface can be considered as a constant plane. A
constant value is used as target color everywhere in all images
for the gamma function in EQ.2. The constant value is the mean
value of all input images for the case if no external reference
image is used. If there is an external image used as the target
image, then the constant value is the mean value of the external
image. EQ.6 and EQ.7 give the formulae to compute the single
color value using and not using external target image,
respectively.

sv= 1Y% ZiZive@) | (L)) &mask, (6)
where  sv is the single color value,
v (i, j) is the pixel value of input image Kk,
c Is the total number of pixels,
masky, is the excluding mask of input image k.

sv= YT ivi DI G@)€Ewn (i) &mask, (7.1)

mask, = U mask;, (7.3)
where  v(i, ) is the pixel value of external target image,

E} is the extent of image k,

w is the union of all input image extents,

c is the total number of pixels

mask;, is the target excluding mask which is the union
of all input image masks.

U is the union operator

For single color target surface, T (i, ) is a constant.

T(@,j) = sv forall (i,j) (8)

®  Color Grid — a set of points as a discrete surface

Color Grid Target Surface can be considered as a set of points as
a discrete surface. To obtain Color Grid Target Surface, the
extent of the mosaic dataset (or the union of all input image
extents) is evenly divided into N windows w, . In case of no
external target image, for each window w, ,,, the mean value of
all parts of all input images inside of the window is computed. In
case of there is an external target image, the mean value of the
part of the external target image inside the window is computed.
All means form the Target Color Grid. EQ.9 and EQ.10 give the
formulae to compute the target color grid using and not using
external target image, respectively.

@D vy 0

6009 = Yeuy BZiZyue) |5 0 @
1 |G Ewey N

60y = Yeu BiZw @ | o (10)

where  G(x,y) is the grid value at (x,y),

(x,y) is the center of the window w,

Cx,y i the total pixel number in w,,,

v (i, j) is the pixel value of input image Kk,
v(i, j) is the pixel value of external target image,
mask;, is the excluding mask of input image k,

mask, is the excluding mask of external image mask.

The final target color used to dodge the pixel v;, (i, ) in adaptive
gamma function y (i, j) of EQ.2 is the bilinear interpretation of
G(x,y).

G(x,y), Gx +£1,y),

G&Jil)ﬁxiLyi+Dw0ﬁew”aD

mﬁ:m(

The sign + in EQ.11 has the same meaning as that in EQ.4
described before.
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®  First Order, Second Order and Third Order Target Color
Polynomial Surface

The Target Color Surface can be modeled as three two-
dimensional polynomial surfaces. Let A be the polynomial
coefficients, which is derived from Color Grid G (x,y) by Least
Square Fitting.

[ao_ a, az] first order
A= [a0, ay, Gz, 3, Q4 a5] second order (12)

[ao, a1, az, as ay as, ae a; ag as| third order

Let B be the coordinate vector.

[1, i, j17 first order
B =411, i j, &% i, 21" second order  (13)
(L6, j, &% i-j, j% i3 @2+, i+j2 j°]" third order

Then the target color T(i, j) at (i, ) is
T(Gi,j))=A"B (14)

The Single Target Color model only uses one color as the
reference for the whole scene. It works well when there are a
small number of images that have only a few different types of
ground objects. If there are too many images or too many types
of ground surfaces, the output color may become blurred.

Since each color in the Color Grid is obtained from a smaller area
of the target, it is better to represent the local ground objects.
Color grid produces a good output for a large number of images
or areas with a diverse number of ground objects.

Using the polynomial target color surface, each target color
T(i, ) is obtained from the two-dimensional polynomial slanted
plane for the first order model; the two-dimensional polynomial
parabolic (or hyperbolic, elliptical) surface for the second order
model; the cubic surface for the third order model. Compared to
the Color Grid surface, the polynomial surface tends to be a
smoother color change. The color balancing results of
polynomial target color surfaces can be scaled between single
color surface and color grid surface. The first order closes to the
single color while the third order closes to the color grid.

2.4 Sub-algorithm of Adaptive Excluding Mask and
Recursive Filtering in Excluding Area

2.4.1 Adaptive Excluding Mask

Usually, the extreme pixel values - very low or very high could
skew the color balance. The extreme pixels may come from areas
of water, cloud, shadow, snow areas and so on. The mask used in
this algorithm is to exclude those pixels from the computation of
local mean and target. The excluding area mask can be from an
external mask or adaptively computed from percentage cut. An
external mask can be obtained from pattern recognition or the
manually extraction just like that used in ArcGIS. Due to the page
limit, it is not described in this paper for extraction of exclusive
area using pattern recognition. For the excluding mask generated
from the percentage cut, a constant lower cut percentage and a
constant upper cut percentage are predefined. All pixel values of
all input images less than lower cut percentage or larger than the
upper cut percentage belong to exclusive area. They are set in the
excluding area mask. Let M be the percentage cut excluding area
mask for all input images, p; and p,, are lower cut percentage
and upper cut percentage respectively, then

M(l ]) — {0 Uin(i’j) < pl or Uin(i!j) > pu (15)
’ 1 other

Each input image k may have a no-data mask (or the transparency

channel) ndmask, . The final excluding mask mask, is the
union of the no-data mask of image k and the excluding area mask
as shown in EQ.16

mask;, =M N ndmask;, (16)

where M is the percentage cut excluding area mask or the
external mask.

2.4.2  Recursive Filtering in Excluding Area

Since the gamma function in EQ.2 always needs a target value
T(i,j) and a local mean value M(i, ), the missed target value
and the local mean value are obtained by a Recursive Filtering
algorithm from the nearest available target values and local mean
values, respectively. The Recursive Filtering is given as
following:

Stepl: For a missed value, find all neighbours having available
values.

Step 2: The missed value is updated to the mean value of the
available neighbour values.

Step 3: Repeat Step 1 and Step 2 till no missed value.

3. EXPERIMENTS, EXAMPLES AND RESULTS

This algorithm is successfully used in ArcGis color correction.
Excellent results have been archiving. In this section, several
examples are given for different cases.

3.1 Example 1: Color Seamless Mosaicing for 186.77 MB
Imagery of Portland in USA

Fig.2 shows a small mosaic dataset contains 35 aerial images of
Portland in USA. The image format is 3 bands 8 bits Tiff. The
image sizes are around 1425 by 1425. The total uncompressed data
size is 186.77 MB. The coordinate system is NAD 1983 State Plane
Oregon North.

Fig.2.1 Original MD with image footprint before color balance.

Fig.2.1 and Fig.2.2 show a mosaic dataset (MD) with / without
image footprint before color balance. Obviously, there are big
differences between images.
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Fig.3.3 Color balance result: 2" Order Polynomial Target Model.

Fig.3.5 Color balance result: Color Grid Target Model.

Fig.3.1 shows the color balancing result using Single Color Model.
The color differences showed in Fig.2 were removed. Since only
one single color was used as target color overall scene, the result
looks fade. Fig.3.2, Fig.3.3 and Fig.3.4 show the color balancing
result using the 1%, 2" and 3™ Order Polynomial Target Model,
respectively. Fig.3.5 shows the color balancing result using Color
Grid Target Model. Since there are enough target color points picked
from the input images, the overall brightness, hue and situation of
Fig.3.5 looks close to the input images showed in Fig.2 but color
seams between images were removed. Since the number of images
in this example is relatively small and the color differences are big
between those images, the result of Fig.3.5 looks not even. The
urban area still keeps the original different colors in general. As
described in the section 2 of this paper, polynomial target models
provide results vary from Single Color Model to Color Grid Model.
This is illustrated by Fig.3.2, Fig.3.3 and Fig.3.4. For the mosaic
dataset in this example, the best result is from the 1%t Order
Polynomial Target Model shown in Fig.3.2.

Fig.4 gives the result that an external target image was used. The
external target image was picked from the World_Imagery at the
same location of the mosaic dataset as showed in Fig.4.1. Fig.4.2
gives the mosaic dataset (before color balance) superimposed on
the external target image. Fig.4.3 shows the color balancing result
of Color Grid Target Model using the external target image. In
order to compare the result with the external image, the color
balanced mosaic dataset was superimposed on the external image
as showed in Fig.4.4. The overall brightness, hue and situation of
the result is so close to the external target image so that it is difficult
to distinguish where is the external target image and where is the
color balanced mosaic dataset.
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Fig.4.2 Original MD superimposed on the external target image.

Fig.4.4 Color balanced mosaic dataset superimposed on the external image.

Though different target color surfaces were used in this example,
there is only one Local Mean Map for one input image for all results.
Each Adaptive Local Mean Map (ALMM) was computed from its
corresponding image in the mosaic dataset using EQ.3. Fig.5 gives
four Local Mean Maps (inside of the red polygon). Each is showed
at the location of their corresponding image.

Fig.5 Four Local Mean Maps examples.

3.2 Example 2: Using of Mask for 12.3 GB Imagery of Kayes
in Mali

The mosaic dataset used in this example contains 7 Spot_6 images
nearby Kayes in Mali. The image format is JP2. Each image has 4
bands. The pixel depth is 16 bits unsigned integer. The image sizes
vary from 9653 x 7104 to 9653 x 50216. The total uncompressed
data size is 12.3 GB. The coordinate system is GCS_WGS_1984.

Fig.6.1 shows the mosaic dataset with footprint of each image. The
footprints were removed in Fig.6.2. Obviously, there are big
differences between those images. Fig.7 gives the color balancing
result using and not using an external excluding area mask. Fig.7.1
shows the color balancing result using Color Grid Model. No
external area mask was used. The red circle in the Fig.7.1 shows the
distinguished color seams remained in the color balanced mosaic
dataset. Fig.7.2 is the external excluding area mask used in this
example. The white color areas are the excluding areas. Fig.7.3
shows the result of Color Grid Model using the excluding area mask
in Fig.7.2. Obviously, the color seams were removed.

Fig.6.10riginal MD with Fig.6.2 Original MD without
footorint. footorint.
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Fig.7.1Result of Color Fig.7.2 Exclusive areas Fig.7.3Result of Color

Grid Model not using in excluding mask. Grid Model using
excluding mask. excluding mask.

3.3 Example 3: Color Seamless Mosaicing for 1.99 TB
Imagery of South Africa

The mosaic dataset used in this example contains 36,006 images of
South Africa. The image format is 3 bands 8 bits Tiff. The total
uncompressed data size is 1.99 TB. All images in this mosaic
dataset were captured from different sensors. The coordinate
system is WGS 1984 Transverse Mercator.

Fig.8.1 gives the mosaic dataset and all footprints. Since the
number of images is so large, it is difficult to clearly see an
individual footprint. A small window in Fig.8.1 was enlarged in
Fig.8.2. It is visible for each footprint in Fig.8.2. It is still invisible
for each image in Fig.8.2. The red small window in Fig.8.2 was
enlarged in Fig.8.3 and the four images are visible. Fig.9 gives the
four images after color balance of the mosaic dataset. The Color
Grid Target Model was used. No external target image was used.
Obviously, the color seams were removed. The brightness, hue and
situation of the original images are retained. The performance is
very fast. It only took about 27 minutes to finish the whole color
balancing procedure. Parallel programming (6 threads was running)
was used for this algorithm. The machine is a desktop with Intel(R)
Xeon(R) CPU E5-1620 v2 @ 3.70GHz.
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Fig.8.1 MD with image
footorints.

Fig.8.2 Footprints of the small
window in Fia.8.1.

Fig.8.3 Four images of the mosaic dataset before color balance.

Fig.9 The four images after color balance of the MD.

3.4 Example 4: Example Contains Water

The mosaic dataset used in this example contains 75 Landsat-7-
ETM images of California, Arizona, Nevada, Utah, Colorado,
Oregon, ldaho and Wyoming in USA. The image format is 4 bands
8 bits Tiff. The total uncompressed data size is 13.43 GB. The
coordinate system is WGS 1984 UTM ZONE 17N.

Fig.10.1 shows the original mosaic dataset with footprint of each
image. The footprints were removed in Fig.10.2. In this example,
an external target image was used. Fig.11.1 gives the external target
image picked from World_Imagery. Fig.11.2 shows the original
mosaic dataset superimposed on the external target image. The
color differences between original images are big so that the color
seams can be easily found. The difference between the mosaic
dataset and the external target image is big too. A red circle in
Fig.11.2 illustrates that some images are at the water area. Those
images exhibit as not expected as bizarre. Fig.12.1 shows the result
of color balance using Color Grid Target Model and external target
image of F11.1. The percentage cut (p;=7.5% and p,,=0.5% in
EQ.15) was used to generate the excluding mask. Obviously,
excellent result was achieved. No color seam can be observed. The
color balanced mosaic dataset is so close to the target so that no
color seam can be seen between the mosaic dataset and the target
image. The images in the same red circle were corrected to the
water color as expected.
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Fig.10.2 Original MD
without image footprint.

Fig.10.1 Original MD
with image footprint.

Fig.11.1 World_Imagery used
as external target image.

Fig.11.2 Original MD
superimposed on the external
target image.

Fig.12.1 Color balance result:
Color Grid Target Model with
external target image.

Fig.12.2 Color balanced mosaic
Dataset superimposed on the
external image.
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