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ABSTRACT:

This study aims to analyse the dynamics of land-use and land-cover (LULC) in a selected southern Amazonian area (Brazil),
monitoring and distinguishing trajectories in NDVI (Normalized Difference Vegetation Index) variations for the last three decades.
The area, with a total of 17336 km2, has been subject to significant LULC changes associated with deforestation progress and use of
fire. Considering available Landsat time series, it was selected an image per year from 1984 to 2013 (path/row -231/66), at a
particular period of year, atmospherically corrected using LEDAPS tools. NDVIs values were generated for each selected image.
Furthermore, the images of 1984 and 2010 still underwent a classification of LULC differentiate five categories: water, forest,
secondary/degraded forest, savannah/pasture and crop/bare soil. The trajectories in NDVI variation values were analysed by R
software, considering intersections of classified categories. The pixels identified as forests on the images of 1984 and 2010 displayed
stable trajectories of NDV1 values, with average value 0.824 and coefficient of variation 3.9%. While the pixels of savannah/pasture,
which was periodically affected by fire, had an average NDVI value 0.585 and coefficient of variation 15,1%. The main regressive
trajectory was the transition “forest to crop/bare soil", identifying 1999 as the starting point in the drop in NDVI values, associated
with an increase of the deforested areas. Therefore, the results show distinct trajectories associated with NDVIs and LULC changes

that assist in better understanding the dynamics of ecological processes and the human impacts operating in the area.

1. INTRODUCTION

In recent decades, the southern Brazilian Amazon experienced
increases in the dynamics of land use and land cover (LULC)
associated with the expansion of crop and pasture areas, road
and communication network construction, and population
density growth (Espindola et al., 2012; Morton et al., 2006;
Nepstad et al., 2001). This dynamics results in pressure on
forest resources in the area due to the advance of deforestation,
degradation and intensive use of fire (Aragdo et al., 2008; Lima
etal., 2012; Vasconcelos et al., 2013).

To monitor and better understand the dynamics of ecological
processes and human impacts related to these changes in LULC,
remote sensing data represents an essential source of analysis ,
allowing to generate systematic information in most different
spatial and temporal scales (Nagendra et al., 2013). Two of the
most important initiatives monitoring deforestation and fires in
the Brazilian Amazon, the Assessment of Deforestation in
Brazilian Amazonia (PRODES) (INPE, 2014a) and the
Queimadas project (INPE, 2014b), have fundamental remote
sensing data base to scale and generate information on the use
of fire and deforestation in this area, contributing to the area
management process.

Regarding remote sensing techniques, the generation of
vegetation indexes calculated from the combination of spectral
bands stands out (Bonham, 2013; Turner et al., 2003). Also, the
NDVI (Normalized Difference Vegetation Index) is one of the
most used index. NDVI relates spectral information of the red
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and near infrared generating a variable able to estimate quantity,
quality and development of vegetation (Pettorelli et al., 2005).

To calculate this index, it is possible to count on lifting decades
of satellite sensor information, which highlights the potential of
the Landsat time series (Devries et al., 2015; Ding et al., 2014;
Du et al., 2010; Maxwell and Sylvester, 2012; Zheng et al.,
2015). This time series provides free access to an extensive
gallery of relevant temporal and spatial resolution images,
widely used and validated in scientific research in remote
sensing.

In this context, this study aims to analyze the dynamics
LULCs in a particular southern Amazonian area in Brazil,
monitoring and distinguishing trajectories in NDVI
variations considering the period between 1984 and 2013.
We explore the continuity of Landsat series data to
generate vegetation indexes that help to understand the
spatial dynamics of the selected area.

1.1 Study area

The area covers 17336 km? and is located in the southern
Brazilian Amazon (Figure 1), including cities of
Amazonas state (Nova Aripuand, Manicoré and Humaita),
Rond6nia state (Machadinho d'Oeste, Cujubim and Porto
Velho) and Mato Grosso state (Colniza). The main river
that crosses the area is Machado River and belongs to
Madeira River basin.
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Figure 1. Study site location (red polygon) in the south of Brazilian Amazon (green polygon in the left map). In the right map, the
municipal division of the study area on a clip image Landsat ETM+ (path/row-231/66, composition RGB-643) of August 28, 2013.
The study area currently consists of some regions of agro- 2. METHODOLOGY
pastoral activities, natural conservation areas (including a part )
of the Campos Amazonicos National Park) and indigenous 2.1 Data select and preparation
lands. In zones of agro-pastoral activities, pastures with cattle L . . .
creations and grain crops predominate, using fire as the main ~ Considering - available Landsat time series, download at

form of management.

In terms of phytogeographic composition, the study area has a
savannah vegetation enclave area (Ratter et al., 2003) in a
predominant Amazon biome area. The savannah area, locally
identified as cerrado , displays grasses and shrubs (ICMBio,
2011), while the Amazon area presents tree species from rain
forests, typical of the Amazon forest. Thus, this savanna-forest
interface results in an area of high biological diversity.

The climatic conditions of the region have high annual average
temperatures, ranging between 24°C and 28°C, and an annual
rainfall of up to 2000 mm, with the presence of a dry period
extending from May to October. However, variations of the dry
season may happen in certain years. For example, remote
sensing techniques registered, spatially and temporally, the
effects of regional climate phenomena El Nifio, the Pacific
Decadal Oscillation and the Atlantic Multidecadal Oscillation
(Marengo et al., 2011, 2008; Phillips et al., 2009).

During the dry period, hot pixel detections reveled an intensive
use of fire for the management of agro-pastoral practices
(Silvestrini et al., 2011). The use of fire tended to increase
exponentially with the decrease of rainfall related to the dry
season (Aragdo et al., 2008).

This region has experienced significant LULC changes in the
last decades associated with deforestation progress and use of
fire as a main management instrument to the agro-pastoral
practices. The main reason for these changes is the fact of being
located in the midst of the agricultural frontier zone in a large
area known as ‘arc of deforestation’ of Brazilian Amazon.

<http://glovis.usgs.gov/>, we selected an image per year (Table 1)
from 1984 to 2013 (path/row - 231/66). All images belong to a
particular time of year associated with the dry season in the study
area, between the end of June and the end of August. The
maximum daily difference of the selected images to the time series
is 78 days between the images of 10/09 (2009) and 23/06 (1992).

Regarding our image selection criterion, we considered that the
better pixel quality (based on the information provided by the
supplier), the lower percentage cloud cover and the closer to the
end of the dry season.

We gave priority to the later images on dry period seeking the
maximum of the dynamic information in a given year and
reducing stationary phenological effects of multitemporal
analysis. This is because the closer images to the early dry
season record more vigorous vegetation stages most often
associated with high rainfall rates in the remaining months of
the year (Kobayashi and Dye, 2005).

In order to generate a land surface reflectance for all
selected images we used the software LEDAPS tools
(Masek et al., 2006), which performs an atmospheric
correction for the Landsat reflective bands using the
MODIS/6S radiative transfer approach (Vermote et al.,
1997). The algorithm runs considering an ancillary data of
NCEP (National Centers for Environmental Prediction)
water vapor data and TOMS (Total Ozone Mapping
Spectrometer) data, included in the software distribution,
with aerosols obtained from the image itself using the
dark dense vegetation methodology (Kaufman et al.,
1997).
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Year | Sensor/day-month | Year | Sensor/day-month
1984 L5-TM/04-08 1999 | L7-ETM+/06-08
1985 L5-TM/07-08 2000 L5-TM/15-07
1986 L5-TM/10-08 2001 L7-ETM+/11-08
1987 L5-TM/12-07 2002 L7-ETM+/27-06
1988 L5-TM/14-07 2003 L5-TM/24-07
1989 L5-TM/01-07 2004 L7-ETM+/19-08
1990 L5-TM/04-07 2005 L5-TM/30-08
1991 L5-TM/07-07 2006 L5-TM/16-07
1992 L5-TM/23-06 2007 L5-TM/04-08
1993 L5-TM/26-06 2008 L5-TM/06-08
1994 L5-TM/15-07 2009 L5-TM/10-09
1995 L5-TM/03-08 2010 L5-TM/27-07
1996 L5-TM/05-08 2011 L5-TM/30-07
1997 L5-TM/23-07 2012 L7-ETM+/09-08
1998 L5-TM/24-06 2013 L7-ETM+/28-08

Table 1. Selected Landsat TM/ETM+ images, path/row-231/66.

For those images that had cloud cover (1987, 1989, 1990, 1991,
1993, 1996, 1997, 2002, 2005, 2009, 2011) we generated a
mask from an unsupervised classification to each image held by
the ERDAS Imagine software.

We applied 3x3 pixels order filters to the ETM+ selected images
dated after 2002 and which showed the failure of the SLC (Scan
Line Corrector). The filters were applied six times to each image and
filled the gaps using the information of the neighboring pixels.

2.2 Data process and analysis

Using ERDAS Imagine we generate NDVIs values for each
selected image (from 1984 to 2013), relating the bands 3 and 4
of TM and ETM+ Landsat images considering the radiometric
equivalence of the two instruments (Teillet et al., 2001).

We chose images of 1984 and 2010 to classify the LULC for the
two most extreme dates within the time series, both from the same
sensor (TM), without cloud cover and good pixel quality. We
excluded the image from 2011 from the classification because it had
cloud cover. Classification of images from 2012 and 2013, from the
ETM + sensor, was hampered by filling the gap of SLC off.

The selected images underwent a supervised classification of
LULC using the operator maximum likelihood to differentiate
five categories:

* Forest (F) — areas of dense rain forest or open rain forest. The
last one more associated with forest drainage channels galleries
in the savannah’s enclave area.

* Secondary/degraded forest (Fs) — regenerated forests or in advanced
process of regeneration, as well as areas of degraded rainforests. It also
includes some savanna areas with denser shrub domain.

* Savannah/pasture (SP) — areas of vegetation grasses and shrubs,
largely used as areas of creation of extensive cattle on pastures.

* Crop/bare soil (CB) — includes a ranching and crop farming
areas, with large harvested zones, viewed as bare soil. It also
includes burned areas to crop/pastures usage.

* Water (W) —areas of rivers and small water reservoirs located
in certain pastures and agricultural areas.

This classification was validated by measuring the Cohen kappa
index to each classified image, comparing with a base of control
points. The cloud masks were applied to the NDVI images
associating a nodata value for these cloud pixels. The
trajectories in NDVI variation values were analyzed by R

statistical software, in a sample of random points covering 3%
of the area, with a total of 792411 points.

This analysis divides the main intersections of the classified
categories into two groups: regressive/progressive NDVI
trajectories and stable NDVI trajectories. Thanks to monitoring
of the NDVI trajectories for the period between 1984 and 2013,
we generated average, standard deviation and coefficient of
variation for each pixel group according to the intersection of
thematic classes. A break point detection was calculated for the
progressive/regressive trajectories using a non-parametric
approach (Pettitt, 1979).

3. RESULTS AND DISCUSSION
3.1 LULC dynamics between 1984 and 2010

The result of the classification process (Table 2) (Figure 2) allows a
spatial configuration of the dynamics of the LULC in recent
decades. Validation with a Cohen kappa index shows values of 0.84
and 0.86 to 1984 and 2010 classifications respectively.

Rain forest is the class that occupies the highest proportion of
area in relation to others in both classified dates. In 1984
occupied 79.52% of the total area and 73.02% in 2010. The
savanna/pasture areas extended 2440 km? in 1984 and gained
4.11% of the area, occupying 18.18% of the total area in 2010.

It is noteworthy that in 1984 we observed higher levels of
impact of human activities within the savanna enclave area.
Recently burned area for pasture management might be
identified in the crop/bare soil class.

Among the LULC changes, we mainly identify the loss of forest
areas associated with the advancement of agricultural areas and
pastures in the southern half of the study area during the
analyzed period. In quantitative terms, 563 km? of forest
became crop/bare soil in 2010, and 471 km? became
savannah/pasture.

The analysis records the loss of 1124 km? of forest between
1984 and 2010. This total is compatible with the data recorded
by Assessment of Deforestation in Brazilian Amazonia
(PRODES) (INPE, 2014a), which between 2001 and 2010
records 1069 km? of deforested areas.

Furthermore, occupation of secondary and degraded forests
between 1984 and 2010 increased 1.45%. Currently, they
occupy 349.34 km?. In 1984, these regions were scattered in the
northeast and southwest of the study area and were mainly
associated with degraded zones reflecting the selective logging.
In 2010, these degraded areas expanded and some areas of
forest regeneration appeared thanks to the abandonment of
certain areas and the creation of protected areas.

LULC classes Area (1984) Area (2010)
km? % km? %

Forest 13786.85 | 79.52 | 12660.47 | 73.02
Sec./degraded forest | 97.13 0.56 | 349.34 | 2.01
Savannah/pasture 2440.32 | 14.07 | 3153.29 | 18.18
Crop/bare soil 938.65 | 5.41 | 1099.74 | 6.34
Water 73.75 0.42 73.86 0.42
Total 17336.70 km?

Table 2. LULC dynamics between 1984 and 2010.
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Figure 2. LULC classification of 1984 (a) and 2010 (b).

3.2 Monitoring NDVI trajectories (1984-2013)

In order to monitor the LULC dynamics identified in the
previous step, we generate NDVI values on a yearly basis over
the last three decades (1984-2013). For these trajectories, major
intersections associated with the classification process were
grouped as follows: NDVI stable trajectories; NDVI regressive
or progressive trajectories.

We identify as stable trajectories of NDVI those pixels where
no LULC was detected: 'Forest to Forest' (FF); 'Sec./degraded
forest to Sec./degraded forest' (Fs-Fs); 'Savannah/pasture to
Savannah/pasture' (SP-SP); and 'Crop/bare soil to Crop/bare
soil' (CB-CB).

On the other hand regressive or progressive NDVI trajectories were
associated to the following LULC changes: ‘Forest to
Savannah/pasture’ (F-SP); ‘Forest to Crop/bare soil” (F-CB); and
‘Crop/bare soil to Forest and Sec./degraded forest” (CB-FFs).

3.2.1 NDVI stable trajectories: Each trajectory is located in
specific interval of NDVI values (Figure 3a), according to the
characteristics of its thematic category. F-F and Fs-Fs displayed
their trajectory standing close to 0.80 NDVI values, linked to a
good vegetation development. The average NDVI of SP-SP
trajectory is slightly higher than the CB-CB, with values of 0.63
and 0.54, respectively.

We observe that the trajectories of SP-SP and CB-CB fluctuate
more intensely than the FF and Fs-Fs values. In part, this
variability is associated to increased sensitivity of these classes
to phenological effects, as their most outstanding peaks (1987,
1994, 1998 and 2002) can also be perceived in F-F trajectory.
Moreover, CB-CB and SP-SP are periodically affected by the
intensive use of fire, used as a management tool for agro-
pastoral activities.

These factors influence the variability in both SP-SP and CB-
CB, making it even higher than F-F’s. These differences are
explicit when comparing F-F and SP-SP trajectories (Figure
3b), according to the reported standard deviation. F-F displayed
the most stable trajectory of NDVI values, with an average
value of 0.824 and a coefficient of variation of 3.9%. While the
pixels of SP-SP, which was periodically affected by fire, had an
average NDVI value 0.585 and coefficient of variation 15.1%.

3.2.2 NDVI regressive/progressive trajectories: F-CB
trajectory (Figure 3c) revealed that during the first 13 years
average NDVI values stand close to those from the F-F
trajectory (mean values of 0.828).

After 1997 an increase in standard deviation values is observed,
suggesting certain level of pressure on forested areas. In 1999,
identified as break point of the trajectory (Pettitt, 1979), the
average NDVI values begin to distance themselves from the F-F
values. This detachment is consolidated in 2003, following
gradually, provided with increased participation of CB class of
pixels associated with deforestation. The average NDVI values
are 0.482 in 2010, associated with the CB class.

Splitting the years into two periods 1984-2002 and 2003-2013,
the average of F-CB NDVI values changed respectively from
0.821 to 0.556. This regressive trajectory is associated with 563
km? of forests that became CB in 2010, identified in the
classification process.

The F-SP trajectory (Figure 3d) follows the same logic
established in the F-CB transition, with a steeper decline in the
second half of the review period. However, it is observed that
the standard deviation of F-SP is more variable when compared
to levels of F-F.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-265-2

1.0 a. 10 b.
L o e N e s TP 0.8 w
2 2
Z 064 Z 061
P e e o e Y A ,.._,//.'*
0] A I o - - RN - .- --,*_._._7'_7__1_’7.__- 0.4
1985 1989 1993 1997 2001 2005 2009 2013 1985 1989 1993 1997 2001 2005 2009 2013
Years Years
—— F-F Fs-Fs SP-SP —— CB-CB —— F-F SP-SP
1.0 < 10 d.
, j
i i
'
0.8 i
i
- ; L
B : 3
Z 06 - =
| i
Break Break|
oint | point!
0.4 pomnt 0.4 !
1985 1989 1993 1997 2001 2005 2009 2013 1985 1989 1993 1997 2001 2005 2009 2013
Years Years
—+— F-F —»— F-CB —+— F-F —— F-SP
1.0 & 1.0 f
0.8 1
.
> ' >
= ) ! )
Z 06 . |~
|
i
, - N et e
0.4 L ™ o - T . . e S S
1985 1989 1993 1997 2001 2005 2009 2013 1985 1989 1993 1997 2001 2005 2009 2013
Years Years
—=— CB-CB —+— CB-FFs —+— F-SP —+— F-CB —+— CB-FFs
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to their respective standard deviations. Break points, according Pettitt (1979), are marked on the regressive/progressive trajectories.

Many pixels forest included in this theme category are
associated with areas of forest-savannah interface, which
contributes to the increased sample variability from the
beginning of the time series. The breakpoint identified for this
regressive trajectory is set in 2002, where the descents gradually
expand in the following years. This regressive trajectory is
associated with 471 km? of forests that became SP in 2010.

The progressive trajectory identified (Figure 3e) in the time series
is associated with the combination of categories of CB and a
grouping of categories of Forest and Sec./degraded forest (FFs).
In this trajectory, the NDVI values start with an average value of
0.475, starting to increase gradually in the following years. The
breakpoint identified is the year 1997, where the average NDVI
was already performing 0.712. From 1997 until 2013, it is
observed that this group of pixels keeps the average stable without
reaching the levels of FF NDVI. This progressive trajectory is a
minor trend within the area. Is related to the gain of 18 km? FFs in
2010, replacing areas classified as CB in 1984.

All of these regressive/progressive trajectories (Figure 3f) display
information about the LULC changes operating on the study area.

4. CONCLUSION

The results show distinct trajectories associated with NDVIs
and LULC dynamics that assist in better understanding the
dynamics of ecological processes and the human impacts
operating in the area.

In the stables NDVI trajectories, is possible observe different
temporal behaviours depending on vegetation type. Forests have
proved to be the most stable community according to its NDVI
values. On the other hand, we detected high sensitivity in
savannah-type vegetation (scrubs, grasslands and pastures) to
disturbances such wildfire or climatic/phonological effects.

NDVI multitemporal analysis has proved to be a useful tool
allowing detecting and monitoring LULC changes. In this
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particular case, combining NDVI monitoring and change point
detection procedures, made possible to identity an increase in
the deforestation process, mainly affecting rain forest
communities, starting 15 years ago and becoming more intense
over time.

It is worth to stand out the current potential of Landsat products
since Landsat 8 satellite, launched in 2013, guarantees their
continuity. This fact allows enhancing valuable multitemporal
analysis and monitoring of remote areas.

ACKNOWLEDGEMENTS

This work is supported by a grant from the CAPES Foundation
(Brazil) awarded to the first author.

REFERENCES

Aragdo, L.E.O.C., Malhi, Y., Barbier, N., Lima, A.,
Shimabukuro, Y.E., Anderson, L., Saatchi, S., 2008.
Interactions between rainfall, deforestation and fires during
recent years in the Brazilian Amazonia. Philosophical
transactions of the Royal Society of London, 363, 1779-85.

Bonham, C.D. (Colorado U., 2013. Measurements for
Terrestrial Vegetation, 2nd ed. John Wiley & Sons, Ltd,
Oxford, UK.

Devries, B., Verbesselt, J., Kooistra, L., Herold, M., 2015.
Remote Sensing of Environment Robust monitoring of small-
scale forest disturbances in a tropical montane forest using
Landsat time series. Remote Sensing of Environment, 161, 107—
121.

Ding, Y., Zhao, K., Zheng, X., Jiang, T., 2014. Temporal
dynamics of spatial heterogeneity over cropland quantified by
time-series NDVI, near infrared and red reflectance of Landsat
8 OLI imagery. International Journal of Applied Earth
Observation and Geoinformation, 30, 139-145.

Du, H., Cui, R., Zhou, G., Shi, Y., Xu, X., Fan, W., L{, Y.,
2010. The responses of Moso bamboo (Phyllostachys
heterocycla var. pubescens) forest aboveground biomass to
Landsat TM spectral reflectance and NDVI. Acta Ecologica
Sinica, 30, 257-263.

Espindola, G.M. de, Aguiar, A.P.D. de, Pebesma, E., Camara,
G., Fonseca, L., 2012. Agricultural land use dynamics in the
Brazilian Amazon based on remote sensing and census data.
Applied Geography, 32, 240-252.

ICMBIo, Instituto Chico Mendes de Conservagdo da
Bioiversidade., 2011. Plano de Manejo - Parque Nacional dos
Campos Amazonicos, Brasilia, Brazil.

INPE, Instituto Nacional de Pesquisas Espaciais, 2014a.
PRODES: assessment of deforestation in Brazilian Amazonia.
Sao José dos Campos, Brazil
http://www.obt.inpe.br/prodes/index.html.

INPE, Instituto Nacional de Pesquisas Espaciais, 2014b.
Queimadas project. Sdo José dos Campos, Brazil
http://www.cptec.inpe.br/queimadas/.

Kaufman, Y.J., Wald, A.E., Remer, L. a., Gao, B.-C.G.B.-C.,
Li, R.-R.L.R.-R., Flynn, L., 1997. The MODIS 2.1 channel-
correlation with visible reflectance for use in remote sensing of
aerosol. IEEE Transactions on Geoscience and Remote
Sensing, 35, 1286-1298.

Kobayashi, H., Dye, D.G., 2005. Atmospheric conditions for
monitoring the long-term vegetation dynamics in the Amazon
using normalized difference vegetation index. Remote Sensing
of Environment, 97, 519-525.

Lima, A, Silva, T.S.F., Aragdo, L.E.O. e C. de, Feitas, R.M. de,
Adami, M., Formaggio, A.R., Shimabukuro, Y.E., 2012. Land
use and land cover changes determine the spatial relationship
between fire and deforestation in the Brazilian Amazon. Applied
Geography, 34, 239-246.

Marengo, J.A., Nobre, C.A., Tomasella, J., Oyama, M.D.,
Oliveira, G.S. de, Oliveira, R. de, Camargo, H., Alves, L.M.,
Brown, I.F., 2008. The Drought of Amazonia in 2005. Journal
of Climate, 21, 495-516.

Marengo, J.A., Tomasella, J., Alves, L.M., Soares, W.R.,
Rodriguez, D.A., 2011. The drought of 2010 in the context of
historical droughts in the Amazon region. Geophysical
Research Letters, 38, 1-5.

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall,
F.G., Huemmrich, K.F., Gao, F., Kutler, J., Lim, T., 2006. A
Landsat Surface Reflectance Dataset for North America, 1990-
2000. IEEE Geoscience and Remote Sensing Letters, 3, 68—72.

Maxwell, S.K., Sylvester, K.M., 2012. Identification of “ever-
cropped” land (1984-2010) using Landsat annual maximum
NDVI image composites: Southwestern Kansas case study.
Remote Sensing of Environment, 121, 186-195.

Morton, D.C., DeFries, R.S., Shimabukuro, Y.E., Anderson,
L.O., Arai, E., Espirito-Santo, F. del B., Freitas, R., Morisette,
J., 2006. Cropland expansion changes deforestation dynamics in
the southern Brazilian Amazon. Proceedings of the National
Academy of Sciences of the United States of America, 103,
14637-41.

Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H.G.,
Tarantino, C., Adamo, M., Mairota, P., 2013. Remote sensing
for conservation monitoring: Assessing protected areas, habitat
extent, habitat condition, species diversity, and threats.
Ecological Indicators, 33, 45-59.

Nepstad, D., Carvalho, G., Barros, A.C., Alencar, A.,
Capobianco, J.P., Bishop, J., Moutinho, P., Lefebvre, P., Silva
Jr., U.L., Prins, E., 2001. Road paving, fire regime feedbacks ,
and the future of Amazon forests. Forest Ecology and
Management, 154, 397-407.

Pettitt, A.N., 1979. A non-parametric approach to the change-
point problem. Journal of the Royal Statistical Society. 28,
126-135.

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker,
C.J,, Stenseth, N.C., 2005. Using the satellite-derived NDVI to
assess ecological responses to environmental change. Trends in
Ecology and Evolution. 20, 503-510.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-265-2

Phillips, O.L., Aragéo, L.E.O.C., Lewis, S.L., Fisher, J.B.,
Lloyd, J., Lépez-Gonzélez, G., Malhi, Y., Monteagudo, A.,
Peacock, J., Quesada, C.A., Heijden, G. Van Der, Almeida, S.,
Amaral, I., Arroyo, L., Aymard, G., Baker, T.R., Banki, O.,
Blanc, L., Bonal, D., Brando, P., Chave, J., Oliveira, A.C.A. de,
Cardozo, N.D., Czimezik, C.1., Feldpausch, T.R., Freitas, M.A.,
Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P.,
Mendoza, C., Morel, A., Neill, D.A., Nepstad, D., Patifio, S.,
Pefiuela, M.C., Prieto, A., Ramirez, F., Schwarz, M., Silva, J.,
Silveira, M., Thomas, A.S., Steege, H., Stropp, J., Vasquez, R.,
Zelazowski, P., Davila, E.A., Andelman, S., Andrade, A., Chao,
K., Erwin, T., Fiore, A. Di, C, E.H., Keeling, H., Killeen, T.J.,
Laurance, W.F., Cruz, A.P., Pitman, N.C.A., Vargas, P.N.,
Ramirez-Angulo, H., Rudas, A., Salaméo, R., Silva, N.,
Terborgh, J., Torres-Lezama, A., 2009. Drought Sensitivity of
the Amazon Rainforest. Science (80 ). 323, 1344-1347.

Ratter, J.A., Bridgewater, S., Ribeiro, J.F., 2003. Analysis of
the floristic composition of the Brazilian cerrado vegetation:
comparison of the woody vegetation of 376 areas. Edinburgh J.
Bot Edinburgh Journal of Botany, 57-1009.

Silvestrini, R.A., Soares-Filho, B.S., Nepstad, D., Coe, M.,
Rodrigues, H., Assuncéo, R., 2011. Simulating fire regimes in
the Amazon in response to climate change and deforestation.
Ecological Applications, 21, 1573-1590.

Teillet, P., Barker, J., Markham, B., Irish, R., Fedosejevs, G.,
Storey, J., 2001. Radiometric cross calibration of the Landsat-7
ETM+ and Landsatt-5 TM sensors based on tandem data sets.
Remote Sensing of Environment, 78, 39-54.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling,
E., Steininger, M., 2003. Remote sensing for biodiversity
science and conservation. Trends in Ecology and Evolution, 18,
306-314.

Vasconcelos, S.S. de, Fearnside, P.M., Graga, P.M.L. de A,
Dias, D.V., Correia, F.W.S., 2013. Variability of vegetation
fires with rain and deforestation in Brazil’s state of Amazonas.
Remote Sensing of Environment, 136, 199-209.

Vermote, E.F., El Saleous, N., Justice, C.O., Kaufman, Y.J.,
Privette, J.L., Remer, L., Roger, J.C., Tanré, D., 1997.
Atmospheric correction of visible to middle-infrared EOS-
MODIS data over land surfaces: Background, operational
algorithm and validation. Journal of Geophysical Research,
102, 17131.

Zheng, B., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M.,

2015. A support vector machine to identify irrigated crop types
using time-series Landsat NDVI data. International Journal of
Applied Earth Observation and Geoinformation, 34, 103-112.



