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ABSTRACT:

The University of Natural Resources and Life Sciences (BOKU) in Vienna (Austria) in cooperation with the National Drought
Management Authority (NDMA) in Nairobi (Kenya) has setup an operational processing chain for mapping drought occurrence and
strength for the territory of Kenya using the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI at 250 m ground
resolution from 2000 onwards. The processing chain employs a modified Whittaker smoother providing consistent NDVI “Monday-
images” in near real-time (NRT) at a 7-daily updating interval. The approach constrains temporally extrapolated NDVI values based
on reasonable temporal NDVI paths. Contrary to other competing approaches, the processing chain provides a modelled uncertainty
range for each pixel and time step. The uncertainties are calculated by a hindcast analysis of the NRT products against an “optimum”
filtering. To detect droughts, the vegetation condition index (VCI) is calculated at pixel level and is spatially aggregated to
administrative units. Starting from weekly temporal resolution, the indicator is also aggregated for 1- and 3-monthly intervals
considering available uncertainty information. Analysts at NDMA use the spatially/temporally aggregated VCI and basic image
products for their monthly bulletins. Based on the provided bio-physical indicators as well as a number of socio-economic indicators,
contingency funds are released by NDMA to sustain counties in drought conditions. The paper shows the successful application of the
products within NDMA by providing a retrospective analysis applied to droughts in 2006, 2009 and 2011. Some comparisons with

alternative products (e.g. FEWS NET, the Famine Early Warning Systems Network) highlight main differences.

1. INTRODUCTION

Drought is a recurrent natural phenomenon in many arid and
semi-arid regions of the world. The resulting stress depends
primarily on the strength, duration, timing and spatial extent of
the dry spell. At the same time, different communities and
economic sectors may show varying vulnerabilities and
resiliencies to drought events, as available coping strategies and
previous (environmental) conditions differ.

For drought-prone countries, it is important to monitor droughts
and affected communities to prevent disastrous results. For this
purpose, Kenya established in 2011 a National Drought
Management Authority (NDMA) which mandate is to exercise
general supervision and coordination over all matters relating to
drought management in Kenya. In 2014, the NDMA received
some Drought Contingency Funds (DCFs) from the European
Union to facilitate early response to drought threads. DCFs are
disbursed by the NDMA to drought-affected counties in order to
implement response activities that can help mitigating the worst
impacts of droughts. MODIS satellite images are used to
determine the drought status of a county in an objective and
reproducible way. For near real-time processing of the data,
BOKU University developed and implemented an advanced
filtering method for NDVI images. The processing yields reliable
drought indicators at county and sub-county levels and for
various aggregation times and livelihood zones. Image analysis
is complemented at NDMA by field-based (socio-economic)
indicators. The innovative DCF disbursement mechanisms of
NDMA ensure a timely support of drought-affected counties and
communities.

The present paper describes the MODIS processing chain
implemented at BOKU. Through comparison with the well-
established FEWS NET data, we highlight and quantify main
differences between the two datasets.

2. STUDY AREA

The study covers an area of 10° x 11° centred over Kenya. We
focus on the arid and semi-arid land (ASAL) mainly located in
the northern and eastern parts of the country (see Figure 1). These
areas are characterised by high temperatures (except elevated
areas), low rainfall amounts and therefore often relatively low
biomass/NDVI. This low biomass is seen in Figure 1 as average
annual NDVI <0.4 (brownish colour).

3. METHODOLOGY
3.1 Data Processing at BOKU

The University of Natural Resources and Life Sciences (BOKU)
in cooperation with the National Drought Management Authority
(NDMA) has setup an operational processing of MODIS images
with the aim of providing consistent NDVI and anomaly
“Monday-images” in near real-time (NRT) with a 7-day update
interval. The main processing stages are depicted in Figure 2.

Note that tasks shown on the left side are only run once
(“offline”), whereas the remaining processes are repeated every
week. To ensure a temporally consistent NDVI time series, the
weekly processing steps were initiated with the start of the time
series.
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Figure 1: Average annual NDVI for ASAL counties of Kenya.
Non-ASAL counties are shown in grey. The map also shows the
1° x 1° tiling system in which MODIS data is processed

3.1.1 MODIS Data: The NDMA drought indicators are
derived from MOD13Q1 and MYD13Q1 NDVI collection 5
products of the MODIS Terra and Aqua satellites from LP DAAC
(from 2000 onwards). These products are gridded level-3 data in
approximately 250m spatial resolution in Sinusoidal projection
with a (combined) temporal resolution of 8 days. The level-3 data
are calculated from the level-2G daily surface reflectance gridded
data (MODO09 and MYDO9 series) using the constrained view
angle — maximum value composite (CV-MVC) compositing
method (Solano et al., 2010).
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Figure 2: Processing chain of BOKU’s near real-time (NRT)
filtering of MODIS NDVI time series. The steps on the left side
are done only once. The processes shown on the right side are
repeated every week. Together the processing leads to filtered
NDVI images with associated uncertainties. Based on this
primary information anomaly indicators are derived and
aggregated over time and for different administrative units

3.1.2 Data Acquisition and Preparation: The MODIS data
are downloaded, mosaicked and re-projected to geographic
coordinates (datum WGS84) with a spatial resolution of
approximately 0.002232° (ca. 250 m) using nearest neighbour
resampling. The images are cropped to a dedicated tile system
(see Figure 1). These steps are performed on a daily basis using
the R MODIS package (Mattiuzzi et al., 2012).

3.1.3 NRT Filtering: To minimize the possible impact of
undetected clouds and poor atmospheric conditions, a
standardized procedure temporally filters the NDVI time series
based on two distinct steps: offline smoothing (only once) and
near real-time filtering (every week).

The offline smoothing step uses the Whittaker smoother (Eilers,
2003), (Atzberger and Eilers, 2011a) and (Atzberger and Eilers,
2011b). It smoothes and interpolates the data in the historical
archive (2000 to 2012) to daily NDVI values. The smoothing
takes into account the quality of the data and the compositing day
for each pixel and time step based on the MODIS VI quality
assessment science dataset (Solano et al., 2010). For a detailed
description of the filtering procedure and settings, see (Atzberger
et al., 2014). Only every 7th image corresponding to “Mondays”
is stored. The 7-day interval reduces the storage load of the
archive but permits at the same time an easy restoration of daily
data whenever needed. From the smoothed data, weekly statistics
are calculated describing the typical NDVI paths for a given
location and time. This information serves for “constraining” the
Whittaker smoother during the NRT filtering.

The near real-time (NRT) filtering step also uses the Whittaker
smoother. However, the filtering is executed every weekend and
only uses available observations of the past 175 days. Filtered
NDVI images of the successive Monday are stored but also for
the past four Mondays, representing different consolidation
phases of the filtered NDVI (see Figure 3 “output 0” to “output
4”). Obviously, “output 4” is more reliable (e.g. better
constrained through available data) compared to the “output 0”
which is always extrapolated as (reliable) MODIS observations
become available only after some days.
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Figure 3: Principle of BOKU’s constrained near real-time
(NRT) filtering. Black asterisks are the observed (raw) MODIS
values from 16-day MVC (both Terra and Aqua). The blue line

is the fitted curve of the (unconstrained) Whittaker smoother.
The five coloured dots are the final (constrained) “Monday”
images, representing different consolidation phases. These
“Monday” images are stored every weekend. To constrain these
outputs, previously calculated statistics are used (e.g. from
“offline-smoothing”, not shown in the graph)



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-212-3

Note that the missing constraints may lead to arbitrary high or
low values, particularly, at times of the year, where rapid NDVI
changes take place. Thus, we apply a pixel specific constraining
procedure that limits the NDVI change between consecutive
“Mondays” according to weekly statistics of the offline-
smoothed data. In Figure 3, the effect of the constraining can be
seen as the difference between the blue line (the unconstrained
Whittaker) and the coloured dots (e.g. the final output that is
stored and used for drought mapping).

3.1.4 Calculation of Statistics of NRT Data and
Uncertainty Modelling: Saving every weekend the five output
NDVI images plus quality information (e.g. number and quality
of observations within the 175 days temporal window), allows us
to keep a consistent archive of the different consolidation phases.
Before starting the operational production of NDMA data, the
archived NRT data are compared to a filtered “reference” time
series where all observations were available (e.g. central point of
the blue curve in Figure 3). The difference between “reference”
time series and NRT estimates gives the error of the NRT
filtering. We model this error using the stored quality
information. In our operational setting, the uncertainty of a pixel
filtered in NRT is estimated based on those previously
established models. This is done for each output product, pixel
and time step in NRT.

3.1.5 Anomalies: From the filtered NDVI data, a weekly
vegetation condition index (VCI) is calculated at pixel level
(Kogan et al., 2003):

NDVI;=NDVIminw
NDVImaxw—NDVImin w

VCIl =

x 100 (1)

where  VCIi = vegetation condition index at time step i
NDVIi = normalized difference vegetation index
observed at time step i

NDVIninw, NDVInaxw = lowest / highest 7-day values

observed from 2003 to 2012 at week w

Conceptionally, the VCI enhances the inter-annual variations of
a vegetation index (e.g. NDVI) in response to weather
fluctuations while reducing the impact of ecosystem specific
response (e.g. driven by climate, soils, vegetation type and
topography). Other anomaly indicators are also calculated (e.g.
Z-score) but will not be presented here as NDMA restricts its
analysis to VCL.

To get a more concise picture of the vegetation development in
the ongoing season and to identify drought-affected areas, we
temporally and spatially aggregate the weekly VCI maps.
Temporal aggregation includes 1-monthly and 3-monthly
weighted VCI averages using the VCI images of the recent 4 and
12 weeks of the according month, respectively. During the
temporal aggregation, the modelled uncertainty is taken into
account down-weighting the impact of less reliable observations.
Spatial aggregation averages the VCI at pixel level according to
administrative units (e.g. counties, constituencies of Kenya)
and/or livelihood zones. All data are imported at NDMA into
SPIRITS (Eerens et al., 2014) for production of seasonal graphs,
etc. Additional web-tools were developed by BOKU for
educational purposes (BOKU, 2015).

3.2 Comparison with FEWS NET Data

We used for comparison the eMODIS NDVI data provided by
the FEWS NET (USGS, 2013). The downloaded FEWS NET

data are pentadal NDVI at 0.002413° spatial resolution (Datum
WGS84) covering the area of East Africa.

The eMODIS dataset is generated by the U.S. Geological Survey
(USGS) Earth Resources Observation and Science (EROS)
Center from the Level 1B MODIS products of Terra (MODO09,
MODO03, MOD35 L2) (USGS, 2011). The output includes near
real-time and historical NDVI products that are composited in
10-day intervals every 5 days at about 250m spatial resolution.
This results in 72 composite periods per year (pentades).

The historical NDVI dataset (2001-2010) is temporally smoothed
by USGS with a “modified” weighted least squares linear
regression approach (Swets et al., 1999). As current-year
composites become available, they are added to the time series
and smoothed, resulting in a smoothed composite for a given 10-
day period (updated every 5 days). The eMODIS data available
for download are updated during six composite periods, only
after which the images become definitive (USGS, 2013). Hence,
the most recent five images are produced using climatological
information. For our study, only the consolidated FEWS NET
data were used covering the period of 2001 to 2014.

To compare BOKU and FEWS NET datasets, temporally and
spatially aggregated VCI anomalies are calculated from the
FEWS NET NDVI data. First, NDVI images were cropped and
resampled to the BOKU grid. Pentadal statistics (minimum,
maximum) of the NDVI were derived for each pixel and the
period of 2003 to 2012 similar to the BOKU dataset (see section
3.1.4). Next, pentadal VCI images were calculated using the
derived statistics (Equation 1). Temporally aggregated VCI
images (1 and 3 month) were obtained by averaging 6 and 18
pentades, respectively. Finally the spatial aggregation was
conducted in the same way as for the BOKU data. It has to be
noted that the FEWS NET indicators derived in this way, are not
available in near real-time, but only after six pentades (e.g. one
month). This contrasts with the NDMA data, which are derived
in NRT.

4. RESULTS AND DISCUSSION

In this section, we focus on 3-monthly VCI data (VCI3M)
aggregated at county level and provided on a monthly basis. The
VCI3M anomalies are compared with FEWS NET anomalies.
Both datasets are evaluated against food security assessment
reports.

The linear regression between 3-monthly VCI datasets from
BOKU and FEWS NET shows generally a good agreement
between both datasets with a coefficient of determination (R?) of
0.89 (see Figure 4). The VCI observations regularly scatter
around the 1-to-1 line with a slope close to one and a (slight)
positive intercept. As expected, the majority of the points
(highest density, dark red points) are found in the range of 30%
and 55% corresponding to near “normal” conditions. The
majority of observations (88%) fall well within a range of + 10%.

Despite the generally good agreement between the two VCI
datasets, larger differences appear if the analysis is repeated
month-by-month. The resulting intra-annual coefficient of
determination (R?) varies between 0.77 and 0.94 (see Figure 5 —
green line). Local minima of R? (and maxima of RMSE) are
visible in April and November. This coincides very well with
Kenya’s long and short rains that normally occur in March—June
and October—December.
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Figure 4: Scatterplot of 3-monthly aggregated VCI (VCI3M)
derived from FEWS NET and BOKU datasets of ASAL
counties across all months between 2003 and 2014. 1-to-1 line
(red) and regression line (black)

The two seasons are captured by the average monthly NDVI
profile derived from the weekly NDVI values between 2003 and
2012 for all ASAL pixels (orange line in Figure 5). Obviously,
the largest differences in the VCI3M anomalies occur in parallel
to significant NDVI changes - these are periods of prime interest
for image interpreters and NDMA.

The inter-annual agreement/disagreement between the two
datasets is depicted in Figure 6. Results show some variability
from year to year. Interestingly, the RMSE slightly drops down
to local minima for the years of 2005, 2009 and 2011. According
to assessment reports of the Kenya Food Security Steering Group
(KFSSG, 2005), (KFSSG, 2006), (KFSSG, 2011a) and (KFSSG,
2011b), the years 2005 and 2011 coincide well with major
droughts. In 2009, a poor performance of the long rains was
reported (KFSSG, 2009b). Consequently, our current assumption
is (to be validated) that the two datasets show a better agreement
in years with (extreme) droughts.
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Figure 5: Intra-annual agreement/disagreement between
monthly updated FEWS NET and BOKU VCI3M values.
(green) coefficient of determination (R?), (blue) root mean

square error (RMSE) between the two data sets. In (orange)
time course of the average NDVI of ASAL counties. Lines are
only shown for reader's convenience
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Figure 6: Inter-annual agreement/disagreement between
monthly FEWS NET and BOKU VCI3M values. (green)
coefficient of determination (R?), (blue) root mean square error
(RMSE). Lines are only shown for reader's convenience

The spatial variation of RMSE for the ASAL counties is shown
in Figure 7. The RMSE values were calculated across all months
and years of the two datasets. The resulting RMSE ranges
between 4% and 9% and show some spatial coherence. Large arid
counties (e.g. Turkana, Marsabit, Wajir) as well as southwestern
semi-arid counties (e.g. Narok, Kajiado) show a relatively good
agreement between the FEWS NET and BOKU anomalies (see
Figure 7, green and dark-green).

Largest variations occur in the centre (e.g. Kitui) as well as in
Mandera. Although the counties seem to build spatial groups, no
obvious relation to aridity can be seen.

To further reveal county-specific differences, we prepared a
detailed analysis for the counties of Laikipia, Mandera and Kitui.
Laikipia represents a semi-arid county with a very good
agreement (low RMSE), whereas Mandera belongs to the arid
counties exhibiting medium RMSE values. Kitui is again semi-
arid, but shows larger RMSE values of slightly more than 7%.
All counties experienced major droughts during the period of
2003 and 2014. We employ matrix plots to display the monthly

Figure 7: Variations of root mean square error (RMSE) between
monthly FEWS NET and BOKU VCI3M values for ASAL
counties. Counties outside the ASAL area are shown in grey.
The observed minimum RMSE was 4.3 and the maximum 9.7
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Colour | VCI3M in % Drought category
>50 Wet
35t050 No Drought
21 to 34 Moderate Drought
10 to 20 Severe Drought
<10 Extreme Drought

Table 1: Thresholds for monthly updated VCI3M and related
drought categories

VCI3M anomalies for all years per county and dataset. Analysts
at NDMA operationally use these matrix plots for their monthly
bulletins distinguishing five drought categories (Table 1).

The results for Laikipia are displayed in Figure 8 (top) for
FEWS NET and in Figure 8 (bottom) for BOKU anomalies. The
low RMSE of Laikipia is confirmed by the very similar seasonal
pattern throughout all years between both datasets. Major
droughts can be observed for the years of 2006, 2009 and 2011
classified in both datasets as severe and extreme droughts. In
2005 and 2010 short rains failed in the region (KFSSG, 2006)
and (KFSSG, 2011a), which led to the detected low VCI in
February and March.

A particular situation is captured by the VCI3M anomaly in 2009.
In 2009 (KFSSG, 2009b) reported poor long rains but still
classified the situation in Laikipia as not exceptionally bad.
BOKU data, as well as FEWS NET, reveal on the contrary an
extreme drought in 2009, which is for example also confirmed by
(Zwaagstra et al., 2010) employing NOAA AVHRR data.

For Laikipia, the only visible difference between BOKU and
FEWS NET data relates to the evolution of the drought in 2009;
the BOKU data show a gradual degradation of the situation (from
dark green to red), whereas FEWS NET saw “wet” conditions in
January 2009 (dark green) immediately followed by “moderate”
drought in February (yellow). Despite this, the overall agreement
between the two datasets is very good for Laikipia.

Figure 8: Seasonal matrix plot of categorised monthly VCI3M
anomalies for the county of Laikipia (2003-2014) derived from
(top) FEWS NET dataset and (bottom) BOKU dataset

The drought detected for Mandera is displayed in Figure 9. One
can observe slight differences between the drought categories of
both datasets, but the differences never exceed more than one
drought category. The overall pattern is still quite similar.

Mandera experienced unfavourable long rains in 2005 as well as
late, poorly distributed and early ending short rains in 2005
(KFSSG, 2005) and (KFSSG, 2006). As a result, Mandera was
affected by a major drought at the end of 2005 and the beginning
0f 2006 as depicted in Figure 9.

A complete season failure of the short rains 2010 and the long
rains 2011 (partially less than 10% of normal rains) was reported
for the central and northern part of Kenya including Mandera
(KFSSG, 2011a) and (KFSSG, 2011b). Again, this is well
reflected by both datasets.

The matrix plots of Kitui are displayed in Figure 10. We added
the differences between the FEWS NET and BOKU datasets at
the bottom of Figure 10.

For 2005/2006 a moderate to severe drought is captured in both
datsets (see Figure 10 top and centre) for the same reasons as in
Mandera (KFSSG, 2005) and (KFSSG, 2006).

The 2008 short rains in the southeast including Kitui were
exceptionally poor, delayed by 20-40 days and lasted less than
three weeks (KFSSG, 2009a). Parts of Kitui received on average
only 10-20% of normal long rains in 2009 (KFSSG, 2009b). The
situation is depicted in 2009 by both datasets. However, the
BOKU anomalies show a clear offset reaching a VCI difference
of more than 10% in October 2009 (see Figure 10 bottom), which
might be explained by the NRT filtering.

The drought of 2011 was again caused by unfavourable rains both
in the short and long season of 2010/2011 but to a lesser extent
than for e.g. Mandera (KFSSG, 2011a) and (KFSSG, 2011b). In
particular, Kitui hardly experienced rainfall onsets

Figure 9: Seasonal matrix plot of categorised monthly VCI3M
anomalies for the county of Mandera (2003-2014) derived from
(top) FEWS NET dataset and (bottom) BOKU dataset
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Figure 10: Seasonal matrix plot of categorised monthly VCI3M
anomalies for the county of Kitui (2003-2014) derived from
(top) FEWS NET dataset, (centre) BOKU dataset and (bottom)
difference between both datasets (FEWS NET minus BOKU)

but had very short episodes of 10-20 day rainfall. The rains
ceased unusually early in late April. Consequently, both datasets
show severe droughts starting from June 2011. BOKU anomalies
recover a little early than the one derived from FEWS NET as
indicated by the negative VCI differences in September to
December 2011 in Figure 10 (bottom).

5. CONCLUSIONS

FEWS NET provides relevant and well established data for
drought monitoring based on satellite observations. With our
research, we aimed to studying to which extent we can re-
produce the drought indicators provided by FEWS NET in near
real-time that is without waiting for the end of the consolidation
period. The BOKU data analysed in this paper are provided
within 2-3 days after the last Monday in a given month. The data
are operationally used by NDMA for their monthly drought
bulletins and for triggering the disaster contingency funds (DCF)
of Kenya.

In summary, our results clearly show an overall good
correspondence between the two chosen datasets. An RMSE in
the order of 6 was found for the more closely investigated 3-
monthly VCI products. Some larger differences were observed at
the onset of vegetation growth that is before the short and the
long rains in Kenya. Generally, the driest years were modelled
best. Interestingly too, the spatial pattern of the differences
between FEWS NET and BOKU-derived VCI was non-random.

Together, these findings indicate some potential systematic
differences between the two datasets, which deserve more
research. In our future work, we will also focus to quantify how
much the FEWS NET data quality degrades if delivered in near
real-time.
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