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ABSTRACT: 
 
Airborne LiDAR technology has proven to be the most powerful tools to obtain high-density, high-accuracy and significantly 
detailed surface information of terrain and surface objects within a short time, and from which the Digital Elevation Model of high 
quality can be extracted. Point cloud data generated from the pre-processed data should be classified by segmentation algorithms, so 
as to differ the terrain points from disorganized points, then followed by a procedure of interpolating the selected points to turn 
points into DEM data. The whole procedure takes a long time and huge computing resource due to high-density, that is concentrated 
on by a number of researches. Hadoop is a distributed system infrastructure developed by the Apache Foundation, which contains a 
highly fault-tolerant distributed file system (HDFS) with high transmission rate and a parallel programming model (Map/Reduce). 
Such a framework is appropriate for DEM generation algorithms to improve efficiency. Point cloud data of Dongting Lake acquired 
by Riegl LMS-Q680i laser scanner was utilized as the original data to generate DEM by a Hadoop-based algorithms implemented in 
Linux, then followed by another traditional procedure programmed by C++ as the comparative experiment. Then the algorithm’s 
efficiency, coding complexity, and performance-cost ratio were discussed for the comparison. The results demonstrate that the 
algorithm's speed depends on size of point set and density of DEM grid, and the non-Hadoop implementation can achieve a high 
performance when memory is big enough, but the multiple Hadoop implementation can achieve a higher performance-cost ratio, 
while point set is of vast quantities on the other hand. 
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1. INTRODUCTION 

Recent advances in geospatial field have made it possible to get 
a wide range of sample points of terrain. Light detection and 
ranging (LiDAR) technology, which emerged in 1960s, has 
proven to be the most powerful tool to obtain high-density, 
high-accuracy and significantly detailed surface information of 
terrain and surface objects within a short time, and from which 
the Digital Elevation Model of high quality can be extracted. 
However, a number of issues about LiDAR still need to be 
solved, such as disorder and massive size of point cloud data. 
 
With the rapid development of high-performance computers, 
larger LiDAR data can be processed within a short period of 
time. However, it costs too much to pay for high-performance 
computers, which is a big obstacle for applying the algorithm 
for mass production. Cloud computing technology can put all 
kinds of resources needed for computing together in a resource 
pool, then reallocate them for explicit utilization. In that way, 
personal computer can be combined into a big computing 
resource pool to support the production of DEM. Since its 
publicity, popularity, high efficiency, flexibility and 
convenience, Hadoop is used as our computing platform for 
generating DEM from point cloud data. 
 
In this research, we focus on a method of generating DEM from 
LiDAR data based on Hadoop. Point cloud data acquired by 
Riegl LMS-Q680i in Dongting Lake is utilized as the original 
data. Another implementation by non-Hadoop algorithm is also 
carried out as comparative experiment. Then the algorithm’s 
efficiency, coding complexity, and performance-cost ratio are 
discussed. 

 
2. RELATED WORKS 

2.1 Research on DEM Generation from LiDAR 

The Light Detection and Ranging (LiDAR) technology is a 
remote sensing technology that measures distance by 
illuminating a target with a laser and analyzing the reflected 
light. 
 
LiDAR has been researched since the 1960s. Kraus and Pfeifer 
are forerunners who demonstrated the suitability of using 
airborne LiDAR for generating DEM (Kraus, 1997), then it 
continues to be an active area of research and development 
(Flood, 2001). Since data are different under various terrain 
conditions, various studies are documented by many authors. In 
2006, a situation under forest area was discussed by Gonçalves-
Seco and Miranda (Gonçalves-Seco, 2006). A robust algorithm 
was applied in generating DEM also in a forest area in 2007 
(Kobler, 2007). Kraus and Pfeifer demonstrated that accuracy 
of DEM derived from LiDAR data was equal to that derived 
from photogrammetry (Kraus, 1998), and the method of LiDAR 
could overcome the limitations of photogrammetry in forest 
areas that the photos couldn't eliminate the influence of canopy. 
There have been a lot of researchers discussing the methods of 
extracting DEM from LiDAR data acquired in various regions 
in recent years. 
 
Two steps are commonly performed for DEM's generating from 
LiDAR data-filtering terrain points and modeling. First, terrain 
points must be separated from non-terrain points, which is 
apparently difficult to do manually, therefore several automatic 
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filter methods have been developed over the past years, among 
which interpolation-based proposed by Kraus and Pfeifer 
(Kraus, 1998), slope based proposed by Vosselman (Vosselman, 
2000), and morphological proposed by Kilian (Kilian, 1996) are 
most popular. Second, points derived from original point cloud 
data should be represented in forms of DEM, which are 
commonly three kinds of models: the regular grid, the triangular 
irregular network (TIN), and the contour line model. The 
selection of models is determined by orographic condition. 
Then a procedure called interpolation can be performed to 
predict the values of non-sampled locations based on the 
measured values at points under the assumptions that the terrain 
surface is continuous and smooth. Deterministic methods such 
as inverse distance weighted (IDW) and spline-based methods 
that fit a minimum-curvature surface through the sample points, 
and geo-statistical methods such as Kriging that takes into 
account both the distance and the degree of autocorrelation are 
available for constructing a DEM from sample elevation points 
(Liu, 2008). 
 
2.2 Hadoop 

Hadoop is an open-source software framework written in Java 
for distributed storage and distributed processing of very large 
data sets on computer clusters built from commodity hardware, 
which is supported by Apache. It consists of a highly fault-
tolerant and distributed file system and a programming model 
for distributed computing. 
 
2.2.1 Hadoop Distributed File System: Hadoop Distribute 
File System (HDFS) is a high performance distributed file 
system for web-scale applications such as, storing log data, 
Map/Reduce data etc., which is designed for running on 
commodity hardware, and providing high-throughput data 
access. HDFS is an open-source implementation of Google File 
System (GFS), which was first proposed by Ghemawat, Gobioff 
and Shun-Tak Leung in 2003 (Ghemawat, 2003). 
 
In physical hierarchy, HDFS is a master-slave architecture, an 
HDFS cluster consists of a NameNode, which is a master server 
in charge of managing file namespace and adjusting clients’ file 
access, and several DataNodes, which are responsible for 
storing data blocks. Usually a NameNode corresponds to a 
single computer, while DataNodes correspond to several 
computers. Files are first segmented into blocks, then replicated 
in many copies, which are separately stored in different 
DataNodes. The allocation records are stored in NameNode as 
metadata. If one DataNode shut down, the NameNode can read 
data from another DataNode that stores the same block. In this 
way, large file (usually means the size of a single file exceed 
1GB, or even 1TB) can be processed efficiently and steadily. 
The architecture is shown in Figure 1. 
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Figure 1. The HDFS Architecture 

 
2.2.2 Map/Reduce: Map/Reduce is a programming model 
and an associated implementation for processing and generating 
large data sets, proposed in 2004 by Jeffrey Dean and Sanjay 
Ghemawat, who are hired by Google (Dean, 2004). There are 
several implementations available for this programming model 
such as Apache Hadoop Map/Reduce and Disco from Nokia 
Research Center. This programming model has become popular 
over the past few years and adopted by a growing number of IT 
companies, such Facebook and Yahoo. 
 
In Map/Reduce framework, a module called JobTracker and 
other modules called TaskTracker are respectively running on 
NameNode and DataNode, those are mentioned in HDFS. The 
JobTracker is responsible for decomposing a job into tasks and 
delivering those tasks to unoccupied TaskTrackers. Meanwhile, 
the TaskTrackers are in charge of implementing tasks, when 
TaskTracker fails or times out, that part of job is rescheduled. 
 
2.3 Hadoop on Geospatial Field 

In recent years, cloud computing has been a hot research spot 
due to exponential increasing of amount of data on the Internet. 
A lot of excellent cloud computing platforms have been 
developed by Internet companies, such as Amazon's EC2, 
Google's cloud computing platform, Microsoft's Windows 
Azure and IBM's Blue Cloud. Since the functionality and 
convenience of cloud computing, it can be used to support 
geospatial applications, including modeling, storage, processing 
and so on.  
 
As an open-source software framework of cloud computing, 
Hadoop has been applied in geospatial research area by many 
researchers Most of them process remote sensing images with 
Hadoop, such as, feature extraction from image and numerous 
remote sensing images management (Golpayegani, 2009; Lv, 
2010; &Almeer, 2012). Some of them use Hadoop in particular 
issues, for instance, constructing gazetteers (Gao, 2014). With 
the above research achievement, some of them construct 
distribute GIS platforms by Hadoop (Liu, 2009; Chen, 2010; 
Aji, 2013).There are a few researches proposed for processing 
LiDAR data with cloud computing, Hegeman presented a new 
processing techniques for LiDAR point clouds intelligently 
filter and triangulate a data set to produce an accurate digital 
elevation model on Amazon EC2 (Hegeman, 2014). 
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3. ALGORITHM OVERVIEW 

3.1 Study area and data description 

 
Figure 2(a). Study Area – Gong Shuangcha 

Point Cloud Data

DOM  
Figure 2(b). Point Cloud Data in study area 

 
A flood diversion area called Gong Shuangcha in Dongting 
Lake was included within this study, as shown in Figure 2. 
Dongting Lake was a shallow lake in northeastern Hu’nan 
province, China, which was also the second largest freshwater 
lake in China. Since it was a flood basin of the Yangtze River, 
the lake’s water area depended on the season. As a result, most 
areas of Dongting Lake were used as cultivated fields, and most 
houses were one floor.  
 
In this research, point cloud data obtained from Riegl LMS-
Q680i laser scanner was utilized, which was made up of 394 
files with extension of “.coo”. Each file represented a small 
segment, which was named by two-dimensional location under 
the Chinese Xi’an 80 coordinate system, for instance, 
“dtm_03363219m100.coo”. After the convert and combine 
procedure, statistics for point cloud data was made. The total 
count of point clouds was 311637474, plane accuracy was 0.1 
meter and vertical accuracy was 0.01 meter, the size of point 
cloud data file was 5.80GB in LAS format. Digital orthophoto 
map of same area was used as an auxiliary data. The point 
cloud data and DOM were shown in Figure 2(b). 
 

3.2 Procedure of Generating DEM from Point Cloud Data 

First, the original .coo file should be convert and combined as a 
single standard file. In this research, we converted all point 
cloud data to LAS file format, which was a public file format 
for the interchange of three-dimensional point cloud data 
between data users. The LAS 1.4 Specification was approved 
by the ASPRS Board on November 14, 2011 and was the most 
recent approved version of the document. 
 
Second, terrain point should be separated from non-terrain point 
(buildings, trees, and other on-ground objects). As mentioned in 
2.3, the linear prediction method was adopted since the study 
area. There wasn’t a universal method for all kinds of regions, 
hence the appropriate algorithm depended on the geographic 
conditions of Dongting Lake. The linear prediction method was 
chosen since there were few steep slopes and large variability in 
our study sites. 
 
The last but important, terrain point clouds should be turned to 
DEM. Points were collected at 10s to 100s of kilohertz by laser 
scanners, they sampled elevation at a spacing of significantly 
less than a meter, therefore the nature of LiDAR point cloud 
data also led themselves to a local gridding approach (Krishnan, 
2010). Since most elevations of points were between 20 meters 
and 50 meters, and there were a few steep slopes in Dongting 
Lake, the grid model with a matrix structure was the best 
storage structure of DEM in computer. Then the interpolation 
step determined the terrain height value of a certain point by 
using the known heights of collected points. In this research, the 
Inverse distance weighted (IDW) method was used. The 
procedure is shown in Figure 3. 

Start

.las file

.coo 
files

.coo 
files

.coo 
files

...

Convert and 
combine

Linear 
prediction

interpolate

DEM

End

Las file with only 
terrain points

Procedure of Algorithm

 
Figure 3. Procedure of Algorithm 

 
3.3 Hadoop Approach 

In this research, step1 and step2 were the same as non-Hadoop 
approach, while step3 was implemented in Map/Reduce. Step 
map and step reduce were included in the Hadoop Approach. 
Figure 4 shows the Hadoop Approach. 
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Figure 4. The Hadoop Approach 

 
3.3.1 Step Map: The total count of points was NP, according 
to the resolution and the location of final digital elevation 
model, the xy-coordinates of grid centers were determined, and 
M×N represented the size of DEM. Each original point was 
represented as an input key/value pair, the input key is the {X, Y} 
tuple, the input value was {Z}, then the step map generated the 
intermediate key/value pair <{Xi, Yi}, {Zi, D}>, where {Xi, Yi} 
represented the xy-coordinates of the nearest grid center from 
the {X, Y, Z} point, D represented the plane distance between {X, 
Y} and {Xi, Yi}. After this phase, NP key/value pairs were turned 
into M×N key/value pairs. 
 
3.3.2 Step Reduce: After the step map, the output pairs 
should be generated from the intermediate key/value pair. For 
each {Xi, Yi}, the total, average value, mean value, minimum 
value, maximum value and counts of D were calculated, 
followed by the calculation of Z value. Then all intermediate 
key/value pairs in different DataNodes were merged. The 
ultimate key/value pair was {Xu, Yu, Zu}, which represented the 
grid center’s three-dimensional coordinate. 
 

4. IMPLEMENTATION AND COMPARISON 

4.1 Algorithm Implementation 

In order to compare the Hadoop algorithm and non-Hadoop 
algorithm, a cloud computing environment was built and 
allocated the same virtual machines for both algorithms. The 
cloud computing environment was also supported by an open-
source software framework: Apache CloudStack. Four Dell 
PowerEdge R430 servers were utilized for the cloud computing 
environment, and the hardware list and software list of them 
were as below: 

1. Hardware: 
a) CPU: Intel Xeon Processor E5-2630 V3 with 8 

core, 2.5MB cache and 2.4GHz for each core; 
b) Chipset: Inter C610 series chipset; 
c) Memory: 16GB DDR4; 
d) Storage: 4TB RAID 

2. Software: 
a) Operating System: CentOS 6.5 
b) Cloud Management: CloudStack 4.4.2 
c) Hypervisor: KVM in CentOS 6.5 

 
As a kind of Linux operating system, CentOS 6.5 was installed 
for both Hadoop approach and non-Hadoop approach. Hadoop-
1.2.1, jdk-8u25-linux-x64, and eclipse indigo as the integrated 
development environment were installed on the virtual machine 
for Hadoop method. GCC 4.8.4 and Emacs-24.4 were installed 
for C++ programing. 
 
There were three types of computing resources allocated: 
9.6GHz/8GB, 19.2GHz/16GB, and 38.4GHz/32GB. For non-
Hadoop method, resources were allocated for a single virtual 
machine, while for Hadoop method, resources were respectively 
allocated for 1 node and 4 nodes. In other words, 9.6GHz CPU 
and 8GB memory were allocated for one computer, 2.4GHz 
CPU and 2GB memory allocated for each node of four. Then 
Hadoop approach and non-Hadoop approach were compared on 
each level of resources, and Hadoop approach on level3 of 
resources with 1 node and 4 nodes were compared. 
 
For each comparative situation, point clouds were respectively 
separated as a quarter (78741481 points), a half (157883263 
points), three quarters (237340463 points) and all points. Hence 
count of points was the independent variable and the time spent 
was the dependent variable. Two kinds of grid size of DEM 
were also taken into account for each situation, which was 1 
meter and 4 meters. 
 
4.2 Compare 

For Hadoop approach and non-Hadoop approach on each level 
of resources, the results are shown in Figure 5(a); for different 
nodes of Hadoop approach, the results are shown in Figure 5(b), 
the x-axis and y-axis represent the count of cloud points and 
time spent respectively. 
 

 
Figure 5(a).Hadoop and non-Hadoop approach 
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Figure 5(b).Different nodes of Hadoop approach 

 
5. CONCLUSIONS AND FUTURE WORKS 

From above mentioned results, an obvious conclusion can be 
concluded that the time increases with the increasing of DEM’s 
density and the increasing of the number of point clouds. When 
there is not enough memory for the algorithm, it takes more 
time (see the performance with resources of level1). The non-
Hadoop implementation can achieve a higher performance than 
Hadoop when memory is big enough, and the efficiency of 4-
node cluster is a little lower than that of 1-node cluster, which 
are possibly due to the network bandwidth bottleneck and the 
I/O operation of HDFS. But a computer with big memory is 
expensive, and the Hadoop algorithm can solve this problem. 
With a little loss of efficiency, the Hadoop algorithm can 
handle larger single file and cost little.  
 
This work has demonstrated that a Hadoop approach for DEM 
generation from point cloud data can help processing large 
single point cloud file at a relatively low cost. However, there 
are a lot of issues remain to be solved, such as, the filter phase 
of separating terrain points from non-terrain points should be 
implemented in a Hadoop approach either, the algorithm should 
be improved for terrain with steep slopes, and so on. 
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