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ABSTRACT: 

 

Urban areas in sub-Saharan Africa are growing at an unprecedented pace. Much of this growth is taking place in informal 

settlements. In South Africa more than 10% of the population live in urban informal settlements. South Africa has established a 

National Informal Settlement Development Programme (NUSP) to respond to these challenges. This programme is designed to 

support the National Department of Human Settlement (NDHS) in its implementation of the Upgrading Informal Settlements 

Programme (UISP) with the objective of eventually upgrading all informal settlements in the country. Currently, the NDHS does not 

have access to an updated national dataset captured at the same scale using source data that can be used to understand the status of 

informal settlements in the country. 

This pilot study is developing a fully automated workflow for the wall-to-wall processing of SPOT-5 satellite imagery of South 

Africa. The workflow includes an automatic image information extraction based on multiscale textural and morphological image 

features extraction. The advanced image feature compression and optimization together with innovative learning and classification 

techniques allow a processing of the SPOT-5 images using the Landsat-based National Land Cover (NLC) of South Africa from the 

year 2000 as low-resolution thematic reference layers as. The workflow was tested on 42 SPOT scenes based on a stratified 

sampling. The derived building information was validated against a visually interpreted building point data set and produced an 

accuracy of 97 per cent. Given this positive result, is planned to process the most recent wall-to-wall coverage as well as the archived 

imagery available since 2007 in the near future. 
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1. INTRODUCTION 

According to the 2014 revision of the World Urbanization 

Prospects 54 per cent of the world’s population lives in urban 

areas and it will increase to 66 per cent by 2050 (UNDESA, 

2014). Much of the expected urban growth will take place in 

countries of the developing regions, particularly Africa. As a 

result, these countries will face numerous challenges in meeting 

the needs of their growing urban populations, including for 

housing, infrastructure, transportation, energy and employment, 

as well as for basic services such as education and health care. 

Therefore the management of urban areas has become one of 

the most important development challenges of the 21st century. 

Understanding the dynamics of human settlements is a pre-

requisite for sustainable development and environmental 

management (UNDESA, 2014).  

In South Africa, the proportion of people living in urban areas 

increased from 52% in 1990 to 62% in 2011. Both cities and 

smaller towns are experiencing high growth rates in South 

Africa. In addition to natural population growth and migration 

of people from rural areas to cities, urbanisation in South Africa 

is also enhanced by migration of people from neighbouring 

countries and other parts of Africa (STATSSA, Census, 2011).  

Proliferation of informal settlements around the South African 

cities and towns is evident as poor people settle in informal 

settlements in search of employment. In South Africa, about 1 

249 777 households live in informal settlements excluding 

backyard shacks (STATSSA, Census 2011). This translates to 

4.2 million people of South Africa’s 51.7 million living in 

informal settlements.  

The South African government is party to the United Nations 

MDG 7 Target 11 which provide for the improvement of people 

living in informal settlements and has established an Upgrading 

of Informal Settlement Programme (UISP), which is aimed at 

upgrading all informal settlements in the country using a phased 

approach. To fast track the service delivery, in 2010  the South 

African government has established an outcome based 

approach, which focused on the upgrading of 400 000 units in 

informal settlements by 2014.   But there is a need to 

continuously track the developments of informal settlements to 

support sustainable development and resources allocation for 

informal settlement upgrade programmes. One of the challenges 

faced by local authorities, responsible for upgrading of the 

informal settlements, is access to timely and consistent spatial 

information on the informal settlements development. 

In South Africa, there are a number of initiatives that are aimed 

at capturing human settlements data for different levels of 

planning and management. These initiatives include Eskom’s 

SPOT Building Count, STATSSA dwelling Frame and land 

cover and land use by various levels of government 

departments. The methodologies used for these initiatives are 

time consuming and resource intensive.  

To respond to the challenge of access to consistent and up-to-

date human settlement data, this paper describes the 

methodology to automatically extract human settlement 

information from high resolution imagery in South Africa. The 
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human settlements information that is being developed through 

a collaboration between JRC and SANSA has far reaching 

applications and will support a plethora of legislative mandates 

assigned to the different government departments and public 

entities in  South Africa. Some of the most prominent legislative  

acts include: Electoral Act  through the demarcation of voting 

districts  and  verification of voting stations, the Statistics Act  

through supporting the dwelling frame and census planning, 

National Human Settlements Land Inventory Act  through the 

quantifying of areas  occupied by human settlements, 

Conservation of Agricultural Resources Act  by monitoring 

encroachment  of human settlements in fertile agricultural land, 

the Spatial Planning and Land Use Management Act through 

the provision of  information relating to the spatial extends of 

human settlement and the  Disaster Management Act  since 

information on human settlements is critical for post disaster 

verification, disaster risking profiling and assessment , and for 

monitoring  and evaluating the impacts of passive and active 

disasters. 

 

2. DATA AND STUDY AREA 

2.1 Satellite data 

SANSA has been acquiring since 2006 SPOT 5 imagery 

annually to support various aspects of government planning and 

monitoring ranging from infrastructure to environmental 

management. 

For this study 485 scenes covering the entire country were 

available, including a panchromatic (2.5m spatial resolution) 

and a multispectral (10m spatial resolution) image for each 

scene. The imagery was acquired between January and 

December 2012. The images were georeferenced using aerial 

photography provided by the Department of Rural Development 

and Land Reform, and 20m Digital Elevation Model (DEM) 

and projected to the Universal Transverse Mercator (UTM) 

system.  Both the panchromatic and multispectral images were 

georeferenced using the SARMES system (Lück et al., 2007)   

that automatically georeferences raw imagery.  The images that 

yielded high RSME errors were georeferenced manually.  The 

accuracy assessment was done by manually assessing the 

geographic positions of points in the satellite imagery and on 

the aerial photography. An accuracy of 12m at 2-sigma was 

achieved. To improve the spatial resolution of the satellite 

imagery, the 2.5m spatial resolution panchromatic imagery and 

four multispectral bands with 10m spatial resolution imagery 

were pansharpened using the PCI software to produce 2.5m 

resolution imagery. 

 

2.2 Ancillary data 

The automated workflow used in this study requires information 

regarding the potential presence of buildings. This information 

is derived from the South African National Land Cover (NLC 

2000, van den Berg, 2008). The NLC 2000 data set was derived 

using multi temporal Landsat 7 ETM imagery acquired in 2000-

2003. It contains 49 land cover and land use classes of which 16 

are urban land use classes. The vegetation and natural 

environmental land cover classes were mapped using pixel 

based classification whereas human settlements and other 

spectral heterogeneous land use classes were mapped through 

manual digitisation. 

For the validation and the identification of settlements in remote 

areas, SPOT Building Count (SBC) data set of the year 2012 

were used. The SBC is a point and polygon data set derived 

from SPOT 5 satellite imagery and is funded by Eskom, the 

power utility company. The first layer of SBC was generated 

using SPOT 5 imagery acquired in 2006. This dataset is updated 

annually after each national SPOT 5 release.  The SBC layer is 

developed through visual interpretation and manual digitisation 

of the building structures. The location of individual building 

structures identifiable from SPOT 5 2.5 natural colour image is 

mapped by points whereas the extent of informal settlements is 

mapped by polygon as individual dwellings within informal 

settlements cannot be identified using 2.5m spatial resolution 

imagery. The layer used in this study was updated using 2012 

SPOT 5 imagery. The SBC layer was used mainly for the 

validation of the settlement mask. In addition it is used in 

scarcely populated areas to mark potentially settled areas. 

 

2.3 Study Area 

The results presented in this paper are a precursor for the first 

automatically generated wall-to-wall map of settlements of 

South Africa derived from high resolution satellite imagery. 

From the 485 scenes that cover the entire territory of South 

Africa, 42 were selected based on a stratified sampling 

approach. The stratification took into account two factors: the 

vegetation and the population/settlement density.  The 

vegetation density information was derived from the maximum 

Leaf Area Index (LAI) derived from the GLASS LAI product 

(Xiao et al., 2013) and included 4 classes. The settlement 

density is based on the BUREF layer (Pesaresi et al., 2013), 

which is a combination of the urban class of the MODIS Land 

Cover Product and the LandScan1 2010 population layers. The 

BUREF values were split into 3 classes. Depending on the size 

of the strata different numbers of samples were drawn. The 

location and distribution of the selected scenes is shown in 

Figure 1. 

 

 

Figure 1. Study area and selected satellite scenes 

 

3. METHODOLOGY 

This chapter describes the high level workflow and the different 

processing steps (feature detection, advanced learning and 

classification), and the validation approach. 

 

3.1 Workflow 

The workflow presented in this paper is focussing on the 

information extraction and does not include any image 
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preprocessing. As described in section 2.1 the input imagery 

was already orthorectified and radiometrically corrected.  

The processing starts with the calculation of a luminance image 

(the maximum reflectance in the visible bands). This maximises 

the settlement contrast with the background and reduces the 

image size to a single band image.  The geographic extend 

(bounding box) of the image is used to cut the equivalent area 

from the countrywide NLC 2000 data set, which is used later 

during the learning as reference set. 

 

 

Figure 2. GHSL South Africa workflow 

 

3.2 Feature Detection 

The feature detection is based on the extraction of three 

different classes of features: texture, morphological and 

radiometric features. The following describes each of the three 

features. 

The textural image features are derived from grey-level co-

occurrence matrix (GLCM) contrast textural measurements 

(Haralick et al. 1973). The contrast textural measures calculated 

using anisotropic displacement vectors are combined in a 

rotation-invariant image feature called PANTEX (Pesaresi et al. 

2008) by using minima and/or maxima operators. Pesaresi et al. 

demonstrated that the PANTEX measurement is strongly 

correlated with the presence of buildings (Pesaresi et al. 2011a) 

as well as their spatial density (Pesaresi et al. 2011b). The 

capacity of PANTEX to discriminate built-up from non-built-up 

areas is mainly linked to the fact that it is a corner detector and 

that the BU areas generate high local image spectral 

heterogeneity due to the of heterogeneity of building materials 

and because the buildings generally cast shadows (Gueguen et 

al. 2012). 

The morphological feature analysis extracts single objects of 

different sizes, which can be used to identify building footprint 

candidates. The morphological features are summarized in an 

information layer that is a product of a multi-scale 

morphological analysis protocol referred to as the “mtDAP” 

(Ouzounis et al. 2012). The mtDAP protocol computes the 

Differential Attribute Profile (DAP) vector field (Mura et al. 

2010) from the input imagery. DAPs are nonlinear spatial 

signatures that are used extensively in remote sensing optical 

image analysis in ways analogous to spectral signatures. The 

DAP of a pixel is the concatenation of two response vectors. 

The first registers intensity differences, i.e., contrast, within a 

top-hat scale-scape of an anti-extensive attribute filter, and the 

second intensity differences on the bottom-hat scale-space of an 

extensive attribute filter. The pair defines an adjunction with the 

first typically being a connected attribute opening and the 

second being a connected attribute closing. The mtDAP can be 

configured with any morphological attribute filter, but in this 

case simple area openings and closings prove to be sufficient. 

The area attribute is used to order objects based on size and it is 

computed incrementally. More detailed information is provided 

in Pesaresi et al. (2013).  

The resolution of the DAPs (vector length and the between-

scale spacing) is a critical parameter in their utilization as 

feature descriptors. On the one hand, higher spatial input 

resolution offers a more detailed profile for each pixel. On the 

other hand by increasing the vector length the number of DAP 

vector field planes increases proportionally. This can become an 

issue with large data sets at higher resolution. Hence, Pesaresi et 

al. (2012) proposed a compression model that was devised to 

radically reduce the dimensionality of the DAP descriptors. It is 

called the Characteristic-Saliency-Level, or CSL Model, and is 

a medium abstraction semantic layer that can be projected on 

the HSV colour space for the visual exploration of built-up 

extracted from VHR satellite imagery. The CSL model is a 

nonlinear mixture model consisting of three characteristic 

parameters extracted from the DAP of each pixel. That is the 

minimum scale at which the maximal contrast response is 

observed in the DAP (the characteristic), the contrast value (the 

saliency) and the highest peak component level from which this 

value is computed. The model is computed directly from the 

polychotomy of the two tree-based data structures and with no 

need for exporting the DAP vector fields. It reduces radically 

the dimensionality of the DAP vector field to a three-band 

representation in a statistical-model free approach, i.e. it avoids 

clustering based on the statistical distribution of the DAP 

features of a given image. It does not require manual tuning and 

its computation is independent of the length of the DAP. 

The radiometric feature detection is analysing the feature space 

by grouping pixels based on their radiometric behaviour. This is 

obtained by quantization and subsequent sampling of the 

feature space comparable to a cluster analysis. Figure 3 shows 

an example of the feature extraction. Large industrial buildings 

are clearly discernible, while smaller features, such as 

residential houses are less apparent. 

 

 
Figure 3. Radiometric feature extraction. The colours mark 

similar features. 

 

3.3 Learning and Feature Classification 

The features described above are the input for the subsequent 

learning and classification phase. Aiming at an automated wall-

to-wall processing the standard procedures used in remote 

sensing, such as supervised classification with training sets, fail 

due to the necessary degree of human interaction. Instead a new 

fully automated approach is used here based on image data 

sequencing and symbolic machine learning by association 
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analysis. These techniques are well established tools in, for 

example, medical diagnosis, protein sequences, census data, 

fraud detection in web and credit card business genome 

characterization studies (e.g. Anandhavalli et al., 2010). 

The system searches for relevant, systematic relations between 

image features and spatial information encoded in the reference 

landcover data set. For each pixel, the system calculates the 

probability to belong to a specific LULC class and the class 

with the highest probability is finally selected. For the binary 

case of built-up (either a pixel is built-up or it is not), the 

system calculates a probability to belong to the built-up class. 

Values are ranging from -1 to +1, where -1 represents the non-

built-up class and +1 the built-up. 

 

3.4 Validation 

The validation of the results is based on a confusion matrix. A 

set of accuracy measures is calculated on a per-pixel basis as 

recommended by Foody (2008). These are based on two-class 

contingency tables resulting from the overlay of the settlement 

layer and the high resolution validation data: The overall 

accuracy measures the classification accuracy as the share of all 

correctly classified urban and non-urban pixels in the error 

matrix and thus, gives general information regarding the overall 

map accuracy. However, this measure does not take into 

account unequal class distributions and thus, does not paint a 

detailed picture of the accuracy across individual land cover 

classes. The sensitivity (completeness) relates to the 

ability/probability to classify urban pixels as defined by the 

building reference correctly. It is the percentage of the building 

reference data which corresponds to the classification output of 

the respective urban extent layer and is closely related to the 

error of omission (1-sensitivity). The ideal value for the 

completeness is 100 percent. In turn, the ability of classifying 

the absence of urban areas correctly is called specificity. The 

specificity relates to the test’s ability to identify negative results. 

Precision (correctness) relates to the classifier’s ability to 

exclude non-urban areas correctly from the urban extent 

classification as defined by the building reference. This measure 

is closely related to the error of commission (1-precision) and 

reaches and ideal value of 100 percent. Finally, the True Skill 

Statistic (TSS) or informedness is designed to measure the 

agreement between the classification and the building reference 

layer. It is calculated as the specificity (fraction of correctly 

classified urban pixels) plus the sensitivity (fraction of correctly 

classified non-urban pixels) minus one. Compared to Kappa it 

has the advantage of being independent from unequal class 

distributions and thus provides a more robust measure of 

classification accuracy (Allouche et al., 2006). Its range spans 

from negative values (systematic disagreement) to 1 (perfect 

agreement), with a value of 0 indicating a random classification 

result.  

4. RESULTS 

The workflow described in this study produces two main 

outputs: a building density layer and a landuse layer. Both data 

sets are produced at a pixel resolution of 10 m, which is a trade-

off between geolocation accuracy, classification accuracy and 

file size. 

For the validation of the built-up density layer the SBC 2012 

layer was used. In order to be able to compare the point layer 

with the building densities, for each scene 3000 points were 

randomly selected for each scene; points in the ocean, were 

subsequently deleted leading to a total of 120608 points. Each 

point was then buffered to create a circle with 50 m diameter. 

For each circle the number of building points from the 

SBC2012 data set as well as the zonal statistics of the built-up 

density layer was calculated. In order to create a contingency 

table each 50 m circle was declared as built-up according to the 

reference, if at least one building point was present. 

Accordingly a circle was declared as built-up in the output, if at 

least one pixel had a value greater than zero. Since the 

percentage of built-up in an area is generally very low, there is a 

tendency to underestimate the built-up with the standard 

threshold of zero. Therefore, a receiver operating characteristic 

(ROC) analysis was carried out to determine the best threshold 

for the built-up. The Minimum Error Rate (MER) threshold was 

0,30. For both thresholds the accuracy measures were calculated 

as described in section 3.4 (Table 1). 

 

Accuracy Measures Standard 

threshold [0] 

Optimized 

threshold [-0.30] 

Accuracy 0.9734 0.9668 

Sensitivity 0.8037 0.8359 

Specificity 0.9777 0.9702 

Precision 0.4772 0.4151 

Balanced_Accuracy 0.8907 0.9030 

TSS/Informedness 0.7814 0.8061 

Ommission 
0.1963 0.1641 

Commission 
0.5228 0.5846 

Table 1. Accuracy measures for the standard and optimised 

threshold. 

 

The overall accuracy is very strong with 97%. However, as 

anticipated earlier this is strongly influenced by the large 

percentage of non-built-up areas. Nevertheless, also the 

balanced accuracy with 90% and the true skill statistics with 

0.78/0.81 are very good. These values tend to be more robust 

against the skewed distribution of built-up and non-built-up. 

The error of omission is acceptable with 19.63% and 16.41%, 

respectively. The error of commission is rather high with 

52.28% and 58.46%. To some extent this is due inaccuracies of 

the reference layer rather than processing errors. Figure 4 shows 

an area west of the international airport of Cape Town with the 

Boquinar Airport Industrial Area in the north-east and the 

Gugulethu and Nyanga townships in the south and south-west. 

While most of the township dwellings and industrial buildings 

are marked with points or polygons, the central part including 

the informal settlements of Kanana, Barcelona and KTC, is not 

marked at all. There are various other examples in the data set 

not shown here. Additional sources of commission error occur 

in coastal zones (rocky shoreline or sand dunes with patches of 

vegetation), areas with rock outcrops and bush land areas with 

small groups of shrubs and trees mixed with open herb- or 

grassland. The selected area (Figure 4) highlights also some of 

the problems of the current workflow settings. In the industrial 

area a number of big buildings are not mapped properly. In fact 

the current workflow uses a maximum building size limit to 

speed-up the processing and avoiding erroneous classification 

of agricultural areas as built-up areas (due to their often 

rectangular shape). For the wall-to-wall mapping of settlements 

this has to be taken into account. 

On the other hand it is exactly these areas that are not available 

in the reference data that show the added value of the 

automatically generated settlement map for monitoring of the 

urbanisation in South Africa: the layer is able to highlight new 

or missed out settlement developments. 
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Figure 4. Cape Town.  Comparison of SBC points (red dots and 

polygons) with built-up mask (top) and reference image 

(bottom). 

 

For the landuse map no adequate independent data set was 

available for validation. Hence we provide here only a 

qualitative assessment.  Prior to the information extraction the 

NLC2000 data was recoded to reduce the number of classes 

from initially 49 to 18. The recoding focussed mostly the non-

built-up; the full list of classes is available in Kemper at al. 

(2014). Figure 5 (top) shows the landuse classes that were 

obtained from the coarser resolution NLC 2000 (Figure 5, 

bottom) for the same area as in Figure 4. The new high-

resolution landuse map shows a much greater level of detail 

compared to the NLC 2000. While the large clusters of 

industrial, informal squatter camp and township are present, the 

new map also highlights important details such as open and 

vegetated areas. On the other hand there is a significant portion 

of noise due to single pixels (or small clusters), e.g. the small 

clusters of water in the industrial areas, which are most likely 

misclassifications of shadow areas. Such noise should be 

reduced with post-classification filtering approaches. In 

addition, the example shows the limitations of automated image 

analysis in terms of separation of similar landuse classes. From 

an image information mining point of view there is hardly any 

difference between the dwellings in a formal township and 

those in informal squatter camps. Consequently, we see a lot of 

areas in the informal squatter camp area mapped as formal 

township. 

  

 

 

 

 

 

 

 
Figure 5. Cape Town. Comparison of high resolution landuse 

map (top) with coarse resolution learning input (bottom). 

 

 

5. CONCLUSIONS 

There is a strong demand for up-to-date information on formal 

and informal settlements in South Africa. This paper 

demonstrated the potential of remote sensing to map the 

settlements of South Africa in an automated manner. The study 

proofed that the tools developed by the JRC for the Global 

Human Settlement Layer (Pesaresi et al., 2013) could be 

adapted to the South African context. With the new workflow 

developed for South Africa it is even possible to go beyond the 

state of the art. Instead of providing information on the presence 

of settlements, the new workflow allows also the classification 

of major LULC classes.  

However, at this point only the built-up area product was 

validated with satisfactory results. Also here some shortcomings 
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were identified. In particular the identification of larger 

buildings is currently not optimal and needs improvement. In 

addition, there is more work needed for the LULC classes: To 

what level can different settlement types (e.g. formal vs. 

informal township) be separated? How do we assure that LULC 

classes are consistent in neighbouring scenes? 

The above mentioned points will be taken into consideration in 

the improvements of the workflow for the creation of a wall-to-

wall settlement map for South Africa of the year 2012, which is 

planned for 2015. Subsequently it is foreseen to process on the 

one hand older archived imagery and on the other hand to 

process newer information layers, possibly including the new 

SPOT 6 and 7 data acquired by SANSA. 
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