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ABSTRACT:

Most data sets and streams have a geospatial component. Some people even claim that about 80% of all data is related to location. In
the era of Big Data this number might even be underestimated, as data sets interrelate and initially non-spatial data becomes
indirectly geo-referenced. The optimal treatment of Big Data thus requires advanced methods and technologies for handling the
geospatial aspects in data storage, processing, pattern recognition, prediction, visualisation and exploration. On the one hand, our
work exploits earth and environmental sciences for existing interoperability standards, and the foundational data structures,
algorithms and software that are required to meet these geospatial information handling tasks. On the other hand, we are concerned
with the arising needs to combine human analysis capacities (intelligence augmentation) with machine power (artificial intelligence).
This paper provides an overview of the emerging landscape and outlines our (Digital Earth) vision for addressing the upcoming
issues. We particularly request the projection and re-use of the existing environmental, earth observation and remote sensing
expertise in other sectors, i.e. to break the barriers of all of these silos by investigating integrated applications.

1. INTRODUCTION

Today, more and more data becomes available (discoverable
and accessible) — on purpose, or unintended. In this era of “Big
Data” — i.e. in a situation in where the volume, variety, velocity
and veracity (3+1 Vs) in which data sets and streams become
available challenges current management and processing
capabilities (Hey et al, 2009) — we undergo a paradigm shift
from the mentality to ask for all images related to theme X in
region Y at time Z, to requests such as: “give me all that you
have that is related to this area” or “give me all that you have
that is related to that object”. Potentially relevant data does not
any more come from a known (small) community, but from
everywhere. This naturally leads to a clash of working practices
and cultures.

With this in mind, our work exploits earth and environmental
sciences for existing interoperability standards, and the
foundational data structures, algorithms and software that are
required to meet the geospatial information handling tasks in
Big Data research. Furthermore, we are concerned with the
arising needs to combine human analysis capacities
(intelligence augmentation) with machine power (artificial
intelligence) in order to advance knowledge discovery across
data sets and streams from open, commercial and civic sources.

This paper provides an overview of the emerging landscape and
outlines our (Digital Earth) vision for addressing the upcoming
issues. We particularly request the projection and re-use of the
existing environmental, earth observation and remote sensing
expertise in other sectors, i.e. to break the barriers of all of these
silos by investigating integrated applications.

The remainder of this paper is structured as follows. The next
section presents the emerging Big Data landscape both on the
general level, as well as in relation to geospatial information,
earth and environmental sciences. Thereafter, in Section 3, we

briefly outline our recent activities that explore multiple facets
of geospatial data analysis and visualisation, particularly
considering new data sources, novel technologies, and means
for integration. Section 4 discusses the findings from these
activities and sets them into the technical, semantic and
organisational context, just before we draw our conclusions and
derive future work items in Section 5.

2. BIG DATA LANDSCAPE

It only requires a quick look at www.bigdatalandscape.com to
understand that the landscape of Big Data technologies,
architectures and applications is complicated. While a few
prominent players could already establish themselves, many
specialised products are equally available. Below, we report on
our impressions of the mainstream technologies, as well as of
dedicated geospatial information handling tools.

2.1 Overall landscape

Although the overall functional requirements and system
components have been identified (see e.g. the work of the US
National Institute of Standards and Technology — NIST
(bigdatawg.nist.gov)) on the general level and (Lee and Kang,
2015) for a representative example that is particularly related to
Big Geospatial Data), the underlying technologies are still
evolving, and their landscape remains dynamic. We might
expect stabilization only in the medium term.

The required ecosystem of technologies and infrastructures
demands contributions from a wide community and it is
difficult to provide full-fledged solutions off-the-shelf. Looking
into the technologies and infrastructures, some commercial
tools tend to become open source, and many are even
undergoing the incubation process of the Apache Software
Foundation (www.apache.org). Several products/components
both in the Apache Hadoop stack (hadoop.apache.org) and in
commercial products — even within the same company — have
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overlapping functionality. It appears that, if an organisation
envisages a wide range of Big Data applications, then it is most
likely best served with an open source solution. The specialised
commercial products might - on the one hand - not adopt to all
needs, and - on the other hand - many of the provided more
generic capabilities might remain unused. Still, the rich set of
application areas lead to case-dependent adaptations of the
available solutions, for example, many of the Big Data analytics
platforms criticize the pure MapReduce (Dean and
Ghema,2004) and provide their optimized versions or simply
replace it, e.g. using Drill (http://drill.apache.org).

Nevertheless, we witness some consistency across current
approaches when voluminous data has to be handled quickly.
Here, incoming data is channelled into processing pipes. The
control of the data flow (together with resource allocations) is
often separated from the specific algorithms that are required in
each processing step. These might even be realized with diverse
programming language, such as R (www.r-project.org) or
Python (www.python.org). It might be possibly to consider a
generalization over all approaches, but it remains to be seen if
the most common denominators are still meaningful or resolve
in common sense. Abstractions of workflows as interconnected
functions might prove useful.

All in all, Big Data as such does not necessarily imply the need
for huge computing power, or (for the geospatial information
science, earth observation and remote sensing communities) to
focus on computational capacities. Storage and computing
facilities are advancing while they become increasingly
requested. Undoubtedly, this area requires dedicated and
coordinated action, but the related concerns should be
addressed by computer scientists and system engineers so that
the required supporting technologies are provided across
application domains. In the end this should lead to the optimal
e-Infrastructure that offers cross cutting support to (Research
Infrastructures of) multiple application areas — including remote
sensing, but also helping to breach out into other fields.

2.2 Landscape on geospatial capabilities for Big Data
handling

Ultimately, most data sets and streams have a geospatial
component. Years ago, some people claimed that about 80% of
all data is related to location. In the era of Big Data this number
might even be underestimated, as data sets interrelate and thus
initially non-spatial data becomes indirectly geo-referenced (by
associating it to some spatial data set). Consequently, any
ignorance of expert geospatial solutions for Big Data challenges
unavoidably limits knowledge extraction and thus fails to
exploit hidden potentials.

Indeed, geospatial intelligence increasingly finds applications
across sectors, not only within earth and environmental sciences
- where it is traditionally applied. Some of the many examples
include health care, utilities, transport and retail (Buchholtz et
al, 2014). All of these sectors — and many more — currently
investigate possible benefits from the use of the spatially-
enabled Internet of Things (IoT), geo-located social media, and
more general aspects of geospatial information handling.

When talking about Big Data in geospatial intelligence, we

particularly see the following match with the 3+1 Vs:

e Volume: large data volumes primarily appear from remote
sensing (usually 2D images, such as those delivered by
the Sentinels of the FEuropean Space program

(Copernicus), or point clouds in 3D, such as LIDAR), or
from intense modelling as mostly done for immediate and
medium  range  weather  forecasting (see e.g.
www.ecmwf.int) and climate modelling (see e.g.
www.noaa.gov). Array data bases and (for point clouds)
columns stores are applied (Baumann et al, 2014).

e Velocity: high throughput appears while transmitting and
processing large single volumes or continuous inputs - of
the same type but from massive amounts of sources, e.g.
in the context of the IoT. In stream processing and
distributed computing (e.g. cloud or HPC) are applied.
Parallelization algorithms depends on the applied tools
(such as STORM/trident (storm.apache.org) or Kafka
(kafka.apache.org)).

e Variety: given any place on earth (or elsewhere), we
already today receive spatially-related data sets and
streams for multiple sources. These are expected to grow
and accumulate over time. Using spatial co-occurrence,
classical geospatial technology and the possibility to
ground information in physical space already provide
huge asserts for data integration. However, - as in many
other domains - data integration from multiple sources
still poses huge organizational, legal, semantic and
technical interoperability challenges. Some of the
promising approaches that require further investigations
include: brokering (Nativi et al, 2012), linked data (Auer
et al, 2009) and semantic integration/fusion (Mau é and
Schade, 2009).

e Veracity: the question of reference data and differentiation
between ‘authoritative’ sources and user-contributed
contend (sometimes Volunteered Geographic Information
(Goodchild, 2007) is still heavily discussed in the
geospatial community (a, for example, during the
Geospatial Information Observatories workshop at last
year’s GIScience conference), and — closely related - also
in statistics research (see for example the latest conference
on New Techniques and Technologies for Statistics).

In terms of available geospatial information handling
capabilities, we see mature support in the area of gridded data
sets (and streams), which wusually represent field-like
phenomena in space time — including point clouds from radar,
images, grids of all kinds — these mostly support earth
observation and climate sciences, but also some areas of
hydrology and hydrography. Native support for vector formats
(except grids) remains in its infancy. Apart from some support
of (2D) geospatial indexing and simple geospatial filters for
data queries, we currently do not see much sophisticated Big
Data capabilities for the processing of geospatial objects. This
observation follows the owverall support of geospatial data
handling by mainstream Information and Communication
Technology (ICT), which usually does not expand beyond point
data (latitude/longitude). We see room for extended research
and innovation relating to the spatial-temporal processing of
object related data, including 3D, such as trajectories of all sorts
of entities (e.g. from RFID, GPS, Galileo or mobile phone data)
and data streams from the loT.

Together with new modes of immersive and collaborative visual
analytics for use in education and science, these capabilities will
enable the implementation of a next-generation Digital Earth
(Goodchild et al, 2012). Accordingly, within the context of this
paper, we call the solutions for Big Data analysis and
visualisation in the environmental and earth sciences, which can
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be used for small as well as large heterogeneous datasets,
Digital Earth platforms.

3. OVERVIEW OF CASE STUDIES

Last year (2014), we carried out ten case studies in order to (i)
examine components of such Digital Earth platforms; (ii)
identify some new possibilities; and (iii) gain hands-on
experiences from both, the examination of new data sources, as
well as the projection of already ongoing work into a Big Data
context. In order to illustrate parts of the arising capabilities and
to provide a basis for discussion, we briefly present all ten case
studies below, grouped by the underlying motivation, and
including pointers to further readings — where available.

3.1 3D platform for geospatial data handling

In order to investigate the current opportunities for handling 3D
geospatial visualizations and thereby identify promising ways to
provide a core baseline for any Digital Earth platform, we
investigated two technology options for the potential of the
“Core003” data set, a Very High Resolution (VHR) optical
coverage over the member and cooperating countries of the
European Environment Agency (EEA) that was generated from
SPOT-5 data through multi-spectral 2.5 meters resolution data
ortho-rectified with a geo-location accuracy of less than 5
meters Root Mean Square Error (RMSE):

e 3D browser based viewer: We initiated an experiment to
advance the current Core003 viewer (JRC, 2014) that has
been developed by our colleagues. The new activity aims
to develop a web viewer showing a detailed 3D
representation of the European land, using the 2.5 meters
Core003 true colour mosaic as a raster overlay. The
implementation is realized with Cesium and WebGL
(cesiumjs.org), and allows to overlay visualisations from
standard conform Web Map Services (WMSs) (OGC,
2006).

e Advanced 3D application: In parallel to the viewer, and in
order to compare the potentials of a browser-based
solution with the capabilities of a stand-alone application,
we started the development of a second platform. This
should provide a powerful 3D desktop application with
advanced functionality. Furthermore, the experiment has
the goal to also work on large touch screen systems,
allowing a direct interaction with the “hands on” the 3D
model representations.

Considering 3D visualisation, and particularly the application of
Cesium and WebGL, we found a mature, highly customizable
and open software solution that is able to deal with voluminous
geospatial datasets. The Cesium platform is open to all affirmed
and emerging standards in the 3D visualisation field to design
and integrate detailed models into the virtual globe and is a
highly powerful spatio-temporal platform. However, if we
desire to apply advanced visualisation technologies efficiently
and effectively, then these investigations teach us that — at least
currently — we have to rely on desktop applications.

3.2 Investigating usage potential of social media platforms

Social media provide potential now data sources that might
complement traditional remote sensing and earth observation
with “social sensing” in future Digital Earth platforms. We
focus our examinations on the-re-use of existing software

libraries and applications of novel data handling technologies

with the following initial activities:

e Using new database technologies to store and query
social media data: In order to investigate the particular
capabilities of the NoSQL database MongoDB
(www.mongodb.org), we ran a case study that
investigated its potential use for social media analysis,
here especially focusing on data feeds from the
microblogging site Twitter in Dorset, a small region in the
UK (Juhasz, 2014).

e Using social network analysis to sense social behaviour:
We conducted a short-term case study that focuses on
communication patterns in Twitter before and during the
United Nations climate summit in September of 2014.
This activity was conceived as a didactic example of how
to make scientific processes more transparent (and
reproducible) and re-used tools of the first mentioned
experiment.

e  Using social media platforms to complement authoritative
vector data: In this case study we investigated the
suitability of social media data (especially from
Foursquare) as a data source for determining building use.
A case study has been conducted in Amsterdam, in an
area of 72.12 km2, where 112,567 buildings are located
(Spyratos et al, submitted).

All three experiments together reveal possibilities and
limitations when extracting knowledge from these relatively
new data sources. Any social media analysis has to face
linguistic issues — not only across languages, but also in respect
to stop words or modifications of terms, e.g. to express
sentiments. Issues of geo-location remain, as still approximately
only 1% of Tweets are geo-located. The extraction of place
names is of limited success. It has to be particularly considered
that — due to the usage conditions of most social media
Application Programming Interfaces (APIs) — we always
retrieve (unknown) subsets/samples. To this sense, social media
is a fragile source and results are thus rather indicative than
conclusive. More operational activities would benefit from full
access, which mostly would mean purchase of the full data set.

If social media data is used for a new purpose, it cannot be
expected to fully replace a targeted method that is already in
place. However, it might provide useful complementing
insights. The use of social media data in combination with other
sources (e.g. coming from the public sector) remains a
promising research direction. Still, if should also be noted that
such applications are highly case dependent, i.e. each
application area requires a dedicated set-up, calibration and
evaluation mechanism. In any case, data from social media
always cover only a non-representative part of society.

3.3 Sensing technologies and the Internet of Things

As sensor networks remain to flourish with the 10T paradigm
(Kortuem et al, 2010), we also began to investigate potential
processing mechanisms and tools. Here, applications exceed
way beyond current (environmental) monitoring networks, due
to the increased integration of industrial sensing devices into all
sorts of manufactured goods, but also the use of low-cost
sensors by layman (as a form of Citizen Science (Haklay,
2012)). We particularly investigated two mechanisms:
e Real-time event detection from sensor networks: Each
sensor in each network produces a stream of data and has
the capacity to send a large number of observations. It
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becomes difficult to analyse all of these observations in
the moment that the raw values are obtained. This case
study was targeted to this this particular Big Data
challenge and investigated mechanism to analyse the
arising flood of monitoring data. We provided a proof of
concept implementation based on the Storm framework
and tested in with a regional environmental sensor
network (Trilles et al, 2015, Trilles et al, submitted).

e  Service-Enabled Sensing Platform for the Environment:
Considering the particular challenges of handling
information from sensor networks and taking an approach
of reducing the data transfer and storage needs outside the
originally data producing agents (the sensors), we
investigated a novel methodology for handling data within
networks of distributed sensors. This case study
concentrated on  the underlying  architectural
considerations and possibilities of deploying sensor-near
processing facilities in order to deal with Big Data
originating from the loT. The first developments focused
on a test set-up in the area of air quality monitoring
(Kotsev et al, 2015).

These solutions do not only address (big) data velocity. Each of
them also covers aspects of scalability and flexibility, two
essential requirements when dealing with large data volumes in
future Digital Earth platforms. Last but not least, although both
case studies were carried out with specific environmental data
sources, they offer topic independent designs and could also be
applied to data integration, i.e. resolving issues of (big) data
variety. The surrounding methodology and essential software
components could be identified and facilitated. These more
general capabilities provide room for continues and extended
testing.

3.4 Handling the complexity of data integration

With a more integrative view on Digital Earth platforms, and

following our earlier work on the Infrastructure for Spatial

Information in Europe (INSPIRE) (Schade, 2013), integrated

modelling (Granell et al, 2013), as well as a Digital Earth

Nervous System (De Longueville et al, 2010), the concept of

the Observation Web (Havlik et al, 2011) we continued our

investigations of integration mechanisms across multiple types
of data sources. Those included:

e Visualisations of complex metadata: As connecting
(linking) rich metadata is increasingly recommended on
top of Big Data, we begin to investigate possibilities to
explore rich metadata and to highlight relevant aspects in
given practical context. Hence, we selected the INSPIRE
metadata that is available from the official INSPIRE
geoportal (inspire-geoportal.ec.europa.eu). It provides an
interesting case for the visual analysis of environment-
related data in an EU policy-making context. With more
than 300.000 metadata records of largely unstructured
data, a web of relationships emerges when visualised
properly. We particularly used Gephi (www.gephi.org) as
a tool to highlight health related themes in the available
INSPIRE metadata about data, services and applications.

e Model transparency: In our digital age, model
transparency, i.e. the access to models, platforms,
frameworks and systems, together with their descriptions,
related input and output data, impact assessments as well
as related documentation of any kind, is one of the holy
grails across all sciences. Addressing transparency often
requires institutional, cultural and technical challenges.
Especially the challenge of complexity closely relates to

the visualisation of wvarying types of (big) data.
Accordingly, we related ongoing work of the management
of models and related access services within the Joint
Research Centre (JRC) to Big Data challenges on
integration and visualization (Ostlander et al, submitted).

e New modes for multi-sensory integration: We began to
exploit the potentials of multi-sensory integration to
further develop the surrounding concept of a Digital Earth
Nervous System, thereby not processing different data
streams in parallel but together. We found that
particularly promising research objectives include the
assessment of a sensor’s observations’ validity through
possibility methods and the use of crowd-sourcing to
supervise machine-learning of algorithms and rules to
filter, sort and organized stimuli into coherent
perceptions. (Ostermann and Schade, 2014).

As already indicated in relation to the case studies on social
media, but equally true when also considering the loT, any
investigation, especially if a combination of data sources is
considered, required — at least in parts - dedicated data flows
and particular calibrations considering the targeted questions. A
generic detection of anomalies for initiating more detailed (and
specialised) investigations that also consult other data sources
might be desirable. It also became obvious that not only the
facilitated data sources will have to be well described, but also
the used software tools, models, algorithms and underlying
assumptions. The resulting flood of meta-data requests now
forms of visual analytics, so that potential users can identify
potentially relevant information and judge their fitness for
purpose in respect to their particular contexts — that are largely
unknown at the time of data gathering.

4. DISCUSSION

In the light of investigating possible Digital Earth platform(s) of
the future, we focus our discussion not on particularities of the
case studies that were just presented above, but reflect on the
overall experiences and impressions gained from the numerous
investigations. Taking the standpoint that underlying issues of
infrastructure and hardware should be addressed by computer
science and software engineering (see Section 2.1), we found
three major barriers that should be overcome in order to fully
address the challenges that the ever growing volume, variety
and velocity of data are posing to earth and environmental
sciences (with strong dependencies between each other, as we
will see in the conclusions).

4.1 Technical barrier

Alongside the ten case studies that we carried out and by
reviewing the current Big Data landscape we saw a wide range
of architectural solutions, partial implementations and software
components, which each addressed some issue of geospatial
information handling and were usually specialized for a
particular use. Having a rich choice for implementations is
useful on the one hand because existing resources might be re-
used, but on the other hand puts not only a burden in the
identification of an appropriate solution to a particular problem
and potential implications of a technological choice (and
investment) on the capacities to solve future scientific
challenges. It also introduces a barrier in sharing experiences
between any two parties that follow different approaches. This
might result in a diversification of methodologies and tools,
already within advanced environmental and earth analytics. We
see a danger to provide solutions for on-demand knowledge



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-291-1

extraction from highly assimilated structures, semi-structured
and unstructured data (including in-situ measurements, ex-situ
observations, and remotely sensed images and point clouds) that
do not work together. Such technical heterogeneities put
barriers to data integration, one of the main assets promoted by
the Big Data movement.

Having said this, one might assume that the joint development
of one technical platform for all environmental and earth
analytics would be the optimal solution. However, apart from
cultural and political issues, this is highly unlikely to happen
because of reasons of complexity and complication. The use of
earth observation and environmental data is already so diverse
that the optimisation of a solution for one particular field of
expertise would not fit the others. Furthermore, why should
some researcher be forced to use a universal tool that by
definition would be hard to learn when (s)he has only a very
dedicated small data handling task to complete? In other words,
a Digital Earth platform should never be the next-generation
Geospatial Information System (GIS) or Spatial Data
Infrastructure (SDI).

In essence, although present solution, such as NASA World
Wind (worldwind.arc.nasa.gov) or Google Earth Engine
(earthengine.google.org) exist, we should not expect one single
solution for all possible purposes. On the contrary, we should
not focus on the one fits all technical solution, i.e. to develop
yet another platform that is supports all possibly required
analysis tasks, but consider an un-platform, in the sense that
allows to re-use and connect already existing pieces and
captures the meta level of describing performed experiments
and lessons learned.

4.2 Semantic barrier

The wide range of architectural solutions, partial
implementations and software components, can equally be
witness beyond the earth and environmental sciences.
Accordingly, we see a strong requirement to provide easier
access and means for connecting ‘foreign’ (i.e. non- geospatial,
environmental, remote sensing and earth observation) domains.

While a few trends, such as the move from Hadoop (and thus
MapReduce) to Scala (scala-lang.org) or the separation between
the handling of data flows and the execution of algorithms to
the content emerge, portability between knowledge
communities remains difficult. This is particularly a problem for
Big Data, because — as already mentioned in the first paragraph
of this paper — potentially useful data does not reside inside a
well-known community any more, but might be offered by any
third-party. Work across currently existing communities,
including the earth observation and remote sensing
communities, can only be established large scale if we do not
bind the use of the community data sets and related tools to one
(or few) community specific tools. We have to find a way to
easily and quickly understand third-party data sets, their fit for
purpose, and the required processing capabilities.

Consequently, proposed solutions should not (only) work
together, but it should be easy to transfer generated knowledge
between specific institutions, infrastructures and technological
components, as well as to replace and customize parts of the
methodology with another implementation or even architecture,
especially across knowledge domains.

4.3 Organisational barrier

The interdisciplinary work that we just argued for obviously has
to overcome organizational issues, including not only the
crossing of scientific cultures such as the collaboration between
the natural sciences and the social sciences. It also has to
address the relation between science, industry and the public.
Issues of privacy and ethics obviously arise when dealing with
data from as many sources as possible and by deriving new
findings out of their combination. These items have to be
addressed in any serious Big Data research and citizen
engagement seems a promising (if not the only) pathway.

Some of the already existing platforms allow to reduce
complexity that far, that also stakeholders without any scientific
background can be involved in the analysis activities. Until
some years ago, the use of complex algorithms and analysis
methodologies were only available to scientists. Now, advanced
visual analytics also allow citizen participation to integrative
research in a trans-disciplinary way which foresees tightly
integrated research, the latter involving participants without any
academic background.

This finally moves us into an era that breaks barriers for Citizen
Science. Here, GalaxyZoo or the many other projects of
Zooniverse (Www.zooniverse.org) provide impressive examples
of successful storytelling and the use of gamification techniques
—many of which largely benefit from the increased resolution in
earth observation, as people become able to identify objects in
pictures and can get engaged because they see their house or
local neighbourhood from a birds-eye-perspective. These
developments open a whole new range of applications driven by
earth observation products, way beyond the traditional use in
expert systems or as pure background imagery. In this way,
latest visualisation and visual analytics technologies empower
us to move beyond social sensing - in which laymen collect data
- to (social) co-delivery of scientific evidence. With solutions
such as Geo-Wiki (www.geo-wiki.org), and follow-up activities,
everybody gets empowered to also analyse his/her own data,
information collected by others, and much more. The
convergence of (a) increasing data volumes from earth
observation (and space) technologies, which pose data
processing challenges and excel the limits of automated feature
detection from imagery; and (b) enabling essentially everybody
who can use a web-based application, is a huge chance for
massive social engagement. This provides immense new
possibilities in developing the “social machine” (de Roure,
2014), i.e. the optimised combination of human analysis
capacities (intelligence augmentation) with machine power
(artificial intelligence) in which simplification, pattern
recognition and ground truthing by humans feeds into self-
learning algorithms and vice versa.

With this we reach a state in which it becomes clear that we
should not (only) address the technocratic dimension of Big
Data, but increase investigations of the social and behavioural
dimension, i.e. real stakeholder engagements, community
building, and possibly before all other, citizen participation.

5. CONCLUSION

In this paper we investigated the ongoing work around the
notion of Big Data from an exploratory point of view and
introduced the notion of Digital Earth platforms which might
integrate traditional remote sensing and earth observation tools
with newly arising knowledge sources powered by concepts
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such as social sensing and the loT. We our view on the
emerging landscape, explained the way we try to learn about
this arising field ourselves, while deriving findings that might
be valuable for the wider community. This last point seems
particularly timely and valuable because many research
organisations are currently testing and taking first steps in the
Big Data landscape, while large scale roll outs and operational
deployments are still rare. We particularly underline the
requirement to exchange knowledge between communities and
grow together.

On the technical level, we promote advanced environmental and
earth analytics services to provide on-demand knowledge
extraction from highly assimilated structures, semi-structured
and unstructured data (including in-situ measurements, ex-situ
observations, and remotely sensed images and point clouds).
Considering semantic interoperability we stress the requirement
to provide easier access and means for connectivity ‘foreign’ —
i.e. non- geospatial, environmental, remote sensing and earth
observation — domains. Organisationally, we argue for a social
and behavioural approach that crosses scientific cultures
(including thematic practices, open research and citizen science)
and thus fostering inter-disciplinary work.

Considering the three barriers that we identified for the earth
and environmental sciences — do not develop (yet) a(nother)
platform, do not (only) work together, and do not (only) be
technocratic — we might conclude that the real elephant in the
room, which so many are searching for, is real openness; or in
other words: do not (only) address the easy part of Open Data.
As Adams and Gahegan (2014) pointed out recently, we have to
extend the data producers view to also include the data
consumers perspective. Here, data should not only be
understood in the narrow sense, but it should also include
generated code, methodologies, description of experiments, and
much more. The description and sharing of such contextual
information in a way that can be perceived and unambiguously
understood by potentially interested users is the major future
challenge when aiming at optimal data re-use.

In order to improve the joint understanding of the real potential
and feasibility of Big Data analysis capabilities, we will have to
include investigations on the potential requirements for large
scale operations and set those into relation with the gained
benefits (and threads). In our future work, we will further
investigate a structured methodology to derive these findings
from the many existing case studies and use it for the planning
of new activities. We are currently investigating the use of RM-
ODP (www.rm-odp.net) for this purpose. It seems promising to
use this standard methodology to describe information systems
that is already widely used in the geospatial information domain
to develop a high-level view on Digital Earth platforms.

With this we hope that we could illustrate some of the most
eminent challenges of our data-driven age, particularly in
relation to earth and environmental science and geospatial
information handling. Many more case studies have been
developed across the globe and we certainly took our first steps
on the long trail of successful and useful knowledge and thereby
value extraction from small and big data — and their
combinations. We hope that the required barriers will be
overcome and remind all of us to take to time to occasionally
check if we are still on the right track.
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