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ABSTRACT:

One of the problems in dealing with optical images for large territories (more than 10,000 sq. km) is the presence of clouds and
shadows that result in having missing values in data sets. In this paper, a new approach to classification of multi-temporal optical
satellite imagery with missing data due to clouds and shadows is proposed. First, self-organizing Kohonen maps (SOMs) are used to
restore missing pixel values in a time series of satellite imagery. SOMs are trained for each spectral band separately using non-
missing values. Missing values are restored through a special procedure that substitutes input sample's missing components with
neuron's weight coefficients. After missing data restoration, a supervised classification is performed for multi-temporal satellite
images. An ensemble of neural networks, in particular multilayer perceptrons (MLPs), is proposed. Ensembling of neural networks is
done by the technique of average committee, i.e. to calculate the average class probability over classifiers and select the class with
the highest average posterior probability for the given input sample. The proposed approach is applied for regional scale crop
classification using multi temporal Landsat-8 images for the JECAM test site in Ukraine in 2013. It is shown that ensemble of MLPs
provides better performance than a single neural network in terms of overall classification accuracy, kappa coefficient, and
producer's and user's accuracies for separate classes. The overall accuracy more than 85% is achieved. The obtained classification

map is also validated through estimated crop areas and comparison to official statistics.

1. INTRODUCTION

Geographical location and distribution of crops at global,
national and regional scale is an extremely valuable source of
information for many applications. Reliable crop maps can be
used for more accurate agriculture statistics estimation (Gallego
et al., 2010, 2013, 2014), stratification purposes (Boryan and
Zhengwei, 2013), better crop yield prediction (Becker-Reshef et
al., 2010; Kogan et al., 2013a, 2013b).

Remote sensing images from space have always been an
obvious and promising source of information for deriving crop
maps. This is mainly due capabilities to timely acquire images
and provide repeatable, continuous, human independent
measurements for large territories. Yet, there are no globally
available satellite-derived crop specific maps at present
moment. Only coarse-resolution imagery (at least 250 m spatial
resolution) has been utilized to derive global cropland extent
(e.g. GlobCover, MODIS). Nevertheless, even these maps
provide variable quality and reliability in capturing cropland
(Fritz et al., 2013). With availability of Landsat-8 and Sentinel-
2 images and their synergic exploitation (Roy et al., 2014), it
becomes possible to generate crop specific maps at high spatial
resolution scale for main agriculture regions.

It should be however noted that most studies on crop mapping
using high and medium resolution satellite imagery (e.g.
Landsat-5/7, SPOT, AWIiFS) have been carried out at local
scale (Conrad et al., 2010; Pefia-Barragan et al., 2011; Yang et
al., 2011). One of the exceptions is the creation of the Cropland
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Data Layer (CDL) of the US Department of Agriculture
(USDA) National Agricultural Statistics Service (NASS)
(Boryan et al., 2011). The CDL product provides crop maps for
47 states at 56 m spatial resolution. Another effort to create a
global cropland product based on Landsat TM and ETM+ is
performed by Yu et al. (2013a, 2013b). Yu et al. (2013b)
created a 30 m global land cover product called FROM-GLC
(Fine Resolution Observation and Monitoring of Global Land
Cover). Producer’s accuracy (PA) and user’s accuracy (UA) for
cropland class were 75.25% and 55.62%, respectively, which is
below the target of 85% for agriculture applications (McNairn
et al., 2009).

One of the main issues in utilizing optical imagery is the
presence of clouds and shadows that introduce missing values.
At local scale, it is usually possible to acquire cloud-free images
in the crucial period of vegetation cycle. However, this is not
the case for large territories. That is why, most of the existing
studies on large scale crop mapping use high- and medium-
resolution cloud-free optical images coupled with weather-
independent synthetic-aperture radar (SAR) (McNairn et al.,
2009) or use coarse-resolution imagery at high temporal
resolution (Pittman et al., 2010; Wardlow and Egbert, 2008). In
order to deal with missing data in optical satellite imagery, a
number of approaches have been proposed. On of the most
popular approach is compositing. Yan and Roy (2014) utilize a
30 m Web Enabled Landsat data (WELD) time series to derive
cropland and agriculture crop field boundaries. The WELD is
based on compositing Landsat ETM+ images with cloud cover
<80% within 150 x 150 km tiles on weekly, monthly, seasonal,
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and annual basis. However, missing value can still happen in
composite products. Another popular approach is related to fill
in missing data with different techniques such as multi-spectral
and multi-temporal. Roy et al. (2014) utilize course resolution
MODIS data for filling gaps and predicting Landsat data. Yu et
al. (2013b) improve the 30 m FROM-GLC global land cover
map based on Landsat TM and ETM+ imagery by adding coarse
resolution MODIS imagery. It allows them to increase overall
accuracy from 64.89% to 67.08%. Chen et al. (2011) propose a
neighbourhood similar pixel interpolator (NSPI) for filling gaps
in Landsat ETM+ SLC-off images. Latif et al. (2008) propose
self-organizing Kohonen maps (SOMs) for reconstructing
missing values in a time-series of low-resolution satellite
imagery. It should be however noted that only few studies on
filling in techniques assessed their efficiency on generating
dedicated products, for example land cover maps (Chen et al.,
2011). Moré et al. (2006) propose a hybrid classifier to dealing
with missing data in a time-series of Landsat imagery. First,
unsupervised classification for different combinations of input
data is performed based on clustering algorithm IsoMM. Then,
an algorithm called CIsMix is run to assign every spectral class
to a thematic class through training areas defined by the user.
The proposed approach achieves overall accuracy of 88.6%
comparing to 67.2% obtained by the maximum likelihood (ML)
classifier.

No previous studies used restored missing data from high- and
medium resolution satellite imagery (such as Landsat-8) to
provide crop classification and mapping for large areas. In this
paper, a new approach to classification of multi-temporal
Landsat-8 imagery with missing data due to clouds and shadows
is presented. The approach combines different neural networks
(NN5s) architectures to restore missing values in a time-series of
satellite imagery and provide supervised classification for crop
discrimination. Results are presented for the Joint Experiment
of Crop Assessment and Monitoring (JECAM) test site in
Ukraine with the area of more than 28,000 km? (Gallego et al.,
2014; Shelestov et al., 2013). The resulting classification map
from Landsat-8 imagery is produced, and derived crop area
estimates are compared to official statistics. To our best
knowledge, the obtained crop map is one of the first ones
produced at regional scale using new Landsat-8 images.

2. METHODOLOGY
2.1 Restoration of missing data in satellite images

SOM is a type of artificial neural network that is trained using
unsupervised learning to produce a discretised representation of
the input space of the training samples, called a map (Kohonen,
1995). The map seeks to preserve the topological properties of
the input space. SOM is formed of the neurons located on a
regular, usually one- or two-dimensional grid. Neurons compete
with each other in order to pass to the “excited” state. The
output of the map is, so called, neuron-winner or best-matching
unit (BMU) whose weight vector has the greatest similarity with
the input sample x

i(x)= argr]r:lli_,?"x— w| 1)

where  i(x) = SOM output, i.e. the number of BMU
X = an input vector
L = a number of neurons in the output grid

w, is a vector of weight coefficients for neuron /

||0|| means metric (e.g. Euclidean)

It should be noted that dimension of weight vectors w; is
identical to dimension of the input vectors x. Figure 1 shows a
general procedure for restoration of missing values in a time-
series of data sets. The reconstruction of satellite images is
performed for each spectral band separately, i.e. a separate
SOM is trained for each spectral band. Pixels that have no
missing values in the time-series are selected for training.
Selecting the number of training pixels represents a trade-off, in
particular increasing the number of training samples will lead to
the increased time of SOM training while increasing the quality
of restoration. Also, training data sets should be selected
automatically. As such, we propose to select training samples
on a regular grid of pixels. Therefore, the SOM seeks to project
a large number of non-missing data to the subspace vectors in
the map.
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Figure 1. A procedure to restore missing values in input data
using SOM

Restoration of missing values is performed in the following way
(Figure 1). The multi-temporal pixel values with missing
components are input to the SOM. A neuron-winner in the
SOM is selected following Eq. (1). It is worth noting, however,
that missing values are omitted from metric estimation when
selecting BMU, i.e. only components with valid values in the
input vector are used. When the BMU is selected, missing
values are substituted by corresponding components of the
BMU weight values. Detailed description of the algorithm and
its performance evaluation is described in (Skakun and Basarab,
2014).

2.2 Committee of neural networks for image classification

Support vector machine (SVM), decision tree (DT) and RF
classifiers have been probably the most popular ones for remote
sensing image classification in the past years (Boryan et al.,
2011; McNairn et al., 2009; Pittman et al., 2010; Shao and
Lunetta, 2012; Wardlow and Egbert, 2008). Many papers report
better performance of SVM, DT and RF comparing to other
techniques, including MLP (McNairn et al., 2009). However,
some other studies show MLP to outperform SVM and DT
(Gallego et al., 2012, 2014). Though the MLP training phase
might be resource and time consuming (but this is becoming
less problematic with the use of high-performance computations
(Kravchenko et al., 2008; Kussul et al., 2009, 2010a, 2010b,
2012; Shelestov et al., 2006; Shelestov and Kussul, 2008)), and
might require experience from the user, it has several
advantages over SVM and DT. In particular, MLP is fast at
processing new data which can be critical to the processing of
large volumes of satellite data, and can produce probabilistic
outputs which can be used for indicating reliability of the map.
In many cases, in our opinion, not a full potential of MLP has
been explored. In particular, cost function for MLP training is
usually considered square (e.g. root mean square error — RMSE)
in remote sensing literature while it had been shown that cross-
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entropy (CE) error function provides better performance in
terms of speed of training and classification accuracy (Bishop,
2006; Meier et al., 2011; Simard et al. 2003). Another potential
is to explore a committee of neural networks since the
committee of classifiers tends to outperform the single classifier
(Zhang and Xie, 2014).

Therefore, an MLP classifier is used as a basic one in this study
for classification of restored multi-temporal satellite imagery.
The MLP classifier has a hyperbolic tangent activation function
for neurons in the hidden layer and logistic activation function
in the output layer. The CE error function is defined using the
following equation (Bishop, 2006)

Ew)=-Inp(T|w)=->"1,Iny, @)

n=1 k=1

where  E(w) = CE error function that depends on the
neurons’ weight coefficients w

T = set of vectors of target outputs in the training set
composed of N samples

K =number of classes

t and y,, = target and MLP outputs, respectively

In the target output for class £, all components of vector ¢, are
set to 0, except for the k-th component which is set to 1. The CE
error E(w) is minimized by means of the scaled conjugate
gradient algorithm by varying weight coefficients w (Bishop,
2006).

A committee of MLPs is used to increase performance of
individual classifiers. Two approaches to forming the committee
are evaluated in this study. Both these approaches are
modifications of the bagging technique (Bishop, 2006). Within
the first approach, committee is formed using MLPs trained on
different data sets. Within the second approach, committee is
formed using MLPs with different parameters trained on the
same training data. These approaches are quite simple, non-
computation intensive and proved to be efficient for other
applications (Meier et al., 2011).

Outputs from different MLPs are integrated using the technique
of average committee (Meier et al., 2011). Under this technique
the average class probability over classifiers is calculated, and
the class with the highest average posterior probability for the
given input sample is selected (Figure 3). The following
equation formalizes this procedure

1
* — e e _ /
k*=argmaxpi, p; = Z. p; )

where  k* = class to which the committee of classifiers
assigns the input sample

e

p; = resulting posterior probability of the committee

p! = posterior probability of each MLP

L = number of classifiers in the committee, and K is
the number of classes

The average committee procedure has advantage over majority
voting technique in two aspects: (i) it gives probabilistic output
which can be used as an indicator of reliability for mapping
particular pixel or area; (ii) it does not have ambiguity when
two or more classes give the same number of “votes”.

Classification of satellite images is performed on a per-pixel
basis. Though, it was previously reported that per-field
classification often outperforms per-pixel classification, it
requires availability of accurate field boundaries. Unfortunately,
field boundaries for most regions of Ukraine are not available at
present moment, and therefore, it complicates the use of per-
field classification in the operational context (McNairn et al.,
2009).

3. STUDY AREA DESCRIPTION

The proposed methodology is evaluated for the JECAM test site
in Ukraine. The JECAM test site in Ukraine was established in
2011 and covers the administrative region of Kyiv oblast with
the geographic area of 28,100 km® and almost 1.0 M ha of
cropland. Northern part of the region is dominated by forests
and grasslands, while central and southern parts are agriculture
intensive areas. Land cover classes are quite heterogeneous
including croplands, forests, grassland, rivers, lakes and
wetlands. The climate in the region is humid continental with
approximately 709 mm of annual precipitations. Landscape is
mostly flat terrain with slopes ranging from 0% to 2%; near
10% of the territory is hilly with slopes about 2-5%. The crop
calendar is September-July for winter crops, and April-October
for spring and summer crops. Major crop types include maize
(25.1% of total cropland area in 2013), winter wheat (16.1%),
soybeans (12.6%), vegetables (10.3%), sunflower (9.3%),
spring barley (6.8%), winter rapeseed (4.0%), and sugar beet
(1.3%). A remark should be made considering vegetables. In the
region, vegetables are mainly (approximately 96%) produced by
small farmers and people living in villages for self-consumption
purposes (so called family gardens (Gallego et al., 2014)). The
fields are mainly located next to the houses and, as a rule, are
very small in size (less than 0.1 ha). This requires special
techniques and the use of very high-resolution satellite data that
were not available for the test site at large scale. Therefore,
vegetables are not considered among major crops types within
this study. Due to relatively large number of major crops and
other factors there is no a typical simple crop rotation scheme in
this region. Most farmers use different crop rotations depending
on specialization. Fields in the region are quite large (except
family gardens) with size generally ranging up to 250 ha.

4. MATERIALS DESCRIPTION
4.1 Ground measurements

Ground surveys were conducted in June 2013 to collect data on
crop types and other land cover classes. European Land Use and
Cover Area frame Survey (LUCAS) nomenclature is used in
this study as a basis for land cover / land use types. In total, 386
polygons are collected covering the area of 22,700 ha (Table 1).
Data are collected along the roads using mobile devices with
built-in GPS.

4.2 Landsat-8 satellite imagery

Remote sensing images acquired by Operational Land Imager
(OLI) sensor aboard Landsat-8 satellite are used for crop
mapping over the study region. Landsat-8/OLI acquires images
in eight spectral bands (bands 1-7, 9) at 30 m spatial resolution
and in panchromatic band 8 at 15 m resolution (Roy et al.,
2014). Three scenes with path/row coordinates 181/24, 181/25
and 181/26 cover the test site region. Dates of acquisition are
April 16, May 02, May 18, June 19, July 05, and August 06.
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Polygons Area

N | Class No. % ha %
1 Artificial 6 1.6 23.0 0.1
2 Winter wheat 51 13.2 3960.8 17.4
3 Winter rapeseed 12 3.1 937.3 4.1
4 Spring crops 9 2.3 455.9 2.0
5 Maize 87 22.5 7253.3 31.9
6 Sugar beet 8 2.1 632.5 2.8
7 Sunflower 30 7.8 2549.0 11.2
8 Soybeans 60 15.5 32523 14.3
9 Other cereals 32 8.3 1364.0 6.0
10 | Forest 17 44 1014.3 4.5
11 | Grassland 48 12.4 747.5 3.3
12 | Bare land 10 2.6 67.2 0.3
13 | Water 16 4.1 448.3 2.0

Total 386 100 22705.3 100

Table 1. Number of polygons and total area of crops and land

cover types collected during the ground survey

50 100 150 200 km ;* 0 50 100

Figure 2. Example of restoration of missing data in Landsat-8
images acquired on the 5th of July 2013. Original image with
identified clouds and shadows as missing data is show in (a).
Result of restoration is shown in (b). For both images true
colour composite of bands 4-3-2 is shown. SR reflectance
values are scaled from 0 to 0.15

The following pre-processing steps are applied for all Landsat-8
images: (1). Conversion of digital numbers (DNs) values to the
top-of-atmosphere (TOA) reflectance values using conversion
coefficients in the metadata file (Roy et al, 2014). (2).
Conversion from the TOA reflectance to the surface reflectance
(SR) using the Simplified Model for Atmospheric Correction
(SMAC) (Rahman and Dedieu, 1994). The source code for the
model is acquired from http://www.cesbio.ups-
tlse.fr/multitemp/?p=2956. Parameters of the atmosphere to run
the model (in particular, aerosol optical depth) are acquired
from the Aeronet network’s station in Kyiv (geographic
coordinates +50.374N and +30.497E). (3). Detection of clouds
and shadows using Fmask algorithm proposed by Zhu and
Woodcock (2012).

4.3 Preparation of satellite images for classification

Multi-temporal Landsat-8 images acquired in bands 2 through 7
are reconstructed using SOMs and used for classification of
satellite imagery. Bands 1 and 9 are not used due to the strong
atmospheric influence. Panchromatic band and thermal bands
by Thermal Infrared Sensor (TIRS) are not utilized as well.
Multi-temporal SR values in six spectral bands form a feature
vector that is input to the classifier. Therefore, a total amount of
36 variables have been introduced in the classification. All
variables are normalized to have mean 0 and standard deviation
1. Feature vectors of SR values are derived for fields collected
during ground survey. All surveyed fields are randomly divided
into training set (50%) to train the classifier and testing set
(50%) for testing purposes. Fields are selected in such a way so
there is no overlap between training and testing sets. All
classification results, in particular overall accuracy (OA), kappa
coefficient, user’s (UA) and producer’s (PA) accuracies are
reported for testing set. The input features are classified into
one of the 13 classes (Table 1).

5. RESULTS

5.1 Restoration of missing values in time-series of Landsat-
8 images

The results of restoration show that relative root mean square
error (RRMSE) are dependent on the number of missing data,
and increase when the number of missing values increases
(Skakun and Basarab, 2014). RRMSE values are dependant on
the Landsat-8 spectral bands with minimum value being for
Band 5 (11.4%) and maximum value being for Band 4 (19.7%).
Quality of reconstruction of vegetated areas is higher than for
artificial surface. The example of missing data restoration for
images acquired on the 5™ of July 2013 is shown in Figure 2.

5.2 Landsat-8 images classification

Three different classification schemes are compared in the
study. The first scheme (Scheme 1) utilizes a single MLP
classifier that is trained on all training data. For this, the number
of hidden neurons in MLP is varied (from 20 to 80) in order to
select the MLP classifier that yields the largest OA. The second
scheme (Scheme 2) utilizes a committee of MLPs that are
trained on different training data sets that are randomly divided
into five disjoint subsets. For each subset, a number of MLPs
are trained and the best MLP in terms of OA is selected into the
committee. Therefore, the committee is composed of five MLP
classifiers. The third scheme (Scheme 3) utilizes a committee of
seven MLPs that are trained on all training data and have
different number of hidden neurons, in particular 20, 30, 40, 50,
60, 70, and 80. The obtained classification metrics, in particular
OA, Kappa, PA and UA, are summarized in Table 2. The use of
multi-temporal Landsat-8 imagery and a committee of MLP
classifiers allow us to achieve overall accuracy of slightly over
85% which is considered as target accuracy for agriculture
applications (McNairn et al., 2009). The use of committee of
MLP classifiers comparing to the single MLP classifier is
essential, and it is statistically confirmed by using z-test (Foody,
2004). In particular, z value is equal to 5.36 when comparing
Scheme 3 to Scheme 1 which is larger than the threshold value
of |z>1.96. It means that hypothesis of no significant difference
between two classifiers would be rejected at the widely used 5
percent level of significance.
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Scheme 1: Best Scheme 2: Scheme 3: Committee
single MLP Committee of MLPs of MLPs
OA, % 84.60 85.11 85.32
Kappa 0.8144 0.8211 0.8235
PA, % UA, % PA, % UA, % PA, % UA, %
1 Artificial 74.5 93.2 100.0 97.9 100.0 97.9
2 Winter wheat 95.6 90.6 96.0 91.9 95.7 91.8
3 Winter rapeseed 94.5 96.1 93.3 99.2 93.5 99.4
4 Spring crops 12.1 15.3 46.2 38.8 40.6 34.6
5 Maize 92.6 86.6 90.3 86.8 90.5 86.8
6 Sugar beet 83.0 93.7 94.4 88.0 94.9 89.6
7 Sunflower 86.1 82.1 83.6 84.2 84.1 85.4
8 Soybeans 66.6 77.1 68.8 76.6 69.7 77.1
9 Other cereals 71.8 76.9 70.2 78.1 70.9 78.0
10 | Forest 96.7 91.9 96.9 91.9 96.9 92.9
11 | Grassland 84.2 88.9 90.7 88.0 91.0 89.0
12 | Bare land 86.7 88.8 86.7 98.5 86.7 99.0
13 | Water 99.3 98.1 100.0 98.0 100.0 98.1
Table 2. Classification results of using different neural network approaches
B Artificial
[ winter wheat

Il Winter rapeseed
Bl spring aops
Bl Maize

B Sugar beet

[ Sunflower

[ soybeans

[ Other cereals
Il Forest

I Grassland

[ Bare land

Bl Water

1s 0 50 100 150 200 km *

*

Figure 3. Final map obtained by classifying multi-temporal Landsat-8 imagery using a committee of MLP classifiers

Target accuracy of 85% (in terms of both producer’s and user’s - winter wheat (class 2, PA=95.6%, UA=90.6%): main
accuracies) is also achieved for the following agriculture confusion with other cereals (class 9) and spring crops
classes: (class 4).

- winter rapeseed (class 3, PA=93.5, UA=99.4%): main
confusion with other cereals (class 9).
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- maize (class 5, PA=90.5%, UA=86.8%): main
confusion with soybeans (class 8); in particular almost
88% of commission error and 75% of omission error
for maize is due to confusion with soybeans.

- sugar beet (class 6, PA=94.9%, UA=89.6%): main
confusion with soybeans (class 8) and maize (class 5);
in particular, almost 55% of commission error is due to
confusion with maize, and almost 95% of omission
error is due to confusion with soybeans.

For the following agriculture classes the accuracy of 85% is not
obtained:

- spring crops (class 4, PA=40.6%, UA=34.6%):
classification using available set of satellite imagery
fail to produce reasonable performance for spring
crops. The main confusion of this class is with winter
wheat (class 2) and other cereals (class 9). The reasons
for this are as follows. When collecting ground data, it
was impossible to discriminate winter crops from
spring crops in the fields. Therefore, all wheat samples
are assigned winter wheat class (since proportion of
spring wheat is small), and all barley samples are
assigned spring crops class (since proportion of winter
barley is small). Unfortunately, reliable satellite data
(including coarse resolution MODIS) for the autumn
period of 2012 are not available due to strong cloud
contamination. Confusion with other cereals can be
explained by almost identical vegetation cycle of
spring barley and other cereals produced in the region,
namely with rye and oats. Combining spring crops and
other cereals classes would improve accuracies for
both these classes to PA=79.93% and UA=83.53%.

- sunflower (class 7, PA=84.1%, UA=85.4%): main
confusion with soybeans; in particular, almost 74% of
commission error and 41% of omission error is due to
confusion with soybeans.

- soybeans (class 8, PA=69.7%, UA=77.1%): this is the
least discriminated summer crop with main confusion
with maize; in particular, almost 61% of commission
error and 71% of omission error is due to confusion
with maize.

All non-agriculture classes including forest and grassland yield
PA and UA of more than 85%. The final classification map is
shown in Figure 3.

5.3 Comparison to official statistics

The derived crop map over the Kyiv oblast is used to estimate
crop statistics and compare it to the official one. The official
statistics on crops for the region was released only in January
2014, while the crop map was produced using the remote
sensing images acquired until the 6™ of August 2013. Therefore,
within operational context, the map could be potentially
produced within August-September 2013 which is 4-5 months
in advance of the official statistics report.

A simple pixel counting procedure is applied for crop area
estimation. Pixel counting is known to be biased (Gallego et al.,

2010), and the bias can be approximated as

Bias = Commission error — omission error. 4)

Using commission and omission errors from the confusion
matrix, this bias is used to correct pixel counting estimates and
provide final crop area values. The results are given in Table 3.
In general, there is a good correspondence between satellite
derived crop area estimates and official statistics except winter
rapeseed and sugar beet. The former crop class is overestimated
+28% while the latter crop is underestimated -28%.

Class | Class Crop area: | Crop area: | Relative
no. official Landsat-8 error, %
statistics, x | derived, x
1000, ha 1000, ha
Winter
2 wheat 187.3 184.5 -1.5
Winter
3 rapeseed 46.7 59.9 28.3
5 Maize 291.7 3424 17.4
Sugar
6 beet 15.5 11.2 -27.9
7 Sunflower | 108.2 117.6 8.7
8 Soybeans | 145.9 168.5 15.5

Table 3. Comparison of official statistics and crop area
estimates derived from Landsat-8 imagery for Kyiv region

5.4 Discussion of results

The results achieved in this study show the efficiency of
different neural networks architectures for classification of
multi-temporal satellite imagery with missing data. The use of
SOMs makes possible to restore missing data by training the
neural network in an unsupervised fashion. Only data with all
valid components are used for SOMs training. In such a way,
the neural network projects data from training set into the
subspace of neurons weight coefficients which are further used
for restoration of missing values. The restoration is not perfect
and introduces the error. It is found that the error is dependent
on the spectral band: in particular, the relative error of
restoration is 11.4% to 19.7% for Landsat-8 bands 2-7.
However, the error shows small variations when varying
training data size for SOM training. It should be also noted that
data for SOM training and SOM size are selected automatically.
It is very important when processing large volumes of data, and
is one of the advantages of the proposed approach.

After all missing values are restored a supervised classification
procedure is performed. For this, a committee of MLP
classifiers is used. Two approaches to compose a committee are
evaluated with both showing better performance over a single
MLP classifier. The use of MLPs committee allows us to
achieve overall accuracy of 85.32% and Kappa coefficient of
0.8235 when classifying multi-temporal Landsat-8 images over
the JECAM test site in Ukraine. Accuracy of 85% is usually
considered as a target for space-based agriculture applications
(McNairn et al., 2009). Analysis of user’s and producer’s
accuracies shows that some crop-specific classes achieve the
target accuracy (such as winter wheat, winter rapeseed, maize
and sugar beet) while others do not (spring crops, sunflower and
soybeans). Spring crops class (mostly, barley) is the least
discriminated class due to difficulties in discriminating winter
and spring classes in the field during summer ground surveys,
and confusion with other spring and summer cereals such as rye
and oats. If spring crops and other cereals classes are combined
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together, accuracies considerably increase: from 40.6% to
79.93% of PA and from 34.6% to 83.53% of UA. Winter crops
(wheat and rapeseed) yield very good performance with PA and
UA both more that 91%. There is a mixed performance for
summer crops. In particular, maize and sugar beet exceeded the
threshold of 85% while sunflower (almost exceeded with 84.1%
of PA and 85.4% of UA) and soybeans did not. Soybeans class
is least discriminated summer crop far below the 85% threshold:
PA=69.7%, UA=77.1%. Main confusion of soybeans is with
other summer crops, namely maize, sunflower, and sugar beet.
This is due to similar vegetation cycle of summer crops which
requires much better temporal resolution. Another way to
improve discrimination of summer crops is to utilize SAR
imagery. These activities are ongoing and will be reported in
future papers.

The derived crop map is used for crop area estimation for the
Kyiv oblast. The estimates are compared to the official statistics
and show good correspondence. Relative error for major crops
is within £28%. It should be emphasised that the latest image
that is used to produce a crop map was acquired on the 6th of
August 2013. Therefore, classification could be performed and
crop map could be made available within August-September of
the same vegetation year that is extremely important within
operational context. For comparison, preliminary official
statistics was only available in January 2014.

6. CONCLUSIONS

Knowledge on the area and distribution of crops is extremely
important for many applications. To enable crop mapping at
large scale, remote sensing images from space present the only
source of reliable, continuous and human independent
information. Optical images are contaminated by the presence
of clouds and shadows that introduce missing values in the
datasets. These missing values need to be properly processed to
enable further classification of satellite imagery. This paper
provides an integrated use of unsupervised and supervised
neural networks in order to classify multi-temporal optical
satellite images with the presence of missing data. First, SOMs
are trained on available datasets with non-missing components,
and are used to restore missing values. This restoration
technique is universal, computationally effective and could be
used for multiple scenes and satellite sensors. In the case of
Landsat-8 multi-temporal images that are used in this study, it is
possible to restore spectral bands with up to 19.7% relative
RMSE error. Afterwards, a supervised classification is
performed with the use of committee of MLP classifiers. This
approach is applied for the JECAM test site in Ukraine for large
area crop mapping (more than 28,000 km2). The committee of
MLPs outperforms the best single MLP classifier and reaches a
threshold of 85% of overall classification accuracy
(OA=85.32% and Kappa 0.8235). For the following agriculture
classes an 85% threshold of producer’s and user’s accuracies is
achieved: winter wheat, winter rapeseed, maize, and sugar beet.
Such crops as sunflower, soybeans, and spring crops show
worse performance. The resulting crop map is used to derive
crop area estimates that are compared to the official statistics.
Results show good correspondence with 28% of relative error.
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