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ABSTRACT: 
 
The traditional statistical methods and radiation transfer theory methods for cloud detecting have a high adaptability just only in 
those areas with a uniform surface coverage and noncomplex terrain.  Therefore, adapted to large spatial and temporal scales, in this 
work a cloud detection method is developed, seeking the main influencing factors of the change of Brightness Temperature(BT) of 
clear sky and their relationships, researching the change regularity and normal fluctuation range of BT on the basis of function 
fitting, setting the cloud detecting dynamic threshold depending on the cloud spectral characteristics, and making accuracy 
assessment in order to ensure higher adaptability and accuracy of this cloud detecting method. In this paper, a dynamic threshold 
algorithm is presented for cloud detection using daytime imagery from the VISSR sensor on board FY-2C/D/E, which is the first 
generation geostationary satellite. And the land surface/brightness temperature influence functions are analysis and established, 
including latitude, longitude, altitude, time, land cover. The theoretical temperature value of clear sky can be calculated through 
these influence functions. Then, the dynamic threshold cloud detection model is proposed based on the high temporal resolution of 
VISSR data. Meanwhile, the land surface emissivity is considered as the main factor to the change range of brightness temperature 
which determines the dynamic threshold for cloud detection. Finally, the dynamic threshold cloud detecting model is evaluated 
using FY-2C/D/E VISSR data covering China, and the Kappa of dynamic method is maximum, equalling 0.6195, which is much 
higher than the indexes for the reflectivity and BT fixed methods, equalling 0.4511 and 0.403, respectively. Consequently, the 
dynamic threshold cloud detecting method provides an important improvement because the spatial, temporal and geographic 
characteristics were considered into the model. 
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1. INTRODUCTION 

1.1 Background 

Clouds present a variety of shapes and sizes, covering, at any 
time, more than 50% of the Earth surface (Saunders, et al., 
1988). According to the height from cloud bottom to the ground, 
clouds have been traditionally classified into three types: high, 
middle and low cloud. But their radiation properties, and thus 
their influence on the radiation balance of the Earth-atmosphere 
system, not only depends on their altitude but also on their 
optical thickness or the size of their particles, which can be 
water droplets or ice crystals (Hunt, 1973; Kokhanovsky, et al., 
2006).  
Remote sensing technique is undoubtedly becoming a crucial 
approach to provide these observational facts for both the cloud 
detection and the model verification. Cloud detection 
techniques from remote sensing imagery can be roughly 
classified in three main categories (Goodman, et al., 1988): 
threshold methods, statistical approximations and those 
techniques based in radiation transfer computations. The first 
type of method is based on the adequate selection of thresholds 
in the different spectral bands to distinguish cloudy pixels from 
clear ones. These thresholds can be also applied to a 
combination of spectral bands or to new variables obtained 
from them, such as some measurements related to the space 
consistency and phase correlation. Typical examples of these 
techniques include the International Satellite Cloud 

Climatology Project (ISCCP) and the NOAA Cloud Advanced 
Very High Resolution Radiometer (CLAVR) (Murtagh, et al., 
2003). The statistical methods include histogram, clustering and 
other image processing models analyses, for instance, the 
AVHRR Processing scheme over cloud Land and Ocean 
(APOLLO). The radiation transfer technology methods mainly 
consider remote sensing imaging mechanism and land surface 
covers’ spectral features in different channels (Bao, 2008).  
With the development of cloud detecting field, some 
breakthroughs were reached in recent years using new 
approximations, such as, artificial neural network, expert 
systems, fractal texture and spatial structure analysis, and so on. 
Simpsona et al. (1995) improved the threshold method in a 
cloud detecting technique over ocean surfaces. Karner et al. 
(2001) proposed the 5D Histogram Techniques method based 
on spectral characteristics of clouds. Chen et al. (2003) 
considered the fractal texture as an important factor for cloud 
detecting. Song et al. (2003) studied an auto-detecting 
algorithm on the basis of spatial structure analysis and neural 
network. Choi et al. (2004) implemented cloud detection for the 
Landsat images through combining the superiority of threshold 
and shadow matching. 
In general, threshold methods provide good results in some 
local areas. However seeking a general threshold for a large 
spatial area is a complicated task. The statistical methods have a 
high adaptability in those areas with a uniform surface coverage 
and noncomplex terrain. The methods based on radiation 
transfer theory are difficult to design because of the complexity 
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of model derivation. Therefore, adapted to large spatial and 
temporal scales, in this work a cloud detection method is 
developed, seeking the main influencing factors of the change 
of BT of clear sky and their relationships, researching the 
change regularity and normal fluctuation range of BT on the 
basis of function fitting, setting the cloud detecting dynamic 
threshold depending on the cloud spectral characteristics, and 
making accuracy assessment in order to ensure higher 
adaptability and accuracy of this cloud detecting method. 
1.2 Existing Methods 

The cloud detection method for the data of geostationary orbit 
meteorological satellites (such as FY, GOES, GMS, MTSAT 
series) have greatly development in the last few years (Ellrod, 
1995; Lee, et al., 1997; Ahn, et al., 2003). A bi-channel 
dynamic threshold algorithm is used to identify clouds on 
GMS-5 images (Liu, et al., 2005). The threshold values of 
clouds and surface objects are gained in visible and infrared 
window channels by means of a statistic histogram analysis. 
The multi-channel cloud detection algorithms established with 
the data of GMS-5, including two infrared split channels, visual 
channel and water vapour channel (Ma, et al., 2007). The 
experiments proved that the cloud detection threshold values 
are changing with the season, solar altitude and latitude. 
Similarly, the channel combination methods of cloud detection 
are used to MTSAT and FY-2 data (Gao, et al., 2009; Liu, et al., 
2011). Based on the highly temporal resolution of the 
geostationary orbit meteorological satellite, the brightness 
temperature or temperature time series imageries can be utilized 
in the cloud detection of nominal imageries, and in identifying 
clouds that are developing rapidly or located at the boundaries 
of the moving clouds (Yang, et al., 2008). 
 

2. STUDY AREA AND DATA 

The study was conducted in the whole land of China, with 
latitude ranging from 4ºN to 53ºN and longitude ranging from 
73ºE to 135ºE, respectively. This large region comprises of 
various kinds of landscapes.  
FY-2C/D/E is the first generation of operational geostationary 
orbit meteorological satellite in China, C / E star (E star is the 
successor of C star) is positioned at 105 degrees east longitude 
and D star is positioned above the equator in 86.5 degrees. 
VISSR (Visible and Infrared Spin Scan Radiometer) is the 
major load of FY-2 series, including a visible channel (0.55-
0.90µm, 1.25 kilometre spatial resolution) and four infrared 
channels (10.3-11.3µm 、 11.5-12.5µm 、 6.3-7.6µm 、 3.5-
4.0µm, 5 kilometre spatial resolution). The temporal resolution 
of the sensor reaches one hour in normal pattern and half hour 
in flood season pattern severally. VISSR can obtain daylight 
image of visible light band, day and night IR images in a water 
vapour absorption band. It can be used to collect data for 
meteorological, oceanographic, hydrological and other 
applications (Dong, 2008). The FY-2C/D/E VISSR data used in 
this article were provided by the China Meteorological 
Administration. 
 

3. METHOD 

3.1 Theory 

When clouds are observed by radiometers on-board satellites, 
they present a relatively high reflectivity in the visible and near-
infrared bands and low Brightness Temperatures (BT) in the 
thermal infrared bands (Peak, et al., 1994). Around 0.936um 
band, with the impact of the absorption by water vapour, the 

clouds reflectance is on the absorption valley. Owing to the 
similarity in the spectral characteristics between Ice clouds in 
the high family of clouds (i.e. cirrus) and snow, the two is not 
easy to be distinguished. In 1.38um mid-infrared channel, due 
to the strong absorption of the radiation by water vapour, the 
radiation from low, middle cloud and ground is difficult to 
reach the sensor, the ground reflectance is almost zero, while 
the cirrus clouds ,which is the high family of clouds, have small 
humidity and high reflectivity. In many cases, cloud detection 
using remote sensing is mainly achieved by setting the 
appropriate thresholds on the basis of the clouds characteristics 
of high reflectivity and low BT.  
However, the use of fixed or semi-fixed thresholds to 
implement cloud detection methods is only possible when they 
are applied to a small area. So an adaptive threshold cloud 
detection method is necessary to improve cloud detection 
accuracy in large territories or at a global scale. 
3.2 Clear Sky Brightness Temperature Calculated Model 

Land Surface Temperature (LST), which is an important 
climatic factor, not only depends on the effectiveness of the 
surface to absorb solar radiation, but also on the thermal 
properties of land surface, including surface type, moisture 
conditions and heat balance(Becker, et al., 1990;Campbell, 
2002). Remote sensing image cloud detection is usually 
conducted by setting the corresponding thresholds based on the 
two cloud characteristics of high reflectivity and low brightness 
temperature, but these two factors change with different 
environment under different time and space conditions. As a 
result, it is difficult to use a relatively fixed threshold to obtain 
accurate cloud detection results. However, according to the 
solar radiation model, the surface temperature of completely 
clear sky pixels changes regularly, and these changes can be 
estimated. So, on the basis that the temperature of certain pixel 
is lower when it is covered by cloud, automatic threshold for 
cloud detection can be achieved by seeking normal range of 
each pixel’s surface temperature. 
According to the research on inter-annual variation of solar 
radiation, LST has the same tendency in different seasons (Song, 
et al., 1993). Therefore, eliminating some uncertainty, LST can 
be determined by the total solar irradiance. The annual change 
and diurnal variation of clear sky LST, in the region of East 
Asia in 2000 is displayed in Figure 1(Wang, et al., 2005). 

 
Figure 1. Change of clear sky LST in 2000, in East Asia 

Figure 1(b) shows that, with the impact of solar radiation, the 
gradient of surface temperature change during daytime is much 
larger than that at night. For the region of East Asia, surface 
temperature rapidly increases after GMT 0:00 and reaches the 
maximum at GMT 5:00, then the temperature experiences a 
rapid drop and reaches the minimum at GMT 21:00. Obviously, 
the gradients of the two stages are different as a result of solar 
radiation. A large number of experiments confirm that, 
anywhere, the LST have a similar behaviour, however, the 
position of peak and valley will move with the change of 
temporal and spatial conditions. 
As LST data is not easy to obtain from FY-2 series of data, LST 
is replaced by BT in the analysis of this paper. Figure 2 shows 
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several BT curves that describe the BT 24-hour change of clear 
sky pixels obtained from FY-2C/D/E VISSR data in a variety of 
conditions (time, location, land cover, elevation): 

 
Figure 2. Temperature change curves in China area: day is the 

date, lon is the longitude, lat is the latitude, dem is the elevation 
above sea level and lc is the land cover type as defined in IGBP, 

and the unit if dem is meter 

As shown in figure 2(a) the curve maximum moves left, the 
time point when temperature reaches maximum value during 
the day move forward. Because, on the basis that the sun rises 
in the east and sets in the west, the greater longitude is, the 
sooner the temperature reaches the highest point. Accordingly, 
the time when the temperature gets the maximum value is 
related to the longitude. In addition, the figure also 
demonstrates that the elevation, to a great extent, affect the 
mean temperature and temperature difference, which are the 
amplitude and intercept in the figure, respectively. How the 
temperature is affected by elevation is analysed in detail below. 
The change trends in Figure 2(b) are the same as in Figure 2(a) 
that reflect the relationship in the temperature maximum and 
longitude. The three curves in Figure 2(c) confirm that the 
elevation does impact on the temperature changes. In Figure 2(d) 
it can be observed that the longitude and other factors show the 
same effect on the temperature curve: the blue line and green 
line, and the deep red as the longitude difference between, 
leading to the moment the temperature reaches its maximum 
biased shift. Because the reasons for seasonal changes, Figure 
2(e) show that the winter temperatures have a diurnal variability 
smaller than in Figure 2(a), (b). At the same time, differences in 
land cover types which largely determine the temperature 
difference is shown in Figure 2(e). Figure 2(f) shows the 
dependence of the temperature curves on the latitude, showing a 
negative correlation between latitude and temperature. 
From the above explained analysis, we can conclude that 
brightness temperature of clear sky pixels are related with 
longitude, latitude, elevation, season, the time of day, land 
cover type and other factors. It can be seen from Figure 2 that 
the curve that describes the temperature change of each pixel 
throughout the day are smooth and regular (the curves of sparse 
cloud-covered pixels have a little oscillation). The shapes of the 
curves are similar to a parabola and trigonometric functions 
plots. In this study, for the cyclical change of temperature and 
solar radiation prototype model taken into consideration, 

trigonometric function was selected to calculate brightness 
temperature of clear sky pixels. 
The theoretical value of brightness temperature under clear sky 
conditions can be calculated by constructing functions based on 
the relationship between brightness temperature and the 
longitude, latitude, elevation, season, the time of day and land 
cover type. In general, we can observe that: (1) In the same 
position, where the geographic information, terrain and land 
cover are fixed, daily and annual variation of brightness 
temperature under clear sky occur, respectively, with time of 
day and with the season of the year. (2) For the same time, the 
brightness temperature, under clear sky conditions, changes 
with the position as well as the terrain and land cover. 
Therefore, the brightness temperature for clear pixels can be 
expressed as an abstract equation:  

( , , , , , )pBT f lon lat d t dem lc=                          (1) 

Where pBT  is the theoretical value of brightness temperature, 

f is the function to calculate brightness temperature. 
The development of the general model to estimate the BT is 
explained in the next subsections. 
3.2.1 General Model: There are two temperature change 
cycles: a short-term temperature change accounting for the 
cycle of day and night, and a long-term temperature change, an 
annual cycle of seasonal changes. Therefore, this article intends 
to study short-term temperature changes to determine the 
function of the cycle of 24 hours, taking into account that this 
work is focused on the cloud detection during daytime. The first 
half of the curve in Figure 1(b), which corresponds to daytime 
temperatures, can be approximated by equation (2) expression: 

1 1 1sin[ ( )] 0 12
12pBT a t b c tπ

= − + ≤ <LL                      (2) 

Where a, b and c are the curve coefficients, mainly influenced 
by longitude, latitude, elevation and land cover, and t is GMT 
time of day. Because the FY-2 VISSR cover the Asia-Pacific 
area, the variable t was selected between 0 to 12 of GMT, 
directing the day time of China, in this study. 
3.2.2 Longitude Influence Function: Each satellite image 
have its own explicit acquisition time, however, satellite images 
have a larger coverage area. Because of the relationship of local 
time and longitude, the imaging time only corresponds some 
image point’s local time, named Main Points (MP). In order to 
eliminate the difference from different longitude, we can obtain 
every points imaging local time through the relative position 
between these points and MP. Generally, the local time 
becomes later with longitude from west to east in the eastern 
hemisphere, concretely, one hour of local time difference 
corresponds to 15 degrees of change in longitude. Thus, the 
time difference can be calculated by: 

( ) /15MPt lon lonΔ = −                              (3) 

Where tΔ  is the time difference between every point and MP, 

lon  is longitude of every point, MPlon  is longitude of MP. 
Based on these analyses, in Figure 1(b), the first trigonometric 
function reaches the peak at GMT 5:00 in the East Asia area. 
The peak definition of the trigonometric function can be 
expressed: 

1_ 1 1 6 5
15 4 15

MP MP
pv

lon lon lon lonTt b b− −
= + + = + + =                 (4) 

Where 1_ pvt  is the peak of trigonometric function and T is the 

period (24 hours). 
Equation (4) can be conducted to equation (5): 

1 1 ( ) /15MPb lon lon= − − −                       (5) 
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Finally, the general model can be rewritten using the following 
expression: 

1 1sin[ ( 1 )] 0 12
12 15

MP
p

lon lonBT a t c tπ −
= + + + ≤ <LL

              (6) 

3.2.3 Latitude Influence Function: The external energy 
from solar radiation is one of the primary energy sources to 
create the ecosystem differences. The primary control of 
climate at the global level is variation in solar energy, which is 
related to latitude. The amount of solar radiation generally 
decreases from the equator to poles, partly due to increases in 
the angle of incidence of the atmosphere. As a result, LST is 
reducing with the latitude increasing, which has two reasons: (1) 
Solar radiation angle increasing; (2) Atmosphere effective 
thickness changing. As illustrated in Figure 3, for the same 
solar radiation, the received amount per unit area in low 
latitudes is larger than in high-latitude areas. 

 
Figure 3. The relationship between solar radiation and solar 

radiation angle 

To simplify the latitude influence function, in this work only 
considers the impact of solar radiation angle is considered. 
Let’s assume that two beams of sunlight, squares of side length 
L and parallels to the equatorial plane, shine on the two 
latitudes 1ϕ , 2ϕ , respectively. As in Figure 3(b), in the 
latitude plane, the Earth radius and its projection line defines a 
right triangle. Based on the geometry relationship of triangles, 
the vertical height of the bottom and top of the sunlight can be 
calculated by: 

_

_

sin

sin ' sin( )
L

T

H R

H R R
ϕ

ϕ

ϕ

ϕ ϕ ϕ

=

= = + Δ
                       (7) 

On the basis of this assumption, the difference of the bottom 
and top of the sunlight is just the height of sunlight, as in 
equation (8): 

_ _T LH H Lϕ ϕ− =                                   (8) 

Similarly, equation (9) can be derived: 
1 1 1

2 2 2

[sin( ) sin ]
[sin( ) sin ]

R L
R L

ϕ ϕ ϕ
ϕ ϕ ϕ
+ Δ − =
+ Δ − =

                           (9) 

Where 1ϕΔ 、 2ϕΔ  are central angles, which are close to zero, 
caused by the height of sunlight. From equation (9): 

1 1 1 2 2 2sin( ) sin sin( ) sinϕ ϕ ϕ ϕ ϕ ϕ+ Δ − = + Δ −                   (10) 
Based on product to sum equation, equation (10) can be derived: 

1 1 1 1 1

2 2 2 2 2

sin cos( ) cos sin( ) sin
sin cos( ) cos sin( ) sin
ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ

Δ + Δ −
= Δ + Δ −

                   (11) 

Because 1ϕΔ 、 2ϕΔ  are close to zero, 1cos( )ϕΔ 、

2cos( )ϕΔ  will close to 1, and equation (12) can be proved: 

1 1 2 2cos sin( ) cos sin( )ϕ ϕ ϕ ϕΔ = Δ                         (12) 
The arc of a sector can be calculated by the following: 

s s sl rθ=                                     (13) 

Where sl  is the arc of the sector, sr is the radius of the sector 

and sθ  is its central angle. 

The ratio of the solar radiation received in different latitudes 
can be calculated by: 

1 2 2

1
2 1 1 2

2 2 2 2 22 2 2 1

0
1 1 1 20

sin( ) cos( ) ( ) ( ) lim [ ] [ ]
sin( ) cos

G S l R
G S l R

ϕ ϕ ϕ

ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕΔ →

Δ →

Δ Δ Δ
= = = = = =

Δ Δ Δ

       (14) 

Where 
i

Gϕ 、
i

Sϕ 、
i

lϕ are the solar radiation, shining area 

and arc length of the sunlight beam of the latitude iϕ . 
Therefore, the latitude influence function can be simplified as 
the following equation: 

2[cos( )]pBT a lat b= +                            (15) 

Where a, b are regression coefficients. 
3.2.4 Seasonal Influence Function: Obviously, LST 
expresses a cyclical change with the seasons (Bailey, 1996). 
Because the research in this area has matured until now, some 
statistical experiments are used to verify the seasonal influence 
function in this paper, as shown in Figure 4: 

 

Figure 4. The regression curves of temperature change in 2006 

Based on the brightness temperature series data of the whole 
2006 from FY-2C VISSR, in figure 4, the evolution of BT 
follows a parabolic curve with the season and the symmetry 
axis is approximately 190 days, which corresponds to late July. 
Because the parabolic curves have same shapes, the seasonal 
influence function can be rewritten as one simple equation. 
However, the y coordinates of the vertex show an obvious 
fluctuation with the change of location and land cover. It is 
worth mentioning that this coefficient can be easily obtained 
from a sum function. Consequently, the seasonal influence 
function can be approximated by the following equation: 

20.001526 0.58pBT d d a= − + +                      (16) 

Where a is the y coordinate of the parabola vertex. 
3.2.5 Elevation Influence Function: Elevation changes 
have a direct effect on temperature. An essential feature of 
mountainous regions is a vertical differentiation of climate and 
vegetation based on the effects of elevation change. At an 
altitude of 8km, the density of the atmosphere is less than one-
half its density at sea level.  
With this thinner shell of atmosphere above them, high 
elevations receive considerably more direct solar radiation than 
sea-level locations. Within the lower layers of the atmosphere, 
temperature decreases with elevation. The influence of 
elevation on the land surface temperature has a dual nature: an 
increase in the average temperature with elevation decreasing 
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and a decrease in diurnal variability of temperature with 
elevation decreasing (Bailey, 1996). Average temperatures drop 
by about 6.50ºC per 1km However, this rate of decrease is not 
uniform. Temperatures decrease from the equator toward the 
poles. The elevation influence function can be drawn as the 
following equation: 

0.0065*pBT DEM n= − +                               (17) 

Where DEM is the elevation, n is the regression coefficient. 

 
Figure 5. The relationship between BT and elevation 

Four groups of FY-2 VISSR data from 2006 to 2011 are 
selected to plot the regression curves shown in Figure 5, which 
to verify the elevation influence function. In order to make sure 
the invariance of the group data, the each dataset have a range 
of latitude and longitude lower than 7 degrees, and a range of 
days shorter than 20 days, and a range of albedo lower than 
0.05, and have the same land cover types. From this figure, we 
can find that the experiment results of statistical data are very 
close to the theory result, and the average correlation 
coefficient reaches 0.85 based on these statistical data. 
Finally, based on the longitude, latitude, seasonal and elevation 
influence functions and the criterion of building multi-factor 
model, clear sky brightness temperature can be calculated by: 

2

2

sin[ ( 1 )] [cos( )]
12 15

( 0.001526 0.58 ) ( 0.0065 ) 0 12

MP
p

lon lonBT a t b lat

c d d d DEM e t

π −
= + + +

+ − + + − + ≤ <LL

        (18) 

3.2.6 Determining a Dynamic Threshold: In the same solar 
radiation conditions, the absorption and release heat capacities 
of different land surface cover types are difference because of 
their different emissivity. So, their surface temperature is 
different because their rates of temperature increase and 
decrease are inconsistent. Therefore, emissivity is one of the 
main factors that affect the rate of temperature change. 
Emissivity is the radiated power ratio between actual object and 
the blackbody with the same temperature, the definition of 
emissivity is drawn as equation (19): 

'/W Wε =                                  (19) 
Where 'W  is the object radiant flux, ε  is object emissivity, 
W is the blackbody radiant flux. 
Land surface emissivity mainly depends on the material 
structure and on the spectral bands of the sensor. Qin et al. 
(2004) considered that the earth surface consists of water, town 
and natural surface in satellite image pixel scale. The natural 
surface, which is the most important element, was mainly 
constituted by natural land surface, woodland and farmland. 

The satellite image pixels can be simply considered as mixed 
pixels which are composed by different proportions of 
vegetation and bare soil. Thus, the emissivity of a satellite 
image pixel can be calculated by: 

, , , (1 )i pixel i v i g iFVC FVC dε ε ε ε= + − +                      (20) 

Where ,i vε  is the emissivity of vegetation in radiometer 

channel i, ,i gε  is the emissivity of bare soil in channel i and 

idε  is the emissivity of channel i because of multiple 
reflection. As the resolution of the satellite images are very low, 
the multiple reflection is thought no exist, that is to say, idε ＝

0. Finally, FVC is the vegetation coverage, which can be drawn 
as: 

S

V S

NDVI NDVIFVC
NDVI NDVI

−
=

−
                          (21) 

Where SNDVI
 is the typical Normalized Difference 

Vegetation Index (NDVI) value of pure bare soil pixel, the 

value has been fixed to 0.05 in this paper, VNDVI
 is the 

typical NDVI value of pure vegetation pixel. 
Some authors find that the range of emissivity in wavelength 
from 8µm to 14µm is small (Labed, et al., 1991; Salisbury, et 
al., 1992; Sobrino, et al., 2001; Mao, 2007). Based on the 
vegetation classification of International Geosphere-Biosphere 
Plan (IGBP), this paper use the research results of ,i vε , ,i gε , 

VNDVI  and SNDVI  in wavelength from 10µm to 12µm 
with referencing the channel characteristics of FY-2 VISSR 
(Rubio, et al., 1997;Zeng, et al., 2000). Therefore, the 
emissivity can be calculated by the above derivation with the 
information of land cover classification. 
The Stefan-Boltzmann Law can be drawn from the Planck 
equation as the following: 

4W Tσ=                                (22) 
Where W is radiation, σ = 5.67*10-8[W•m-2•K-4], T is the 
absolute temperature of black body. 
The objects can be classified into two types, selective radiator 
and grey body, on the basis of the spectral emissivity change 
pattern with wavelength. Meanwhile, most objects can be seen 
as grey body. The emissivity equation can be derived: 

4'W W Tε εσ= =                             (23) 
The blackbody radiation temperature can be considered as the 
grey body equivalent blackbody temperature, and the 
relationship of equivalent temperature and object actual 
temperature can be drawn by the following equation (24): 

4= 'T Tε                                 (24) 
From the above equation, the actual object temperature shows 
an inverse relationship with its emissivity when the spectral 
radiation is constant. 
Therefore, the range of temperature change, which will be 
considered as the dynamic threshold for cloud detection, can be 
derived by the surface emissivity as: 

4 44 4
max min max min max min' ' ( ) 'T T T T T Tε ε ε εΔ = − = − = −          (25) 

After obtaining the clear sky brightness temperature and normal 
range, the buffer zone of BT is formed by the clear sky BT 
value line and the two boundaries (as shown in Figure 6). Based 
on the low BT characteristic, the pixels lower than the 
reasonable minimum would be classified as cloud pixels, and 
the pixels warmer than the reasonable maximum would be 
classified as high-temperature anomaly pixels. 
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Figure 6. The dynamic threshold 

Therefore, the brightness temperature dynamic threshold model 
was built using the following equation: 

( , , , , , ) ( )DT pT BT T f lon lat d t dem lc T lc= −Δ = −Δ               (26) 

Where DTT  is the BT dynamic threshold, TΔ  is the range of 

BT in normal conditions, lc  is the land cover. 
 

4. EXPERIMENT AND ANALYSIS 

4.1 Dynamic Threshold Cloud Detection 

Based on the clear sky brightness temperature equation 
calculated in previous sections, a collection of 600 groups of 
data taken in different season, time, longitude, latitude and 
elevation conditions were used to obtain the model fitting. 
Table 1 summarizes the regression coefficients on the basis of 
least squares theory, and the relationship coefficient of 
regression reaches to 0.8167 based on five years FY-2 VISSR 
data. 

coefficient 0<t<=12 

a 19.616 

b 50.943 

c 0.741 

d 0.312 

e 230.07 
Table 1. Regression coefficients of clear brightness temperature 
Figure 7 shows the contrast plots between the calculated clear 
sky BT using the proposed model and the corresponding remote 
sensing data at the same conditions, such as, longitude, latitude, 
elevation and date. It can be appreciated that the degree of 
coincidence of calculated and observed temperatures is very 
high from 0:00 to 12:00 and the difference is less than 1K. The 
reason of existing differences is likely due to the fact that in 
some cases there is not pure clear sky when remote sensing 
observations were taken. The magnitude of the difference is 
lower than the expected uncertainty due to sensor noise. In 
addition, the relatively peak positions between calculated and 
observed have small offset because of the difference of satellite 
position and local time of image main points. Figure 8 shows 
some examples on the BT maps estimated through the proposed 
model in the most of China area (same as below). 
In Figure 8, the change pattern of clear sky brightness 
temperature with longitude, latitude, season and elevation is 
evident. From south to north, the BT decreases with the latitude 
increasing. And the BT values do not change in the longitude 
direction. The seasonal and elevation influence function plays 
an important role in the calculated model. Based on the analysis 
of remote sensing data, the calculated brightness temperature 

data have the required accuracy to be used in the cloud 
detection method proposed in this paper.  

 
Figure 7. The contrast analysis between calculated (SC) and 
Remote Sensing observations (RS) brightness temperatures 

 

Figure 8. The calculated result of clear sky BT about the 
Chinese mainland areas 

As previously explained, the BT variability can be obtained by 
the clear sky brightness temperature calculated value and the 
surface emissivity range of different land cover. Based on the 
characteristic of low brightness temperature of clouds, the 
minimum of BT range is considered as the dynamic threshold 
for cloud detection.  
4.2 Analysis of Cloud Detection Results 

Two fixed threshold methods based on brightness temperature 
and reflectivity were used in order to verify the accuracy of the 
dynamic threshold model in this paper. The two cloud detection 
methods can be applied to large spatial and temporal scales 
respectively. The thermal infrared channel was used in the fixed 
threshold method of brightness temperature, and the visible 
channels in the reflectivity method. Because the study area is 
large, the two fixed methods were improved by using regional 
fixed thresholds based on the classification of land cover. 
The results of the proposed cloud detection algorithm are shown 
in Figure 9 for an example image, acquired 20th November, 
2010, at 4:15 am. The results obtained using the fixed threshold 
methods, the original image (visible channel), the computed 
clear sky brightness temperatures, and the results provided by 
MODIS algorithms have been also presented. 
The results of the method using a dynamic threshold based on 
brightness temperature and reflection improves the results of 
the traditional fixed threshold methods and shows a good 
accuracy.  
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The fixed threshold cloud detecting methods have relatively 
low accuracy for the reason that the brightness temperature and 
reflectivity are highly variable across the study area, which is 
very vast and contains a great variety of land. Therefore, in this 
paper, some different fixed thresholds are used in different 
zones, which have been divided attending to zone 
characteristics and land covers. Using this approximation, the 
detecting results have greatly improved, compared to those 
obtained by the single fixed threshold methods. However, in 
figure 9, the fixed threshold method that uses the visible 
channel provides false positive cloudy pixels in northeast and 
southwest of China (Figure 9(b)). At the same time, the fixed 
threshold method using the brightness temperature also present 
an excessive cloud cover estimation in north of China (Figure 
9(c)) through visual interpretation. Meanwhile, the fixed 
threshold is not able to detect thin cloud areas, like in the 
southeast of China (Figure 9(c)). 

 
Figure 9. Result of cloud detecting (the light is cloud) 

The temporal and spatial factors, such as, longitude, latitude, 
season, time and elevation, have been discussed previously in 
the derivation of the dynamic threshold cloud detecting method. 
The characteristics of the different areas are obviously reflected 
in the result of the computed BT (Figure 9(d)). Furthermore, the 
dynamic threshold is determined by the normal change range of 
BT based on the land cover information. The detecting accuracy 
has greatly improved using the dynamic threshold, especially in 
the thin cloud zones and the transition areas between the cloud 
and clear sky (Figure 9(e)). 
The MODIS cloud product combines infrared and visible 
techniques to determine both physical and radiation cloud 
properties (King, et al., 1997; Menzel, et al., 2010). In this 
paper, the accuracy of dynamic threshold method has been 
evaluated using the cloud mask provided by MODIS 
operational products. 
In Figure10, the grey pixels indicate that the reference pixels 
have been detected as cloud covered by both, MODIS and the 
dynamic threshold method. The tan pixels indicate that they are 
clear sky pixels for both algorithms. Meanwhile, the orange 
pixels mean that the reference pixels have been detected as 
clear sky by MODIS and the proposed method considers them 
as cloud covered. Finally, the brown pixels correspond to those 
detected as cloud covered by MODIS but not by the proposed 
algorithm. In the experiments, in order to improve the detecting 
accuracy, four different fixed thresholds, which were 
determined by the land cover, altitude, were used in the 
reflectivity and brightness temperature fixed threshold methods. 
According the information of the land cover and altitude, the 
study area was divided into four parts, Qinghai-Tibet Plateau, 
Northeast, Central and South. And the fixed thresholds are 
listed in Table 2. 
The accuracy is the ratio of the pixels detected as the same type 
by both MODIS and the other methods, including the 
reflectivity fixed, the BT fixed and the dynamic threshold 
method. From Figure 10 we can find that the accuracy of 

dynamic threshold method is very high, and the main detecting 
errors were distributed in the cloud edge zones. The accuracy 
table is summarized in Table 3: 

 
Figure 10. Result of accuracy assessment 

coefficient Reflectivity BT 

Qinghai-Tibet 0.25 275 

Northeast 0.18 270 

Central 0.21 273 

South 0.23 278 
Table 2. Several fixed thresholds 

methods Reflectivity 
fixed   

BT fixed Dynamic 

 
Thresholds

Cloud sky Cloud sky Cloud sky
0.18-0.25 270-278K - 

Cloud 
sky 

22.42 9.81 21.54 9.94 25.64 6.6 
15.22 52.53 17.25 50.48 10.56 57.2

accuracy 74.95 72.02 82.84 
Kappa 0.4511 0.4030 0.6195 

Table 3. Accuracy assessment of cloud detecting results (%) 
From the accuracy table (Table 4), the total accuracy of 
reflectivity fixed, brightness temperature fixed and dynamic 
threshold reach to 74.95%, 72.02% and 82.84%, respectively. 
The fixed threshold methods have a good accuracy based on the 
different fixed thresholds for the study area. For instance, the 
accuracy of detecting of cloud covered and clear sky pixels are 
22.42% and 52.53% in reflectivity fixed method, and 21.54% 
and 50.48% in BT fixed method. Because of the dynamic 
characteristic, the accuracy of dynamic method increases about 
3% and 5% relative to the fixed methods. Otherwise, the Kappa 
index is an important index to validate classification accuracy. 
It measures the association between the two input images and 
helps to evaluate the output image. Its values range from -1 to 1 
after adjustment for chance agreement. If the two input images 
are in perfect agreement (no change has occurred), Kappa index 
equals 1. If the two images are completely different, Kappa 
index takes a value of -1. The per-category Kappa index can be 
calculated using the following equation: 

. .

. . .

*
*

ii i i

i i i

P P PK
P P P
−

=
−

                                 (27) 

Where iiP  is proportional of entire image in which category i 

agrees for both dates, .iP  is proportion of entire image in class i 

in reference image, and .iP  is proportion of entire image in 
class i for the non-reference image. 
Of the three values, the Kappa of dynamic method is maximum, 
equalling 0.6195, which is much higher than the indexes for the 
reflectivity and BT fixed methods, equalling 0.4511 and 0.403, 
respectively. Consequently, the dynamic threshold cloud 
detecting method provides an important improvement because 
the spatial, temporal and geographic characteristics were 
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considered into the model. However, the suitability and 
development in other satellite images of this method need to be 
evaluated, in the reason that the model was only applied to FY2 
series images. 
 

5. CONCLUSIONS AND OUTLOOK 

In this paper, FY-2C/D/E VISSR data was used to establish a 
self-adaptive threshold cloud detection method, which could 
adapt to large spatial dimension. The conclusions are as follows: 
The paper analysed the factors that may influence the 
brightness and temperature of clear sky pixels using the high 
time resolution of VISSR data and considering the radiation of 
the sun. The paper also deducted and simulated the functions 
that model the factors which may influence the brightness and 
temperature of clear sky pixels. Finally, it established a 
theoretical model to compute the brightness and temperature of 
clear sky pixels. The result of comparison with remote sensing 
data shows that the precision of the model has greatly 
improvement. 
It has been verified that the variation of brightness and 
temperature is mostly influenced by the reflection rate of the 
surface of the earth. According to the reflection rate data 
provided by IGBP organization and Plank brightness 
temperature equation, the variation range of temperature and 
reflectivity were calculated, and then the automated threshold 
of cloud detection was computed, according to the 
characteristic that cloud temperatures are low and reflectivity 
high for cloudy pixels. After comparing the skills of traditional 
fixed threshold method with the skills of the self-adaptive 
threshold method, we can conclude that the self-adaptive 
method can improve the precision by reducing the errors of 
thick and thin clouds detection. 
In sum, in this article a self-adaptive threshold method for cloud 
detection has been developed. It is based on reflectivity and 
temperature, which solve the problems caused by the traditional 
fixed threshold methods. The precision of the detection has 
been improved. However, the proposed method still has some 
shortfalls. For example, it should use multi-level thresholds to 
classify the cloud. 
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