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ABSTRACT:

The traditional statistical methods and radiation transfer theory methods for cloud detecting have a high adaptability just only in
those areas with a uniform surface coverage and noncomplex terrain. Therefore, adapted to large spatial and temporal scales, in this
work a cloud detection method is developed, seeking the main influencing factors of the change of Brightness Temperature(BT) of
clear sky and their relationships, researching the change regularity and normal fluctuation range of BT on the basis of function
fitting, setting the cloud detecting dynamic threshold depending on the cloud spectral characteristics, and making accuracy
assessment in order to ensure higher adaptability and accuracy of this cloud detecting method. In this paper, a dynamic threshold
algorithm is presented for cloud detection using daytime imagery from the VISSR sensor on board FY-2C/D/E, which is the first
generation geostationary satellite. And the land surface/brightness temperature influence functions are analysis and established,
including latitude, longitude, altitude, time, land cover. The theoretical temperature value of clear sky can be calculated through
these influence functions. Then, the dynamic threshold cloud detection model is proposed based on the high temporal resolution of
VISSR data. Meanwhile, the land surface emissivity is considered as the main factor to the change range of brightness temperature
which determines the dynamic threshold for cloud detection. Finally, the dynamic threshold cloud detecting model is evaluated
using FY-2C/D/E VISSR data covering China, and the Kappa of dynamic method is maximum, equalling 0.6195, which is much
higher than the indexes for the reflectivity and BT fixed methods, equalling 0.4511 and 0.403, respectively. Consequently, the
dynamic threshold cloud detecting method provides an important improvement because the spatial, temporal and geographic

characteristics were considered into the model.

1. INTRODUCTION
1.1 Background

Clouds present a variety of shapes and sizes, covering, at any
time, more than 50% of the Earth surface (Saunders, et al.,
1988). According to the height from cloud bottom to the ground,
clouds have been traditionally classified into three types: high,
middle and low cloud. But their radiation properties, and thus
their influence on the radiation balance of the Earth-atmosphere
system, not only depends on their altitude but also on their
optical thickness or the size of their particles, which can be
water droplets or ice crystals (Hunt, 1973; Kokhanovsky, et al.,
2006).

Remote sensing technique is undoubtedly becoming a crucial
approach to provide these observational facts for both the cloud
detection and the model verification. Cloud detection
techniques from remote sensing imagery can be roughly
classified in three main categories (Goodman, et al., 1988):
threshold methods, statistical approximations and those
techniques based in radiation transfer computations. The first
type of method is based on the adequate selection of thresholds
in the different spectral bands to distinguish cloudy pixels from
clear ones. These thresholds can be also applied to a
combination of spectral bands or to new variables obtained
from them, such as some measurements related to the space
consistency and phase correlation. Typical examples of these
techniques include the International Satellite Cloud
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Climatology Project (ISCCP) and the NOAA Cloud Advanced
Very High Resolution Radiometer (CLAVR) (Murtagh, et al.,
2003). The statistical methods include histogram, clustering and
other image processing models analyses, for instance, the
AVHRR Processing scheme over cloud Land and Ocean
(APOLLO). The radiation transfer technology methods mainly
consider remote sensing imaging mechanism and land surface
covers’ spectral features in different channels (Bao, 2008).

With the development of cloud detecting field, some
breakthroughs were reached in recent years using new
approximations, such as, artificial neural network, expert
systems, fractal texture and spatial structure analysis, and so on.
Simpsona et al. (1995) improved the threshold method in a
cloud detecting technique over ocean surfaces. Karner et al.
(2001) proposed the 5D Histogram Techniques method based
on spectral characteristics of clouds. Chen et al. (2003)
considered the fractal texture as an important factor for cloud
detecting. Song et al. (2003) studied an auto-detecting
algorithm on the basis of spatial structure analysis and neural
network. Choi et al. (2004) implemented cloud detection for the
Landsat images through combining the superiority of threshold
and shadow matching.

In general, threshold methods provide good results in some
local areas. However seeking a general threshold for a large
spatial area is a complicated task. The statistical methods have a
high adaptability in those areas with a uniform surface coverage
and noncomplex terrain. The methods based on radiation
transfer theory are difficult to design because of the complexity
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of model derivation. Therefore, adapted to large spatial and
temporal scales, in this work a cloud detection method is
developed, seeking the main influencing factors of the change
of BT of clear sky and their relationships, researching the
change regularity and normal fluctuation range of BT on the
basis of function fitting, setting the cloud detecting dynamic
threshold depending on the cloud spectral characteristics, and
making accuracy assessment in order to ensure higher
adaptability and accuracy of this cloud detecting method.

1.2 Existing Methods

The cloud detection method for the data of geostationary orbit
meteorological satellites (such as FY, GOES, GMS, MTSAT
series) have greatly development in the last few years (Ellrod,
1995; Lee, et al., 1997; Ahn, et al., 2003). A bi-channel
dynamic threshold algorithm is used to identify clouds on
GMS-5 images (Liu, et al., 2005). The threshold values of
clouds and surface objects are gained in visible and infrared
window channels by means of a statistic histogram analysis.
The multi-channel cloud detection algorithms established with
the data of GMS-5, including two infrared split channels, visual
channel and water vapour channel (Ma, et al., 2007). The
experiments proved that the cloud detection threshold values
are changing with the season, solar altitude and latitude.
Similarly, the channel combination methods of cloud detection
are used to MTSAT and FY-2 data (Gao, et al., 2009; Liu, et al.,
2011). Based on the highly temporal resolution of the
geostationary orbit meteorological satellite, the brightness
temperature or temperature time series imageries can be utilized
in the cloud detection of nominal imageries, and in identifying
clouds that are developing rapidly or located at the boundaries
of the moving clouds (Yang, et al., 2008).

2. STUDY AREA AND DATA

The study was conducted in the whole land of China, with
latitude ranging from 4°N to 53°N and longitude ranging from
73°E to 135°E, respectively. This large region comprises of
various kinds of landscapes.

FY-2C/DJ/E is the first generation of operational geostationary
orbit meteorological satellite in China, C / E star (E star is the
successor of C star) is positioned at 105 degrees east longitude
and D star is positioned above the equator in 86.5 degrees.
VISSR (Visible and Infrared Spin Scan Radiometer) is the
major load of FY-2 series, including a visible channel (0.55-
0.90um, 1.25 kilometre spatial resolution) and four infrared
channels (10.3-11.3pm . 11.5-12.5pum . 6.3-7.6um . 3.5-
4.0um, 5 kilometre spatial resolution). The temporal resolution
of the sensor reaches one hour in normal pattern and half hour
in flood season pattern severally. VISSR can obtain daylight
image of visible light band, day and night IR images in a water
vapour absorption band. It can be used to collect data for
meteorological, oceanographic, hydrological and other
applications (Dong, 2008). The FY-2C/D/E VISSR data used in
this article were provided by the China Meteorological
Administration.

3. METHOD
3.1 Theory

When clouds are observed by radiometers on-board satellites,
they present a relatively high reflectivity in the visible and near-
infrared bands and low Brightness Temperatures (BT) in the
thermal infrared bands (Peak, et al., 1994). Around 0.936um
band, with the impact of the absorption by water vapour, the

clouds reflectance is on the absorption valley. Owing to the
similarity in the spectral characteristics between Ice clouds in
the high family of clouds (i.e. cirrus) and snow, the two is not
casy to be distinguished. In 1.38um mid-infrared channel, due
to the strong absorption of the radiation by water vapour, the
radiation from low, middle cloud and ground is difficult to
reach the sensor, the ground reflectance is almost zero, while
the cirrus clouds ,which is the high family of clouds, have small
humidity and high reflectivity. In many cases, cloud detection
using remote sensing is mainly achieved by setting the
appropriate thresholds on the basis of the clouds characteristics
of high reflectivity and low BT.

However, the use of fixed or semi-fixed thresholds to
implement cloud detection methods is only possible when they
are applied to a small area. So an adaptive threshold cloud
detection method is necessary to improve cloud detection
accuracy in large territories or at a global scale.

3.2 Clear Sky Brightness Temperature Calculated Model

Land Surface Temperature (LST), which is an important
climatic factor, not only depends on the effectiveness of the
surface to absorb solar radiation, but also on the thermal
properties of land surface, including surface type, moisture
conditions and heat balance(Becker, et al., 1990;Campbell,
2002). Remote sensing image cloud detection is usually
conducted by setting the corresponding thresholds based on the
two cloud characteristics of high reflectivity and low brightness
temperature, but these two factors change with different
environment under different time and space conditions. As a
result, it is difficult to use a relatively fixed threshold to obtain
accurate cloud detection results. However, according to the
solar radiation model, the surface temperature of completely
clear sky pixels changes regularly, and these changes can be
estimated. So, on the basis that the temperature of certain pixel
is lower when it is covered by cloud, automatic threshold for
cloud detection can be achieved by seeking normal range of
each pixel’s surface temperature.

According to the research on inter-annual variation of solar
radiation, LST has the same tendency in different seasons (Song,
et al., 1993). Therefore, eliminating some uncertainty, LST can
be determined by the total solar irradiance. The annual change
and diurnal variation of clear sky LST, in the region of East
Asia in 2000 is displayed in Figure 1(Wang, et al., 2005).
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Figure 1. Change of clear sky LST in 2000, in East Asia
Figure 1(b) shows that, with the impact of solar radiation, the
gradient of surface temperature change during daytime is much
larger than that at night. For the region of East Asia, surface
temperature rapidly increases after GMT 0:00 and reaches the
maximum at GMT 5:00, then the temperature experiences a
rapid drop and reaches the minimum at GMT 21:00. Obviously,
the gradients of the two stages are different as a result of solar
radiation. A large number of experiments confirm that,
anywhere, the LST have a similar behaviour, however, the
position of peak and valley will move with the change of
temporal and spatial conditions.

As LST data is not easy to obtain from FY-2 series of data, LST
is replaced by BT in the analysis of this paper. Figure 2 shows
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several BT curves that describe the BT 24-hour change of clear
sky pixels obtained from FY-2C/D/E VISSR data in a variety of
conditions (time, location, land cover, elevation):
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Figure 2. Temperature change curves in China area: day is the
date, lon is the longitude, lat is the latitude, dem is the elevation
above sea level and Ic is the land cover type as defined in IGBP,

and the unit if dem is meter

As shown in figure 2(a) the curve maximum moves left, the
time point when temperature reaches maximum value during
the day move forward. Because, on the basis that the sun rises
in the east and sets in the west, the greater longitude is, the
sooner the temperature reaches the highest point. Accordingly,
the time when the temperature gets the maximum value is
related to the longitude. In addition, the figure also
demonstrates that the elevation, to a great extent, affect the
mean temperature and temperature difference, which are the
amplitude and intercept in the figure, respectively. How the
temperature is affected by elevation is analysed in detail below.
The change trends in Figure 2(b) are the same as in Figure 2(a)
that reflect the relationship in the temperature maximum and
longitude. The three curves in Figure 2(c) confirm that the
elevation does impact on the temperature changes. In Figure 2(d)
it can be observed that the longitude and other factors show the
same effect on the temperature curve: the blue line and green
line, and the deep red as the longitude difference between,
leading to the moment the temperature reaches its maximum
biased shift. Because the reasons for seasonal changes, Figure
2(e) show that the winter temperatures have a diurnal variability
smaller than in Figure 2(a), (b). At the same time, differences in
land cover types which largely determine the temperature
difference is shown in Figure 2(e). Figure 2(f) shows the
dependence of the temperature curves on the latitude, showing a
negative correlation between latitude and temperature.

From the above explained analysis, we can conclude that
brightness temperature of clear sky pixels are related with
longitude, latitude, elevation, season, the time of day, land
cover type and other factors. It can be seen from Figure 2 that
the curve that describes the temperature change of each pixel
throughout the day are smooth and regular (the curves of sparse
cloud-covered pixels have a little oscillation). The shapes of the
curves are similar to a parabola and trigonometric functions
plots. In this study, for the cyclical change of temperature and
solar radiation prototype model taken into consideration,

trigonometric function was selected to calculate brightness
temperature of clear sky pixels.

The theoretical value of brightness temperature under clear sky
conditions can be calculated by constructing functions based on
the relationship between brightness temperature and the
longitude, latitude, elevation, season, the time of day and land
cover type. In general, we can observe that: (1) In the same
position, where the geographic information, terrain and land
cover are fixed, daily and annual variation of brightness
temperature under clear sky occur, respectively, with time of
day and with the season of the year. (2) For the same time, the
brightness temperature, under clear sky conditions, changes
with the position as well as the terrain and land cover.
Therefore, the brightness temperature for clear pixels can be
expressed as an abstract equation:

BT, = f (lon,lat,d,t,dem,Ic) (1)
Where BTp is the theoretical value of brightness temperature,

f is the function to calculate brightness temperature.

The development of the general model to estimate the BT is
explained in the next subsections.

3.2.1  General Model: There are two temperature change
cycles: a short-term temperature change accounting for the
cycle of day and night, and a long-term temperature change, an
annual cycle of seasonal changes. Therefore, this article intends
to study short-term temperature changes to determine the
function of the cycle of 24 hours, taking into account that this
work is focused on the cloud detection during daytime. The first
half of the curve in Figure 1(b), which corresponds to daytime
temperatures, can be approximated by equation (2) expression:

BTp:alsin[%(t—bl)]Jrcl ------ 0<t<I2 @)

Where a, b and ¢ are the curve coefficients, mainly influenced
by longitude, latitude, elevation and land cover, and t is GMT
time of day. Because the FY-2 VISSR cover the Asia-Pacific
area, the variable t was selected between 0 to 12 of GMT,
directing the day time of China, in this study.

3.2.2 Longitude Influence Function: Each satellite image
have its own explicit acquisition time, however, satellite images
have a larger coverage area. Because of the relationship of local
time and longitude, the imaging time only corresponds some
image point’s local time, named Main Points (MP). In order to
eliminate the difference from different longitude, we can obtain
every points imaging local time through the relative position
between these points and MP. Generally, the local time
becomes later with longitude from west to east in the eastern
hemisphere, concretely, one hour of local time difference
corresponds to 15 degrees of change in longitude. Thus, the
time difference can be calculated by:

At =(lon—lon,,,)/15 3
Where At is the time difference between every point and MP,
lon is longitude of every point, |O|’]MP is longitude of MP.

Based on these analyses, in Figure 1(b), the first trigonometric
function reaches the peak at GMT 5:00 in the East Asia area.
The peak definition of the trigonometric function can be
expressed:

t, pv:bl+m+1:bl+m+6:5 “)
- 15 4 15
Where t1 ov is the peak of trigonometric function and T is the
period (24 hours).

Equation (4) can be conducted to equation (5):

b, =-1-(lon-lon,,;,)/15 )
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Finally, the general model can be rewritten using the following
expression:

(6)

%)Hc‘ ------ 0<t<I2

3.2.3 Latitude Influence Function: The external energy
from solar radiation is one of the primary energy sources to
create the ecosystem differences. The primary control of
climate at the global level is variation in solar energy, which is
related to latitude. The amount of solar radiation generally
decreases from the equator to poles, partly due to increases in
the angle of incidence of the atmosphere. As a result, LST is
reducing with the latitude increasing, which has two reasons: (1)
Solar radiation angle increasing; (2) Atmosphere effective
thickness changing. As illustrated in Figure 3, for the same
solar radiation, the received amount per unit area in low
latitudes is larger than in high-latitude areas.

ia) Salarrdiaten
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Figure 3. The relationship between solar radiation and solar
radiation angle

To simplify the latitude influence function, in this work only
considers the impact of solar radiation angle is considered.
Let’s assume that two beams of sunlight, squares of side length
L and parallels to the equatorial plane, shine on the two

latitudes @, , @, , respectively. As in Figure 3(b), in the

latitude plane, the Earth radius and its projection line defines a
right triangle. Based on the geometry relationship of triangles,
the vertical height of the bottom and top of the sunlight can be
calculated by:
H_,=Rsing (7)
H; ,=Rsing'=Rsin(¢p+Ap)
On the basis of this assumption, the difference of the bottom
and top of the sunlight is just the height of sunlight, as in
equation (8):
H, ,—H_,=L ®)
Similarly, equation (9) can be derived:
R[sin(p, + Ap,)—sing,]=L

R[sin(p, + Ap,)—sing,]=L

Where A(Dl N A(DZ are central angles, which are close to zero,

©)

caused by the height of sunlight. From equation (9):
sin(g, + Ag,) —sing, =sin(@, + Ap,) —sin @, (10)
Based on product to sum equation, equation (10) can be derived:
sin g, cos(Ag,) + cos @, sin(Ag,) —sin g, (11)
=sin @, cos(Ap, ) + cos @, sin(Ap,) —sin @,

Because A¢1 N A(p2 are close to zero, COS(A¢1) N
COS(A¢2) will close to 1, and equation (12) can be proved:

cos @, sin(Ag,) = cos @, sin(Ag,) (12)
The arc of a sector can be calculated by the following:
I, =10, (13)

Where |S is the arc of the sector, I is the radius of the sector

and 95 is its central angle.

The ratio of the solar radiation received in different latitudes
can be calculated by:

(14
Gi:i:(lﬁ)l :(M)Z :(%)2 = lim M 2 = M]Z
G, s, |, RAg, Ap geotsin(Ag) cos @,
Where G o S PN I o, are the solar radiation, shining area
1 1 1

and arc length of the sunlight beam of the latitude ¢, .

Therefore, the latitude influence function can be simplified as
the following equation:

_ 2
BT, =a[cos(lat)]" +b (15)

Where a, b are regression coefficients.
3.24  Seasonal Influence Function: Obviously, LST

expresses a cyclical change with the seasons (Bailey, 1996).
Because the research in this area has matured until now, some
statistical experiments are used to verify the seasonal influence
function in this paper, as shown in Figure 4:
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Figure 4. The regression curves of temperature change in 2006

Based on the brightness temperature series data of the whole
2006 from FY-2C VISSR, in figure 4, the evolution of BT
follows a parabolic curve with the season and the symmetry
axis is approximately 190 days, which corresponds to late July.
Because the parabolic curves have same shapes, the seasonal
influence function can be rewritten as one simple equation.
However, the y coordinates of the vertex show an obvious
fluctuation with the change of location and land cover. It is
worth mentioning that this coefficient can be easily obtained
from a sum function. Consequently, the seasonal influence
function can be approximated by the following equation:

BT, = -0.001526d* +0.58d +a

Where a is the y coordinate of the parabola vertex.

3.2.5 Elevation Influence Function: Elevation changes
have a direct effect on temperature. An essential feature of
mountainous regions is a vertical differentiation of climate and
vegetation based on the effects of elevation change. At an
altitude of 8km, the density of the atmosphere is less than one-
half its density at sea level.

With this thinner shell of atmosphere above them, high
elevations receive considerably more direct solar radiation than
sea-level locations. Within the lower layers of the atmosphere,
temperature decreases with elevation. The influence of
elevation on the land surface temperature has a dual nature: an
increase in the average temperature with elevation decreasing

(16)
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and a decrease in diurnal variability of temperature with
elevation decreasing (Bailey, 1996). Average temperatures drop
by about 6.50°C per 1km However, this rate of decrease is not
uniform. Temperatures decrease from the equator toward the
poles. The elevation influence function can be drawn as the
following equation:

BT, =—0.0065*DEM +n 7)

Where DEM is the elevation, n is the regression coefficient.
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Figure 5. The relationship between BT and elevation

Four groups of FY-2 VISSR data from 2006 to 2011 are
selected to plot the regression curves shown in Figure 5, which
to verify the elevation influence function. In order to make sure
the invariance of the group data, the each dataset have a range
of latitude and longitude lower than 7 degrees, and a range of
days shorter than 20 days, and a range of albedo lower than
0.05, and have the same land cover types. From this figure, we
can find that the experiment results of statistical data are very
close to the theory result, and the average correlation
coefficient reaches 0.85 based on these statistical data.

Finally, based on the longitude, latitude, seasonal and elevation
influence functions and the criterion of building multi-factor
model, clear sky brightness temperature can be calculated by:

BT, = asin[% (414200100 1 cos(lat)? (18)

+¢(=0.001526d” +0.58d) + d(—0.0065DEM ) +€------ 0<t<l12

3.2.6  Determining a Dynamic Threshold: In the same solar
radiation conditions, the absorption and release heat capacities
of different land surface cover types are difference because of
their different emissivity. So, their surface temperature is
different because their rates of temperature increase and
decrease are inconsistent. Therefore, emissivity is one of the
main factors that affect the rate of temperature change.
Emissivity is the radiated power ratio between actual object and
the blackbody with the same temperature, the definition of
emissivity is drawn as equation (19):

e=WY"YW (19)
Where W ' is the object radiant flux, £ is object emissivity,

W is the blackbody radiant flux.

Land surface emissivity mainly depends on the material
structure and on the spectral bands of the sensor. Qin et al.
(2004) considered that the earth surface consists of water, town
and natural surface in satellite image pixel scale. The natural
surface, which is the most important element, was mainly
constituted by natural land surface, woodland and farmland.

The satellite image pixels can be simply considered as mixed
pixels which are composed by different proportions of
vegetation and bare soil. Thus, the emissivity of a satellite
image pixel can be calculated by:

& el = €, FVC + 5, ,(1-FVC) +dg, (20)
Where &, is the emissivity of vegetation in radiometer
channel i, €ig is the emissivity of bare soil in channel i and

dé‘i is the emissivity of channel i because of multiple
reflection. As the resolution of the satellite images are very low,
the multiple reflection is thought no exist, that is to say, d &=

0. Finally, FVC is the vegetation coverage, which can be drawn
as:

£y - NDVI - NDVI @1
NDVI, —NDVIy
NDVI
Where S is the typical Normalized Difference

Vegetation Index (NDVI) value of pure bare soil pixel, the
value has been fixed to 0.05 in this paper, VI, is the
typical NDVI value of pure vegetation pixel.

Some authors find that the range of emissivity in wavelength
from 8um to 14um is small (Labed, et al., 1991; Salisbury, et
al.,, 1992; Sobrino, et al., 2001; Mao, 2007). Based on the
vegetation classification of International Geosphere-Biosphere

Plan (IGBP), this paper use the research results of &, Eig»

NDV'V and NDV|S in wavelength from 10um to 12pm

with referencing the channel characteristics of FY-2 VISSR
(Rubio, et al, 1997;Zeng, et al.,, 2000). Therefore, the
emissivity can be calculated by the above derivation with the
information of land cover classification.
The Stefan-Boltzmann Law can be drawn from the Planck
equation as the following:

W =oT* (22)
Where W is radiation, ¢ = 5.67*10-8§[ Wem-2¢K-4], T is the
absolute temperature of black body.
The objects can be classified into two types, selective radiator
and grey body, on the basis of the spectral emissivity change
pattern with wavelength. Meanwhile, most objects can be seen
as grey body. The emissivity equation can be derived:

W'=eW =goT* (23)

The blackbody radiation temperature can be considered as the
grey body equivalent blackbody temperature, and the
relationship of equivalent temperature and object actual
temperature can be drawn by the following equation (24):

T=YeT (4)
From the above equation, the actual object temperature shows
an inverse relationship with its emissivity when the spectral
radiation is constant.
Therefore, the range of temperature change, which will be
considered as the dynamic threshold for cloud detection, can be
derived by the surface emissivity as:

AT =T =T = T =0T '= W 50T 25

After obtaining the clear sky brightness temperature and normal
range, the buffer zone of BT is formed by the clear sky BT
value line and the two boundaries (as shown in Figure 6). Based
on the low BT characteristic, the pixels lower than the
reasonable minimum would be classified as cloud pixels, and
the pixels warmer than the reasonable maximum would be
classified as high-temperature anomaly pixels.
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Figure 6. The dynamic threshold

Therefore, the brightness temperature dynamic threshold model
was built using the following equation:

T,r =BT, —AT = f(lon,lat,d,t,dem, lc) - AT (Ic) (26)
Where TDT is the BT dynamic threshold, AT is the range of

BT in normal conditions, |C is the land cover.

4. EXPERIMENT AND ANALYSIS
4.1 Dynamic Threshold Cloud Detection

Based on the clear sky brightness temperature equation
calculated in previous sections, a collection of 600 groups of
data taken in different season, time, longitude, latitude and
elevation conditions were used to obtain the model fitting.
Table 1 summarizes the regression coefficients on the basis of
least squares theory, and the relationship coefficient of
regression reaches to 0.8167 based on five years FY-2 VISSR
data.

coefficient O<t<=12
a 19.616
b 50.943
c 0.741
d 0.312
e 230.07

Table 1. Regression coefficients of clear brightness temperature
Figure 7 shows the contrast plots between the calculated clear
sky BT using the proposed model and the corresponding remote
sensing data at the same conditions, such as, longitude, latitude,
elevation and date. It can be appreciated that the degree of
coincidence of calculated and observed temperatures is very
high from 0:00 to 12:00 and the difference is less than 1K. The
reason of existing differences is likely due to the fact that in
some cases there is not pure clear sky when remote sensing
observations were taken. The magnitude of the difference is
lower than the expected uncertainty due to sensor noise. In
addition, the relatively peak positions between calculated and
observed have small offset because of the difference of satellite
position and local time of image main points. Figure 8§ shows
some examples on the BT maps estimated through the proposed
model in the most of China area (same as below).

In Figure 8, the change pattern of clear sky brightness
temperature with longitude, latitude, season and elevation is
evident. From south to north, the BT decreases with the latitude
increasing. And the BT values do not change in the longitude
direction. The seasonal and elevation influence function plays
an important role in the calculated model. Based on the analysis
of remote sensing data, the calculated brightness temperature

data have the required accuracy to be used in the cloud
detection method proposed in this paper.
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Figure 7. The contrast analysis between calculated (SC) and
Remote Sensing observations (RS) brightness temperatures
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Figure 8. The calculated result of clear sky BT about the
Chinese mainland areas

As previously explained, the BT variability can be obtained by
the clear sky brightness temperature calculated value and the
surface emissivity range of different land cover. Based on the
characteristic of low brightness temperature of clouds, the
minimum of BT range is considered as the dynamic threshold
for cloud detection.

4.2 Analysis of Cloud Detection Results

Two fixed threshold methods based on brightness temperature
and reflectivity were used in order to verify the accuracy of the
dynamic threshold model in this paper. The two cloud detection
methods can be applied to large spatial and temporal scales
respectively. The thermal infrared channel was used in the fixed
threshold method of brightness temperature, and the visible
channels in the reflectivity method. Because the study area is
large, the two fixed methods were improved by using regional
fixed thresholds based on the classification of land cover.

The results of the proposed cloud detection algorithm are shown
in Figure 9 for an example image, acquired 20th November,
2010, at 4:15 am. The results obtained using the fixed threshold
methods, the original image (visible channel), the computed
clear sky brightness temperatures, and the results provided by
MODIS algorithms have been also presented.

The results of the method using a dynamic threshold based on
brightness temperature and reflection improves the results of
the traditional fixed threshold methods and shows a good
accuracy.
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The fixed threshold cloud detecting methods have relatively
low accuracy for the reason that the brightness temperature and
reflectivity are highly variable across the study area, which is
very vast and contains a great variety of land. Therefore, in this
paper, some different fixed thresholds are used in different
zones, which have been divided attending to zone
characteristics and land covers. Using this approximation, the
detecting results have greatly improved, compared to those
obtained by the single fixed threshold methods. However, in
figure 9, the fixed threshold method that uses the visible
channel provides false positive cloudy pixels in northeast and
southwest of China (Figure 9(b)). At the same time, the fixed
threshold method using the brightness temperature also present
an excessive cloud cover estimation in north of China (Figure
9(c)) through visual interpretation. Meanwhile, the fixed
threshold is not able to detect thin cloud areas, like in the
southeast of China (Figure 9(c)).

{aitaw immage visible channel) Ihibeflestpvity fruedi®, | 582 Samp ACIET fiued(270-278K)

Figure 9. Result of cloud detecting (the light is cloud)
The temporal and spatial factors, such as, longitude, latitude,
season, time and elevation, have been discussed previously in
the derivation of the dynamic threshold cloud detecting method.
The characteristics of the different areas are obviously reflected
in the result of the computed BT (Figure 9(d)). Furthermore, the
dynamic threshold is determined by the normal change range of
BT based on the land cover information. The detecting accuracy
has greatly improved using the dynamic threshold, especially in
the thin cloud zones and the transition areas between the cloud
and clear sky (Figure 9(¢)).
The MODIS cloud product combines infrared and visible
techniques to determine both physical and radiation cloud
properties (King, et al., 1997; Menzel, et al., 2010). In this
paper, the accuracy of dynamic threshold method has been
evaluated using the cloud mask provided by MODIS
operational products.
In FigurelO, the grey pixels indicate that the reference pixels
have been detected as cloud covered by both, MODIS and the
dynamic threshold method. The tan pixels indicate that they are
clear sky pixels for both algorithms. Meanwhile, the orange
pixels mean that the reference pixels have been detected as
clear sky by MODIS and the proposed method considers them
as cloud covered. Finally, the brown pixels correspond to those
detected as cloud covered by MODIS but not by the proposed
algorithm. In the experiments, in order to improve the detecting
accuracy, four different fixed thresholds, which were
determined by the land cover, altitude, were used in the
reflectivity and brightness temperature fixed threshold methods.
According the information of the land cover and altitude, the
study area was divided into four parts, Qinghai-Tibet Plateau,
Northeast, Central and South. And the fixed thresholds are
listed in Table 2.
The accuracy is the ratio of the pixels detected as the same type
by both MODIS and the other methods, including the
reflectivity fixed, the BT fixed and the dynamic threshold
method. From Figure 10 we can find that the accuracy of

dynamic threshold method is very high, and the main detecting
errors were distributed in the cloud edge zones. The accuracy
table is summarized in Table 3:
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Figure 10. Result of accuracy assessment

coefficient Reflectivity BT
Qinghai-Tibet 0.25 275
Northeast 0.18 270
Central 0.21 273
South 0.23 278
Table 2. Several fixed thresholds
methods Reflectivity BT fixed Dynamic
fixed
Cloud | sky | Cloud | sky | Cloud | sky
Thresholds 0.18-0.25 270-278K -
Cloud 2242 | 9.81 21.54 | 9.94 | 25.64 | 6.6
sky 1522 | 52.53 | 17.25 | 50.48 | 10.56 | 57.2
accuracy 74.95 72.02 82.84
Kappa 0.4511 0.4030 0.6195

Table 3. Accuracy assessment of cloud detecting results (%)
From the accuracy table (Table 4), the total accuracy of
reflectivity fixed, brightness temperature fixed and dynamic
threshold reach to 74.95%, 72.02% and 82.84%, respectively.
The fixed threshold methods have a good accuracy based on the
different fixed thresholds for the study area. For instance, the
accuracy of detecting of cloud covered and clear sky pixels are
22.42% and 52.53% in reflectivity fixed method, and 21.54%
and 50.48% in BT fixed method. Because of the dynamic
characteristic, the accuracy of dynamic method increases about
3% and 5% relative to the fixed methods. Otherwise, the Kappa
index is an important index to validate classification accuracy.
It measures the association between the two input images and
helps to evaluate the output image. Its values range from -1 to 1
after adjustment for chance agreement. If the two input images
are in perfect agreement (no change has occurred), Kappa index
equals 1. If the two images are completely different, Kappa
index takes a value of -1. The per-category Kappa index can be
calculated using the following equation:

K = P.-R*P 27)
P-R*P

Where Pii is proportional of entire image in which category i
agrees for both dates, P| is proportion of entire image in class i

in reference image, and Pi is proportion of entire image in

class i for the non-reference image.

Of the three values, the Kappa of dynamic method is maximum,
equalling 0.6195, which is much higher than the indexes for the
reflectivity and BT fixed methods, equalling 0.4511 and 0.403,
respectively. Consequently, the dynamic threshold cloud
detecting method provides an important improvement because
the spatial, temporal and geographic characteristics were
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considered into the model. However, the suitability and
development in other satellite images of this method need to be
evaluated, in the reason that the model was only applied to FY2
series images.

5. CONCLUSIONS AND OUTLOOK

In this paper, FY-2C/D/E VISSR data was used to establish a
self-adaptive threshold cloud detection method, which could

adapt to large spatial dimension. The conclusions are as follows:

The paper analysed the factors that may influence the
brightness and temperature of clear sky pixels using the high
time resolution of VISSR data and considering the radiation of
the sun. The paper also deducted and simulated the functions
that model the factors which may influence the brightness and
temperature of clear sky pixels. Finally, it established a
theoretical model to compute the brightness and temperature of
clear sky pixels. The result of comparison with remote sensing
data shows that the precision of the model has greatly
improvement.

It has been verified that the variation of brightness and
temperature is mostly influenced by the reflection rate of the
surface of the earth. According to the reflection rate data
provided by IGBP organization and Plank brightness
temperature equation, the variation range of temperature and
reflectivity were calculated, and then the automated threshold
of cloud detection was computed, according to the
characteristic that cloud temperatures are low and reflectivity
high for cloudy pixels. After comparing the skills of traditional
fixed threshold method with the skills of the self-adaptive
threshold method, we can conclude that the self-adaptive
method can improve the precision by reducing the errors of
thick and thin clouds detection.

In sum, in this article a self-adaptive threshold method for cloud
detection has been developed. It is based on reflectivity and
temperature, which solve the problems caused by the traditional
fixed threshold methods. The precision of the detection has
been improved. However, the proposed method still has some
shortfalls. For example, it should use multi-level thresholds to
classify the cloud.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science
Foundation of China (No. 41401487).

REFERENCES
Saunders R.W., Kriebel K.T., 1988. An improved method of
detecting clear sky and cloudy radiances from AVHRR. Int. J.
Remote Sens. 9, pp. 123-150.

Hunt G.E., 1973. Radiative properties of terrestrial clouds at

visible and infrared thermal window wavelengths. Quart. J. Roy.

Meteor. Soc. 99, pp. 346-369.

Kokhanovsky A.A., Hourdan O., Burrows J.P., 2006. The cloud
phase discrimination from a satellite. Geosci. Remote Sens.
Letters. 13, pp. 103-106.

Goodman A. H., Henderson S. A., 1988. Cloud detection and
analysis: a review of recent progress. Atmosph. Res. 21, pp.
203-228.

Murtagh F., Barreto D., Marcello J., 2003. Decision boundaries
using bayes factors: the case of cloud masks. IEEE Trans.
Geosci. Remote Sens. 41, pp. 2952-2958.

Bao S.X., 2008. Cloud detecting based on MODIS data. JiLin:
Master dissertation of Jilin University.

Simpsona J. J., Gobata J. 1., 1995. Improved cloud detection in
GOES scenes over the oceans. Remote Sens. Environ. 52, pp.
79-94.

Karner O., Digrolamo L., 2001. An automatic cloud detection
over ocean. Int. J. Remote Sens. 22, pp. 3047-3052.

Chen W., Zhou H.M., Yuan Z.K., 2003. Recognition of fog and
cloud in meteorological satellite image based on fractal texture
structure analysis. J. natural disasters. 12, pp. 133-139.

Song X.L., Zhao Y.S., 2003. Cloud detection and analysis of
MODIS image. J. Image Graph. 8, pp. 1079-1083.

Choi H., Bindschadler R., 2004. Cloud detection in Landsat
imagery of ice sheets using shadow matching technique and
automatic normalized difference snow index threshold value
decision. Remote Sens. Environ. 91, pp. 237-242.

Ellrod G.P., 1995. Advances in the detection and analysis of fog
at night using GOES multispectral infrared imagery. Weather
and Forecasting. 10, pp. 606-619.

Lee T.F., Turk F.J., Richardson K., 1997. Stratus and fog
products using GOES-8-9 3.9um Data. Weather and
Forecasting. 12, pp. 606-619.

Ahn M.H., Sohn E.H., Hwang B.J., 2003. A new algorithm for
sea fog/stratus detection using GMS-5 IR data. Adv. Atmosph.
Sci. 20, pp. 899-913.

Liu X., Xu JM., Du B.Y, 2005. A bi-channel dynamic
threshold algorithm used in automatically indentifying clouds
on GMS-5 imagery. J. Appl. Meteorol. Sci. 16, pp. 434-444.

Ma F., Zhang Q., Guo N., Zhang J., 2007. The study of cloud
detection with multi-channel data of satellite. Chinese J.
Atmosph. Sci. 31, pp. 119-128.

Gao S.H., Wu W., Zhu L.L., Fu G., Huang B., 2009. Detection
of night-time sea fog/stratus over the Huanghai Sea using
MTSAT-1R IR data. Acta Ocean. Sin. 28, pp. 23-35.

Liu J, Li Y. 2011. Cloud phase detection algorithm for
geostationary satellite data. J. Infrared Millim. Waves. 30, pp.
322-327.

Yang C.J., Xu J.M., Zhao F.S., 2008. Application of time series
in FY2C cloud detection. J. Atmosph. Environ. Opt. 3, pp. 377-
391.

Dong X.Y., 2008. Algorithms study on cloud detection and
cloud classification for FY-2C data. Wuhan: Master
Dissertation of Wuhan University.

Peak J.E., Tag P.M., 1994. Segmentation of satellite imagery
using hierarchical thresholding and neural networks. J. Appl.
Meteor. 33, pp. 605-616.

Becker F., Li Z. L., 1990. Towards a local split window method
over land surfaces. Int. J. Remote Sens. 11, pp. 369-393.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-305-2

Campbell J. B., 2002. Introduction to remote sensing. New
York: The Guildford Press.

Song A.G., Wang F.R., 1993. Preliminary study on clear-day
solar radiation model of Beijing region. Acta Energ. Solar. Sin.
14, pp. 251-255.

Wang Y., Lu D.R., 2005. Diurnal and seasonal variation of
clear-day land surface temperature of several representative
land surface types in China retrieved by GMSS5. Acta Meteorol.
Sin. 63, pp. 957-968.

Bailey R. G., 1996. Ecosystem geography. New York: Springer.

Qin Z.H., Li W.J.,, Xu B., Zhang W.C., 2004. Estimation
method of land surface emissivity for retrieving land surface
temperature from Landsat TM6 data. Adv. Mar. Sci. 22, pp.
129-137.

Labed J., Stoll M. P., 1991. Spatial variability of land surface
emissivity in the thermal infrared band: spectral signature and
effective surface temperature. Remote Sens. Environ. 38, pp. 1-
17.

Salisbury J. W., D'Aria D. M., 1992. Emissivity of terrestrial
materials in the 8-14mm atmospheric window. Remote Sens.
Environ. 42, pp. 83-106.

Sobrino J. A., Raissouni N., Li Z. L., 2001. A comparative
study of land surface emissivity retrieval from NOAA data.
Remote Sens. Environ. 75, pp. 256-266.

Mao K.B., 2007. The study of algorithm for retrieving land
surface temperature and soil moisture from thermal and
microwave data. Beijing: China agricultural science and
technology publishing house.

Rubio E., Caselles V., Badenas C., 1997. Emissivity
measurements of several soils and vegetation types in the 8-
14um wave band: analysis of two field methods. Remote Sens.
Environ. 59, pp. 490-521.

Zeng X. B., Robert E. D., 2000. Derivation and evaluation of
global 1-km fractional vegetation cover data for land modeling.
J. Appl. Meteorol. 39, pp. 826-839.

King M.D., Tsay S., Platnick S.E., Wang M.H., Liou K.N.,
1997. Cloud retrieval algorithm for MODIS: optical thickness,
effective particle radius, and thermodynamic phase. MODIS
algorithm theoretical basis document No.ATBD-MOD-05
MODO06-cloud product, version 5.

Menzel W.P., Frey R.A., Baum B.A., 2010. Cloud top
properties and cloud phase — algorithm theoretical basis
document. MODIS algorithm theoretical basis document
No.ATBD-MOD-05 MODO06-cloud product, version 8.



