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ABSTRACT: 

 

This paper presents a powerful technology of color balance between images. It does not only work for small number of images but 

also work for unlimited large number of images. Multiple adaptive methods are used. To obtain color seamless mosaic dataset, local 

color is adjusted adaptively towards the target color. Local statistics of the source images are computed based on the so-called adaptive 

dodging window. The adaptive target colors are statistically computed according to multiple target models. The gamma function is 

derived from the adaptive target and the adaptive source local stats. It is applied to the source images to obtain the color balanced 

output images. Five target color surface models are proposed. They are color point (or single color), color grid, 1st, 2nd and 3rd 2D 

polynomials. Least Square Fitting is used to obtain the polynomial target color surfaces. Target color surfaces are automatically 

computed based on all source images or based on an external target image. Some special objects such as water and snow are filtered 

by percentage cut or a given mask. Excellent results are achieved. The performance is extremely fast to support on-the-fly color 

balancing for large number of images (possible of hundreds of thousands images). Detailed algorithm and formulae are described. Rich 

examples including big mosaic datasets (e.g., contains 36,006 images) are given. Excellent results and performance are presented. The 

results show that this technology can be successfully used in various imagery to obtain color seamless mosaic. This algorithm has been 

successfully using in ESRI ArcGis. 

 

 

1. INTRODUCTION 

Big mosaic dataset is becoming more and more important data 

source for research and applications in remote sensing society. It 

is useful but difficult to have color balancing or color correction 

over a huge number of images to make the mosaic dataset color 

seamless. Images of a mosaic dataset may be captured by 

different sensors or different cameras, or captured from different 

seasons and different time. Therefore, a lot of mosaic datasets 

appear with problems of inconsistent color tones, uneven grey, 

lightness, hue, luminance, contrast and cast, etc. To remove those 

inconsistences and obtain color seamless result is a challenge. 

Color balancing is one of the technologies to make color seamless 

mosaic. Color balance can be made inside a single image to 

remove color cast and inconsistency. It can be also applied to 

multiple images to obtain global color consistency and color 

seamless between images. This paper only focuses on color 

balancing between images.  

 

For the color balancing inside a single image, a lot of reference 

papers can be found. The single-scale retinex, multi-scale retinex 

and multi-scale retinex with color restoration achieve 

simultaneous range compression, color consistency and lightness 

rendition (Priyanka, J., etc., 2012). A number of methods 

proposed to improve brightness distribution, color dodge, and 

removing uneven illumination (Chunya, T., 2014, Li, Z., etc., 

Wang, M., 2005, Sherin, J., etc., 2014, Zhang, Z., 2011).  

 

For the color seamless mosaicing, the immediate though may be 

the blending of the overlapped areas in the adjacent images. The 

larger the blending width, the more the color difference can be 

reduced between images. In order to solve the large pixel blend 

width problem such like images are not well co-registered or to 

produce blurring or ghosting in the area of overlap, the 

Differential Superposition Method (Yusuf Siddiqui, 2006) was 

proposed to improve the blending results. Though blending can 

reduce the color difference, it only applies to the overlap area. 

The non-overlapped areas still keep the differences. In addition, 

blending may create wrong pixels in the overlapped area if two 

images were acquired from big different looking angles. For 

color balancing between images, Uyttendaele, M., etc., 2001, 

proposed continuously adjusting exposure across multiple 

images in order to eliminate visible shifts in brightness or hue. 

Xandri, R. etc., 2005, proposed their algorithm of two steps in 

overlapping area: radiometric approximation and seam line based 

single image generation. Wallis transform was used to adjust the 

color difference between images (Sun, M.W., etc., 2008).  

 

Many algorithms for color seamless mosaic may not work for 

some cases. For example 1) The overlapping area is too small to 

provide enough color correlation information if the overlapping 

area is relied; 2) Images in the overlapping areas do not register 

well if correlation is based; 3) There are big differences of 

lightness, hue and cast between images; 4) The scale of images 

is large or the number of images is big; 5) It is difficult to handle 

some ground objects like water and snow.  

 

In this paper, a Multiple Auto-adapting Color Balancing based on 

gamma dodging is proposed. Multiple adapting methods are 

employed to make the algorithm better fitting different 

requirements of color seamless mosaicing. It works well for all 

difficult cases listed in the above paragraph. This algorithm does 

not rely on overlapping area even in case of images being 

separated with a big distance. It also works in case of big 

differences of lightness, hue and cast between images. There is 

no limit of the number of images and scale. In addition, this 

algorithm handles different ground objects very well even in the 

areas of water and snow. Excellent results are achieved. 

Examples are given in the last section of this paper. The 

performance is extremely fast to support on-the-fly color 

balancing for unlimited large number of images. This algorithm 

has been successfully using in ESRI ArcGis (ESRI, 2013).   
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2.    ALGORITHM 

The algorithm consists of 1) Sub-algorithm of Adaptive Gamma 

Dodging Correction Function; 2) Sub-algorithm of Adaptive 

Local Mean Computation; 3) Sub-algorithm of Adaptive Target 

Color Surfaces Function; 4) Sub-algorithm of Adaptive 

Excluding Mask and Recursive Filtering in Excluding Area. In 

order to generally support color balance for the inexhaustible 

variety of imagery in different projects, multiple adaptive 

methods are used in the algorithm to fit the different 

requirements.  

    
2.1 Adaptive Gamma Dodging Correction Function 

Dodging is a traditional photogrammetric technique which is 

used in color balancing algorithms.  The gamma correction is a 

nonlinear function. It can code and decode luminance or 

tristimulus values to control the overall brightness, hue, 

saturation and the ratios of red to green to blue of an image. 

Therefore, it can be efficiently adopted in dodging methodology. 

Eq.1 gives the gamma correction used in this algorithm. 

  

 𝑣𝑜𝑢𝑡(𝑖, 𝑗) =  𝛼 × 𝑣𝑖𝑛(𝑖, 𝑗)𝛾(𝑖,𝑗)   (1) 

 

where  𝑣𝑜𝑢𝑡(𝑖, 𝑗) is the output pixel value at coordinate (𝑖, 𝑗) 

 𝑣𝑖𝑛(𝑖, 𝑗) is the input pixel value at coordinate (𝑖, 𝑗) 

 𝛾(𝑖, 𝑗) is adaptive gamma function at coordinate (𝑖, 𝑗) 

 𝛼 is a constant 

  

𝛼 is optional. 𝑣𝑖𝑛 is usually normalized to 0.0 ~ 1.0. 𝛼 is a ratio 

to convert 0.0 ~  1.0 to dynamic output range. The adaptive 

gamma function is derived from the target and the source local 

stats as shown in EQ.2. 

 

 𝛾(𝑖, 𝑗) =  
log(𝑇(𝑖, 𝑗))

log(𝑀(𝑖, 𝑗))
⁄  (2) 

 

 

where   𝑇(𝑖, 𝑗)  is the Target Color Function to compute the 

target color at coordinate (𝑖, 𝑗), 

 𝑀(𝑖, 𝑗)  is the Local Mean Function to compute the 

local mean value at coordinate (𝑖, 𝑗). 

 

𝑇(𝑖, 𝑗)  is the Target Color Function which gives the adaptive 

target color at coordinate (𝑖, 𝑗) . 𝑀(𝑖, 𝑗)  is the Adaptive Local 

Mean Function that gives the adaptive local color strength at 

coordinate (𝑖, 𝑗). Using the adaptive gamma function, each input 

pixel value changes adaptively toward the target color. 

Alternatively, each input pixel is dodged adaptively toward the 

target color based on the adaptive local mean value of this pixel. 

EQ.1 and EQ.2 are the kernel formulae of the algorithm. So, 

instead of using a constant value in the regular gamma correction, 

the adaptive values are used in this algorithm. For multiple bands 

image, EQ.1 and EQ.2 are applied to each bands. The local mean 

and target color will be described in the following sections. 

 

2.2 Adaptive Local Mean Computation 

The Adaptive Local Mean Function 𝑀(𝑖, 𝑗)  performs 1) 

Computing the mean value of a small window that (𝑖, 𝑗) belongs 

to; 2) Applying bilinear interpolation of the mean values to obtain 

the final adaptive local mean value at (𝑖, 𝑗). The small window is 

called Adaptive Dodging Widow (ADW). Each image is evenly 

divided to a number of ADWs. The size of ADW is adaptively 

derived by standard deviation of an image, see EQ.5 below. The 

mean pixel value of each ADW is computed. All mean values of 

ADWs form a so-called Adaptive Local Mean Map (ALMM). 

For each band of an image, such an ALMM is generated. Let 𝐿𝑀 

be the ALMM of a band in an image given in EQ.3, then  

 

 𝐿𝑀(𝑚, 𝑛) = 1
𝑐𝑚,𝑛

⁄ ∑ ∑ 𝑣𝑖𝑛(𝑖, 𝑗)𝑗𝑖  |
(𝑖, 𝑗) ∈ 𝜔𝑚,𝑛  ∩

(𝑖, 𝑗) ∉ 𝑚𝑎𝑠𝑘𝑖𝑛
  (3) 

 

where  𝜔𝑚,𝑛 is the adaptive dodging window of 𝑚𝑡ℎ column 

and 𝑛𝑡ℎ row in the Adaptive Local Mean Map,  

 𝐿𝑀(𝑚, 𝑛)  is the local mean value of the adaptive 

dodging window 𝜔𝑚,𝑛, 

 𝑚𝑎𝑠𝑘𝑖𝑛 is the input mask, 

 𝑣𝑖𝑛(𝑖, 𝑗) is the input pixel value at (𝑖, 𝑗) in 𝜔𝑚,𝑛, 

 𝑐𝑚,𝑛 is the total pixel number in 𝜔𝑚,𝑛 and not belongs 

to the input excluding area mask.  

 

The excluding area mask 𝑚𝑎𝑠𝑘𝑖𝑛 provides areas that will not be 

taken into account when the adaptive local mean is computed, 

such like water, snow, etc. The final adaptive local mean value 

𝑀(𝑖, 𝑗)is obtained by the bilinear interpolation of the ALMM. 

This is given in EQ. 4. 

 

 𝑀(𝑖, 𝑗) = 𝐵𝐼 (
𝐿𝑀(𝑚, 𝑛),              𝐿𝑀(𝑚 ± 1, 𝑛),

𝐿𝑀(𝑚, 𝑛 ± 1), 𝐿𝑀(𝑚 ± 1, 𝑛 ± 1)
) | (𝑖, 𝑗) ∈ 𝜔𝑚,𝑛     (4) 

 

where  𝐵𝐼 is a bilinear interpolation operator. 

  

For the sign ± in EQ.4, + or – to use depends on the position 

relation between (𝑖, 𝑗) and the center of 𝜔𝑚,𝑛. Fig.1 graphically 

illustrates an image and its ALMM used in EQ.3 and EQ.4.     

 

 
Fig.1 Image and its Local Mean Map. 

 

Fig.1.a gives a part of an image. Fig.1.b gives a part of ALMM 

that is overlapped on the image in Fig.1.a. An ADW 𝜔𝑚,𝑛  is 

showed in a bolded rectangle. 𝐿𝑀(𝑚, 𝑛) is the mean value of all 

pixels in 𝜔𝑚,𝑛. Four big dots show the centers of the four ADWs. 

𝑀(𝑖, 𝑗) is obtained by bilinear interpolation of the four 𝐿𝑀 values 

showed by the four dots in Fig.1.b.  

 

The mean value of an ADW gives the local color strength of a 

certain small area. To describe the lightness, hue and saturation, 

the local mean value is statistically better than the individual 

pixel value. All ALMMs of all bands of an image describes the 

lightness, hue and saturation overall an image. The neighbouring 

local mean values contribute the adjacent color component. The 

bilinear interpolation benefits the color balance between pixels 

and images. Therefore, it is greatly conducive to color seamless 

mosaicking. Obviously, 𝑀(𝑖, 𝑗)  provides not only the color 

strength of an individual pixel but also its surrounding color 

strength for gamma correction in EQ.2. 

 

𝜔𝑚,𝑛 

𝑣𝑖𝑛(𝑖, 𝑗) 

m 
 

j n 

i 

a. Part of an image b. Part of ALMM 

overlapped on the image. 

ADW center 
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The size of ADW and the number of ADWs are insensitive in the 

homogeneous ground area but is sensitive in the heterogeneous 

ground area. The standard deviation of an image can be used to 

describe how homogeneous the ground area is. The more 

heterogeneous, the smaller size of ADW and the more number of 

ADWs should be. Therefore, the size of ADW and the number of 

ADWs are adaptively computed based on the image standard 

deviation. The size of ADW, 𝜌, is given in form of a percentage 

of the image size. It is the reciprocal ratio of the image standard 

deviation as shown in EQ.5.  

 

 𝜌 =  
𝑝

𝜎
 ×  

𝜇

𝑐
     (5) 

 

where  𝜌 is the percentage of the image size, 

 𝑝 is default percentage of the image size, 

 𝜎 is the total standard deviation of an image, 

 𝜇 is the total mean value of an image, 

 𝑐 is a constant ratio of mean to standard deviation. 

 

 𝑝 is predefined (e.g. 10%) according to a priori estimate of the 

remote sensing imagery that a project works for. 𝑐 is predefined 

as 2.844. It is in favour of the ideal case that image mean value 

is 128 and standard deviation is 45. Actually, 2.844 = 128 / 45. 

The number of ADWs relies on the size of ADW. In order to have 

more smooth result, let each ADW overlap its neighbouring 

ADWs as shown in Fig.1.b. This is equivalently to have more 

number of ADWs without reducing the ADW size. The image 

size is divided by ADW size to get the base number of ADWs in 

horizontal and vertical directions. Then the base number is 

expanded a percentage to get the final number of ADWs. The 

whole image is then divided by the final number to get all the 

ADW centers as shown in Fig.1.b.   

 

The size of the remote sensing imagery is usually big. 

Considering the memory space and performance by not losing the 

representation, all images are normalized to a small size (e.g. 

approximately 256 by 256) by using a relatively big cell size. The 

Adaptive Local Mean Map is computed from the normalized 

image.  

 

2.3 Sub-algorithm of Adaptive Target Color Surfaces 

Function 

In this algorithm, each input pixel is adaptively dodged towards 

a target color. The target color guides the color balancing result. 

The target color at (𝑖, 𝑗) is determined by the Adaptive Target 

Color Function 𝑇(𝑖, 𝑗)  in EQ.2. It is defined by assuming the 

function can be modelled as a surface. Each band of imagery 

corresponds to a target color surface. There are five target surface 

models: single color, color grid, first order surface, second order 

surface, and third order surface. The target surfaces can be 

automatically computed form all input images or computed from 

an external reference target image. They are described as follows. 

 

  Single Color – a constant plane 
 

Single Color surface can be considered as a constant plane. A 

constant value is used as target color everywhere in all images 

for the gamma function in EQ.2. The constant value is the mean 

value of all input images for the case if no external reference 

image is used. If there is an external image used as the target 

image, then the constant value is the mean value of the external 

image. EQ.6 and EQ.7 give the formulae to compute the single 

color value using and not using external target image, 

respectively.    

 

 𝑠𝑣 =  1
𝑐⁄ ∑ ∑ ∑ 𝑣𝑘(𝑖, 𝑗) | (𝑖, 𝑗)  ∉ 𝑚𝑎𝑠𝑘𝑘𝑗𝑖𝑘   (6) 

 

where  𝑠𝑣 is the single color value, 

 𝑣𝑘(𝑖, 𝑗) is the pixel value of input image k, 

 𝑐 is the total number of pixels, 
 𝑚𝑎𝑠𝑘𝑘 is the excluding mask of input image k. 
 

 𝑠𝑣 =  1
𝑐⁄ ∑ ∑ 𝑣𝑗𝑖 (𝑖, 𝑗) | (𝑖, 𝑗) ∈ 𝜔 ∩  (𝑖, 𝑗)  ∉ 𝑚𝑎𝑠𝑘𝑡  (7.1) 

 

 𝜔 = ⋃ 𝐸𝑘 (7.2) 

 

 𝑚𝑎𝑠𝑘𝑡 = ⋃ 𝑚𝑎𝑠𝑘𝑘 (7.3) 

 

where  𝑣(𝑖, 𝑗) is the pixel value of external target image, 

 𝐸𝑘 is the extent of image k, 

 𝜔 is the union of all input image extents, 

 𝑐 is the total number of pixels 

 𝑚𝑎𝑠𝑘𝑡 is the target excluding mask which is the union 

of all input image masks.  

 ∪ is the union operator 

 

For single color target surface, 𝑇(𝑖, 𝑗) is a constant.  

 

  𝑇(𝑖, 𝑗) =  𝑠𝑣                      𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗)  (8) 

 

  Color Grid – a set of points as a discrete surface  
 

Color Grid Target Surface can be considered as a set of points as 

a discrete surface. To obtain Color Grid Target Surface, the 

extent of the mosaic dataset (or the union of all input image 

extents) is evenly divided into N windows 𝜔𝑥,𝑦. In case of no 

external target image, for each window 𝜔𝑥,𝑦, the mean value of 

all parts of all input images inside of the window is computed. In 

case of there is an external target image, the mean value of the 

part of the external target image inside the window is computed. 

All means form the Target Color Grid.  EQ.9 and EQ.10 give the 

formulae to compute the target color grid using and not using 

external target image, respectively.  

 

 𝐺(𝑥, 𝑦) =  1
𝑐𝑥,𝑦

⁄ ∑ ∑ ∑ 𝑣𝑘(𝑖, 𝑗) |
(𝑖, 𝑗) ∈ 𝜔𝑥,𝑦  ∩ 

(𝑖, 𝑗) ∉ 𝑚𝑎𝑠𝑘𝑘
 𝑗𝑖𝑘   (9) 

 

 𝐺(𝑥, 𝑦) =  1
𝑐𝑥,𝑦

⁄ ∑ ∑ 𝑣𝑗𝑖 (𝑖, 𝑗) |
(𝑖, 𝑗) ∈ 𝜔𝑥,𝑦  ∩ 

(𝑖, 𝑗) ∉ 𝑚𝑎𝑠𝑘𝑡
 (10) 

 

where  𝐺(𝑥, 𝑦) is the grid value at (𝑥, 𝑦), 

 (𝑥, 𝑦) is the center of the window 𝜔𝑥,𝑦, 

 𝑐𝑥,𝑦 is the total pixel number in 𝜔𝑥,𝑦, 

 𝑣𝑘(𝑖, 𝑗) is the pixel value of input image k, 

 𝑣(𝑖, 𝑗) is the pixel value of external target image, 

  𝑚𝑎𝑠𝑘𝑘 is the excluding mask of input image k, 

  𝑚𝑎𝑠𝑘𝑡 is the excluding mask of external image mask. 

 

The final target color used to dodge the pixel 𝑣𝑖𝑛(𝑖, 𝑗) in adaptive 

gamma function 𝛾(𝑖, 𝑗) of EQ.2 is the bilinear interpretation of 

𝐺(𝑥, 𝑦).  

 

 𝑇(𝑖, 𝑗) = 𝐵𝐼 (
𝐺(𝑥, 𝑦),              𝐺(𝑥 ± 1, 𝑦),

𝐺(𝑥, 𝑦 ± 1), 𝐺(𝑥 ± 1, 𝑦 ± +1)
) | (𝑖, 𝑗) ∈ 𝜔𝑥,𝑦 (11) 

 

The sign ± in EQ.11 has the same meaning as that in EQ.4 

described before.  
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  First Order, Second Order and Third Order Target Color 

Polynomial Surface 
 

The Target Color Surface can be modeled as three two-

dimensional polynomial surfaces. Let 𝐴  be the polynomial 

coefficients, which is derived from Color Grid 𝐺(𝑥, 𝑦) by Least 

Square Fitting. 

 

𝐴 = {

[𝑎0, 𝑎1, 𝑎2]                                                  𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟

[𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5]                          𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟

[𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9]    𝑡ℎ𝑖𝑟𝑑 𝑜𝑟𝑑𝑒𝑟

 (12) 

 
Let 𝐵 be the coordinate vector. 

 

𝐵 = {

[1, 𝑖, 𝑗]𝑇                                                                𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟

[1, 𝑖, 𝑗, 𝑖2, 𝑖 ∙ 𝑗, 𝑗2]𝑇                                    𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟

[1, 𝑖, 𝑗, 𝑖2, 𝑖 ∙ 𝑗, 𝑗2, 𝑖3,   𝑖2 ∙ 𝑗,   𝑖 ∙ 𝑗2, 𝑗3]𝑇  𝑡ℎ𝑖𝑟𝑑 𝑜𝑟𝑑𝑒𝑟

 (13) 

Then the target color 𝑇(𝑖, 𝑗) at (𝑖, 𝑗) is 

 

 𝑇(𝑖, 𝑗) = 𝐴 ∙ 𝐵     (14) 

 

The Single Target Color model only uses one color as the 

reference for the whole scene. It works well when there are a 

small number of images that have only a few different types of 

ground objects. If there are too many images or too many types 

of ground surfaces, the output color may become blurred. 

 

Since each color in the Color Grid is obtained from a smaller area 

of the target, it is better to represent the local ground objects. 

Color grid produces a good output for a large number of images 

or areas with a diverse number of ground objects. 

 

Using the polynomial target color surface, each target color 

𝑇(𝑖, 𝑗) is obtained from the two-dimensional polynomial slanted 

plane for the first order model; the two-dimensional polynomial 

parabolic (or hyperbolic, elliptical) surface for the second order 

model; the cubic surface for the third order model. Compared to 

the Color Grid surface, the polynomial surface tends to be a 

smoother color change. The color balancing results of 

polynomial target color surfaces can be scaled between single 

color surface and color grid surface. The first order closes to the 

single color while the third order closes to the color grid.  

 

2.4 Sub-algorithm of Adaptive Excluding Mask and 

Recursive Filtering in Excluding Area 

2.4.1 Adaptive Excluding Mask 
 

Usually, the extreme pixel values - very low or very high could 

skew the color balance. The extreme pixels may come from areas 

of water, cloud, shadow, snow areas and so on. The mask used in 

this algorithm is to exclude those pixels from the computation of 

local mean and target. The excluding area mask can be from an 

external mask or adaptively computed from percentage cut. An 

external mask can be obtained from pattern recognition or the 

manually extraction just like that used in ArcGIS. Due to the page 

limit, it is not described in this paper for extraction of exclusive 

area using pattern recognition. For the excluding mask generated 

from the percentage cut, a constant lower cut percentage and a 

constant upper cut percentage are predefined. All pixel values of 

all input images less than lower cut percentage or larger than the 

upper cut percentage belong to exclusive area. They are set in the 

excluding area mask. Let M be the percentage cut excluding area 

mask for all input images, 𝑝𝑙   and 𝑝𝑢 are lower cut percentage 

and upper cut percentage respectively, then 

 

 𝑀(𝑖, 𝑗) = {
0     𝑣𝑖𝑛(𝑖, 𝑗) <  𝑝

𝑙
 𝑜𝑟 𝑣𝑖𝑛(𝑖, 𝑗) > 𝑝

𝑢

1                          𝑜𝑡ℎ𝑒𝑟                         
  (15) 

 

Each input image k may have a no-data mask (or the transparency 

channel) 𝑛𝑑𝑚𝑎𝑠𝑘𝑘 . The final excluding mask 𝑚𝑎𝑠𝑘𝑘  is the 

union of the no-data mask of image k and the excluding area mask 

as shown in EQ.16 

 

 𝑚𝑎𝑠𝑘𝑘 = M ∩ 𝑛𝑑𝑚𝑎𝑠𝑘𝑘   (16) 

 

where  M is the percentage cut excluding area mask or the 

external mask. 

 

2.4.2 Recursive Filtering in Excluding Area 

 

Since the gamma function in EQ.2 always needs a target value 

𝑇(𝑖, 𝑗) and a local mean value 𝑀(𝑖, 𝑗), the missed target value 

and the local mean value are obtained by a Recursive Filtering 

algorithm from the nearest available target values and local mean 

values, respectively.  The Recursive Filtering is given as 

following: 

 

Step1: For a missed value, find all neighbours having available 

values. 

Step 2: The missed value is updated to the mean value of the 

available neighbour values. 

Step 3: Repeat Step 1 and Step 2 till no missed value. 

 

3. EXPERIMENTS, EXAMPLES AND RESULTS 

This algorithm is successfully used in ArcGis color correction. 

Excellent results have been archiving. In this section, several 

examples are given for different cases.  

 

3.1 Example 1: Color Seamless Mosaicing for 186.77 MB 

Imagery of Portland in USA 

Fig.2 shows a small mosaic dataset contains 35 aerial images of 

Portland in USA. The image format is 3 bands 8 bits Tiff. The 

image sizes are around 1425 by 1425. The total uncompressed data 

size is 186.77 MB. The coordinate system is NAD 1983 State Plane 

Oregon North. 

 

 
Fig.2.1 and Fig.2.2 show a mosaic dataset (MD) with / without 

image footprint before color balance. Obviously, there are big 

differences between images. 

 

Fig.2.1 Original MD with image footprint before color balance. 
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Fig.3.1 shows the color balancing result using Single Color Model. 

The color differences showed in Fig.2 were removed. Since only 

one single color was used as target color overall scene, the result 

looks fade. Fig.3.2, Fig.3.3 and Fig.3.4 show the color balancing 

result using the 1st, 2nd and 3rd Order Polynomial Target Model, 

respectively. Fig.3.5 shows the color balancing result using Color 

Grid Target Model. Since there are enough target color points picked 

from the input images, the overall brightness, hue and situation of 

Fig.3.5 looks close to the input images showed in Fig.2 but color 

seams between images were removed. Since the number of images 

in this example is relatively small and the color differences are big 

between those images, the result of Fig.3.5 looks not even. The 

urban area still keeps the original different colors in general. As 

described in the section 2 of this paper, polynomial target models 

provide results vary from Single Color Model to Color Grid Model. 

This is illustrated by Fig.3.2, Fig.3.3 and Fig.3.4. For the mosaic 

dataset in this example, the best result is from the 1st Order 

Polynomial Target Model shown in Fig.3.2.  

 

Fig.4 gives the result that an external target image was used. The 

external target image was picked from the World_Imagery at the 

same location of the mosaic dataset as showed in Fig.4.1. Fig.4.2 

gives the mosaic dataset (before color balance) superimposed on 

the external target image. Fig.4.3 shows the color balancing result 

of Color Grid Target Model using the external target image. In 

order to compare the result with the external image, the color 

balanced mosaic dataset was superimposed on the external image 

as showed in Fig.4.4. The overall brightness, hue and situation of 

the result is so close to the external target image so that it is difficult 

to distinguish where is the external target image and where is the 

color balanced mosaic dataset. 

 

Fig.2.2 Original MD without image footprint before color balance. 

Fig.3.1 Color balance result: Single Color Target Model. 

Fig.3.2 Color balance result: 1st Order Polynomial Target Model. 

Fig.3.3 Color balance result: 2nd Order Polynomial Target Model. 

Fig.3.4 Color balance result: 3rd Order Polynomial Target Model. 

Fig.3.5 Color balance result: Color Grid Target Model. 
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Though different target color surfaces were used in this example, 

there is only one Local Mean Map for one input image for all results. 

Each Adaptive Local Mean Map (ALMM) was computed from its 

corresponding image in the mosaic dataset using EQ.3. Fig.5 gives 

four Local Mean Maps (inside of the red polygon). Each is showed 

at the location of their corresponding image.  

 

 
 

3.2 Example 2: Using of Mask for 12.3 GB Imagery of Kayes 

in Mali 

The mosaic dataset used in this example contains 7 Spot_6 images 

nearby Kayes in Mali. The image format is JP2. Each image has 4 

bands. The pixel depth is 16 bits unsigned integer. The image sizes 

vary from 9653 x 7104 to 9653 x 50216. The total uncompressed 

data size is 12.3 GB. The coordinate system is GCS_WGS_1984. 

 

Fig.6.1 shows the mosaic dataset with footprint of each image. The 

footprints were removed in Fig.6.2. Obviously, there are big 

differences between those images. Fig.7 gives the color balancing 

result using and not using an external excluding area mask. Fig.7.1 

shows the color balancing result using Color Grid Model. No 

external area mask was used. The red circle in the Fig.7.1 shows the 

distinguished color seams remained in the color balanced mosaic 

dataset. Fig.7.2 is the external excluding area mask used in this 

example. The white color areas are the excluding areas. Fig.7.3 

shows the result of Color Grid Model using the excluding area mask 

in Fig.7.2. Obviously, the color seams were removed.  

 

 

Fig.4.1 World_Imagery used as external target image. 

Fig.4.2 Original MD superimposed on the external target image. 

Fig.4.3 Color balance result: Color Grid Model using external target image. 

Fig.4.4 Color balanced mosaic dataset superimposed on the external image. 

Fig.5 Four Local Mean Maps examples. 

Fig.6.1Original MD with                     Fig.6.2 Original MD without 

footprint.                                              footprint. 
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3.3 Example 3: Color Seamless Mosaicing for 1.99 TB 

Imagery of South Africa 

The mosaic dataset used in this example contains 36,006 images of 

South Africa. The image format is 3 bands 8 bits Tiff. The total 

uncompressed data size is 1.99 TB. All images in this mosaic 

dataset were captured from different sensors. The coordinate 

system is WGS 1984 Transverse Mercator. 

 

Fig.8.1 gives the mosaic dataset and all footprints. Since the 

number of images is so large, it is difficult to clearly see an 

individual footprint. A small window in Fig.8.1 was enlarged in 

Fig.8.2. It is visible for each footprint in Fig.8.2. It is still invisible 

for each image in Fig.8.2.  The red small window in Fig.8.2 was 

enlarged in Fig.8.3 and the four images are visible. Fig.9 gives the 

four images after color balance of the mosaic dataset. The Color 

Grid Target Model was used. No external target image was used. 

Obviously, the color seams were removed.  The brightness, hue and 

situation of the original images are retained. The performance is 

very fast. It only took about 27 minutes to finish the whole color 

balancing procedure. Parallel programming (6 threads was running) 

was used for this algorithm. The machine is a desktop with Intel(R) 

Xeon(R) CPU E5-1620 v2 @ 3.70GHz.  

 

 
 

 
 

 
 

3.4 Example 4: Example Contains Water 

The mosaic dataset used in this example contains 75 Landsat-7-

ETM images of California, Arizona, Nevada, Utah, Colorado, 

Oregon, Idaho and Wyoming in USA. The image format is 4 bands 

8 bits Tiff. The total uncompressed data size is 13.43 GB. The 

coordinate system is WGS 1984 UTM ZONE 17N. 

 

Fig.10.1 shows the original mosaic dataset with footprint of each 

image. The footprints were removed in Fig.10.2. In this example, 

an external target image was used. Fig.11.1 gives the external target 

image picked from World_Imagery. Fig.11.2 shows the original 

mosaic dataset superimposed on the external target image. The 

color differences between original images are big so that the color 

seams can be easily found. The difference between the mosaic 

dataset and the external target image is big too. A red circle in 

Fig.11.2 illustrates that some images are at the water area. Those 

images exhibit as not expected as bizarre. Fig.12.1 shows the result 

of color balance using Color Grid Target Model and external target 

image of F11.1. The percentage cut (𝑝𝑙 =7.5% and 𝑝𝑢 =0.5% in 

EQ.15) was used to generate the excluding mask. Obviously, 

excellent result was achieved. No color seam can be observed. The 

color balanced mosaic dataset is so close to the target so that no 

color seam can be seen between the mosaic dataset and the target 

image. The images in the same red circle were corrected to the 

water color as expected. 

 

Fig.7.1Result of Color   Fig.7.2 Exclusive areas   Fig.7.3Result of Color 

Grid Model not using    in excluding mask.         Grid Model using 

excluding mask.                                                    excluding mask. 

Fig.8.1 MD with image                     Fig.8.2 Footprints of the small 
footprints.                                           window in Fig.8.1. 

Fig.8.3 Four images of the mosaic dataset before color balance. 

Fig.9 The four images after color balance of the MD. 
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