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ABSTRACT:

Urban areas in sub-Saharan Africa are growing at an unprecedented pace. Much of this growth is taking place in informal
settlements. In South Africa more than 10% of the population live in urban informal settlements. South Africa has established a
National Informal Settlement Development Programme (NUSP) to respond to these challenges. This programme is designed to
support the National Department of Human Settlement (NDHS) in its implementation of the Upgrading Informal Settlements
Programme (UISP) with the objective of eventually upgrading all informal settlements in the country. Currently, the NDHS does not
have access to an updated national dataset captured at the same scale using source data that can be used to understand the status of
informal settlements in the country.

This pilot study is developing a fully automated workflow for the wall-to-wall processing of SPOT-5 satellite imagery of South
Africa. The workflow includes an automatic image information extraction based on multiscale textural and morphological image
features extraction. The advanced image feature compression and optimization together with innovative learning and classification
techniques allow a processing of the SPOT-5 images using the Landsat-based National Land Cover (NLC) of South Africa from the
year 2000 as low-resolution thematic reference layers as. The workflow was tested on 42 SPOT scenes based on a stratified
sampling. The derived building information was validated against a visually interpreted building point data set and produced an
accuracy of 97 per cent. Given this positive result, is planned to process the most recent wall-to-wall coverage as well as the archived

imagery available since 2007 in the near future.

1. INTRODUCTION

According to the 2014 revision of the World Urbanization
Prospects 54 per cent of the world’s population lives in urban
areas and it will increase to 66 per cent by 2050 (UNDESA,
2014). Much of the expected urban growth will take place in
countries of the developing regions, particularly Africa. As a
result, these countries will face numerous challenges in meeting
the needs of their growing urban populations, including for
housing, infrastructure, transportation, energy and employment,
as well as for basic services such as education and health care.
Therefore the management of urban areas has become one of
the most important development challenges of the 21% century.
Understanding the dynamics of human settlements is a pre-
requisite for sustainable development and environmental
management (UNDESA, 2014).

In South Africa, the proportion of people living in urban areas
increased from 52% in 1990 to 62% in 2011. Both cities and
smaller towns are experiencing high growth rates in South
Africa. In addition to natural population growth and migration
of people from rural areas to cities, urbanisation in South Africa
is also enhanced by migration of people from neighbouring
countries and other parts of Africa (STATSSA, Census, 2011).
Proliferation of informal settlements around the South African
cities and towns is evident as poor people settle in informal
settlements in search of employment. In South Africa, about 1
249 777 households live in informal settlements excluding
backyard shacks (STATSSA, Census 2011). This translates to
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4.2 million people of South Africa’s 51.7 million living in
informal settlements.

The South African government is party to the United Nations
MDG 7 Target 11 which provide for the improvement of people
living in informal settlements and has established an Upgrading
of Informal Settlement Programme (UISP), which is aimed at
upgrading all informal settlements in the country using a phased
approach. To fast track the service delivery, in 2010 the South
African government has established an outcome based
approach, which focused on the upgrading of 400 000 units in
informal settlements by 2014. But there is a need to
continuously track the developments of informal settlements to
support sustainable development and resources allocation for
informal settlement upgrade programmes. One of the challenges
faced by local authorities, responsible for upgrading of the
informal settlements, is access to timely and consistent spatial
information on the informal settlements development.

In South Africa, there are a number of initiatives that are aimed
at capturing human settlements data for different levels of
planning and management. These initiatives include Eskom’s
SPOT Building Count, STATSSA dwelling Frame and land
cover and land use by wvarious levels of government
departments. The methodologies used for these initiatives are
time consuming and resource intensive.

To respond to the challenge of access to consistent and up-to-
date human settlement data, this paper describes the
methodology to automatically extract human settlement
information from high resolution imagery in South Africa. The
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human settlements information that is being developed through
a collaboration between JRC and SANSA has far reaching
applications and will support a plethora of legislative mandates
assigned to the different government departments and public
entities in South Africa. Some of the most prominent legislative
acts include: Electoral Act through the demarcation of voting
districts and verification of voting stations, the Statistics Act
through supporting the dwelling frame and census planning,
National Human Settlements Land Inventory Act through the
quantifying of areas  occupied by human settlements,
Conservation of Agricultural Resources Act by monitoring
encroachment of human settlements in fertile agricultural land,
the Spatial Planning and Land Use Management Act through
the provision of information relating to the spatial extends of
human settlement and the Disaster Management Act since
information on human settlements is critical for post disaster
verification, disaster risking profiling and assessment , and for
monitoring and evaluating the impacts of passive and active
disasters.

2. DATA AND STUDY AREA
2.1 Satellite data

SANSA has been acquiring since 2006 SPOT 5 imagery
annually to support various aspects of government planning and
monitoring ranging from infrastructure to environmental
management.

For this study 485 scenes covering the entire country were
available, including a panchromatic (2.5m spatial resolution)
and a multispectral (10m spatial resolution) image for each
scene. The imagery was acquired between January and
December 2012. The images were georeferenced using aerial
photography provided by the Department of Rural Development
and Land Reform, and 20m Digital Elevation Model (DEM)
and projected to the Universal Transverse Mercator (UTM)
system. Both the panchromatic and multispectral images were
georeferenced using the SARMES system (Lick et al., 2007)
that automatically georeferences raw imagery. The images that
yielded high RSME errors were georeferenced manually. The
accuracy assessment was done by manually assessing the
geographic positions of points in the satellite imagery and on
the aerial photography. An accuracy of 12m at 2-sigma was
achieved. To improve the spatial resolution of the satellite
imagery, the 2.5m spatial resolution panchromatic imagery and
four multispectral bands with 10m spatial resolution imagery
were pansharpened using the PCI software to produce 2.5m
resolution imagery.

2.2 Ancillary data

The automated workflow used in this study requires information
regarding the potential presence of buildings. This information
is derived from the South African National Land Cover (NLC
2000, van den Berg, 2008). The NLC 2000 data set was derived
using multi temporal Landsat 7 ETM imagery acquired in 2000-
2003. It contains 49 land cover and land use classes of which 16
are urban land use classes. The vegetation and natural
environmental land cover classes were mapped using pixel
based classification whereas human settlements and other
spectral heterogeneous land use classes were mapped through
manual digitisation.

For the validation and the identification of settlements in remote
areas, SPOT Building Count (SBC) data set of the year 2012
were used. The SBC is a point and polygon data set derived
from SPOT 5 satellite imagery and is funded by Eskom, the

power utility company. The first layer of SBC was generated
using SPOT 5 imagery acquired in 2006. This dataset is updated
annually after each national SPOT 5 release. The SBC layer is
developed through visual interpretation and manual digitisation
of the building structures. The location of individual building
structures identifiable from SPOT 5 2.5 natural colour image is
mapped by points whereas the extent of informal settlements is
mapped by polygon as individual dwellings within informal
settlements cannot be identified using 2.5m spatial resolution
imagery. The layer used in this study was updated using 2012
SPOT 5 imagery. The SBC layer was used mainly for the
validation of the settlement mask. In addition it is used in
scarcely populated areas to mark potentially settled areas.

2.3 Study Area

The results presented in this paper are a precursor for the first
automatically generated wall-to-wall map of settlements of
South Africa derived from high resolution satellite imagery.
From the 485 scenes that cover the entire territory of South
Africa, 42 were selected based on a stratified sampling
approach. The stratification took into account two factors: the
vegetation and the population/settlement density. The
vegetation density information was derived from the maximum
Leaf Area Index (LAI) derived from the GLASS LAl product
(Xiao et al., 2013) and included 4 classes. The settlement
density is based on the BUREF layer (Pesaresi et al., 2013),
which is a combination of the urban class of the MODIS Land
Cover Product and the LandScan® 2010 population layers. The
BUREF values were split into 3 classes. Depending on the size
of the strata different numbers of samples were drawn. The
location and distribution of the selected scenes is shown in
Figure 1.
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Figure 1. Study area and selected satellite scenes

3. METHODOLOGY

This chapter describes the high level workflow and the different
processing steps (feature detection, advanced learning and
classification), and the validation approach.

3.1 Workflow

The workflow presented in this paper is focussing on the
information extraction and does not include any image
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preprocessing. As described in section 2.1 the input imagery
was already orthorectified and radiometrically corrected.

The processing starts with the calculation of a luminance image
(the maximum reflectance in the visible bands). This maximises
the settlement contrast with the background and reduces the
image size to a single band image. The geographic extend
(bounding box) of the image is used to cut the equivalent area
from the countrywide NLC 2000 data set, which is used later
during the learning as reference set.
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Figure 2. GHSL South Africa workflow

3.2 Feature Detection

The feature detection is based on the extraction of three
different classes of features: texture, morphological and
radiometric features. The following describes each of the three
features.

The textural image features are derived from grey-level co-
occurrence matrix (GLCM) contrast textural measurements
(Haralick et al. 1973). The contrast textural measures calculated
using anisotropic displacement vectors are combined in a
rotation-invariant image feature called PANTEX (Pesaresi et al.
2008) by using minima and/or maxima operators. Pesaresi et al.
demonstrated that the PANTEX measurement is strongly
correlated with the presence of buildings (Pesaresi et al. 2011a)
as well as their spatial density (Pesaresi et al. 2011b). The
capacity of PANTEX to discriminate built-up from non-built-up
areas is mainly linked to the fact that it is a corner detector and
that the BU areas generate high local image spectral
heterogeneity due to the of heterogeneity of building materials
and because the buildings generally cast shadows (Gueguen et
al. 2012).

The morphological feature analysis extracts single objects of
different sizes, which can be used to identify building footprint
candidates. The morphological features are summarized in an
information layer that is a product of a multi-scale
morphological analysis protocol referred to as the “mtDAP”
(Ouzounis et al. 2012). The mtDAP protocol computes the
Differential Attribute Profile (DAP) vector field (Mura et al.
2010) from the input imagery. DAPs are nonlinear spatial
signatures that are used extensively in remote sensing optical
image analysis in ways analogous to spectral signatures. The
DAP of a pixel is the concatenation of two response vectors.
The first registers intensity differences, i.e., contrast, within a
top-hat scale-scape of an anti-extensive attribute filter, and the
second intensity differences on the bottom-hat scale-space of an
extensive attribute filter. The pair defines an adjunction with the
first typically being a connected attribute opening and the
second being a connected attribute closing. The mtDAP can be
configured with any morphological attribute filter, but in this

case simple area openings and closings prove to be sufficient.
The area attribute is used to order objects based on size and it is
computed incrementally. More detailed information is provided
in Pesaresi et al. (2013).

The resolution of the DAPs (vector length and the between-
scale spacing) is a critical parameter in their utilization as
feature descriptors. On the one hand, higher spatial input
resolution offers a more detailed profile for each pixel. On the
other hand by increasing the vector length the number of DAP
vector field planes increases proportionally. This can become an
issue with large data sets at higher resolution. Hence, Pesaresi et
al. (2012) proposed a compression model that was devised to
radically reduce the dimensionality of the DAP descriptors. It is
called the Characteristic-Saliency-Level, or CSL Model, and is
a medium abstraction semantic layer that can be projected on
the HSV colour space for the visual exploration of built-up
extracted from VHR satellite imagery. The CSL model is a
nonlinear mixture model consisting of three characteristic
parameters extracted from the DAP of each pixel. That is the
minimum scale at which the maximal contrast response is
observed in the DAP (the characteristic), the contrast value (the
saliency) and the highest peak component level from which this
value is computed. The model is computed directly from the
polychotomy of the two tree-based data structures and with no
need for exporting the DAP vector fields. It reduces radically
the dimensionality of the DAP vector field to a three-band
representation in a statistical-model free approach, i.e. it avoids
clustering based on the statistical distribution of the DAP
features of a given image. It does not require manual tuning and
its computation is independent of the length of the DAP.

The radiometric feature detection is analysing the feature space
by grouping pixels based on their radiometric behaviour. This is
obtained by quantization and subsequent sampling of the
feature space comparable to a cluster analysis. Figure 3 shows
an example of the feature extraction. Large industrial buildings
are clearly discernible, while smaller features, such as
residential houses are less apparent.
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igure 3. Radiometric feature extraction. The colours mark
similar features.

3.3 Learning and Feature Classification

The features described above are the input for the subsequent
learning and classification phase. Aiming at an automated wall-
to-wall processing the standard procedures used in remote
sensing, such as supervised classification with training sets, fail
due to the necessary degree of human interaction. Instead a new
fully automated approach is used here based on image data
sequencing and symbolic machine learning by association
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analysis. These techniques are well established tools in, for
example, medical diagnosis, protein sequences, census data,
fraud detection in web and credit card business genome
characterization studies (e.g. Anandhavalli et al., 2010).

The system searches for relevant, systematic relations between
image features and spatial information encoded in the reference
landcover data set. For each pixel, the system calculates the
probability to belong to a specific LULC class and the class
with the highest probability is finally selected. For the binary
case of built-up (either a pixel is built-up or it is not), the
system calculates a probability to belong to the built-up class.
Values are ranging from -1 to +1, where -1 represents the non-
built-up class and +1 the built-up.

3.4 Validation

The validation of the results is based on a confusion matrix. A
set of accuracy measures is calculated on a per-pixel basis as
recommended by Foody (2008). These are based on two-class
contingency tables resulting from the overlay of the settlement
layer and the high resolution validation data: The overall
accuracy measures the classification accuracy as the share of all
correctly classified urban and non-urban pixels in the error
matrix and thus, gives general information regarding the overall
map accuracy. However, this measure does not take into
account unequal class distributions and thus, does not paint a
detailed picture of the accuracy across individual land cover
classes. The sensitivity (completeness) relates to the
ability/probability to classify urban pixels as defined by the
building reference correctly. It is the percentage of the building
reference data which corresponds to the classification output of
the respective urban extent layer and is closely related to the
error of omission (1-sensitivity). The ideal value for the
completeness is 100 percent. In turn, the ability of classifying
the absence of urban areas correctly is called specificity. The
specificity relates to the test’s ability to identify negative results.
Precision (correctness) relates to the classifier’s ability to
exclude non-urban areas correctly from the urban extent
classification as defined by the building reference. This measure
is closely related to the error of commission (1-precision) and
reaches and ideal value of 100 percent. Finally, the True Skill
Statistic (TSS) or informedness is designed to measure the
agreement between the classification and the building reference
layer. It is calculated as the specificity (fraction of correctly
classified urban pixels) plus the sensitivity (fraction of correctly
classified non-urban pixels) minus one. Compared to Kappa it
has the advantage of being independent from unequal class
distributions and thus provides a more robust measure of
classification accuracy (Allouche et al., 2006). Its range spans
from negative values (systematic disagreement) to 1 (perfect
agreement), with a value of 0 indicating a random classification
result.
4. RESULTS

The workflow described in this study produces two main
outputs: a building density layer and a landuse layer. Both data
sets are produced at a pixel resolution of 10 m, which is a trade-
off between geolocation accuracy, classification accuracy and
file size.

For the validation of the built-up density layer the SBC 2012
layer was used. In order to be able to compare the point layer
with the building densities, for each scene 3000 points were
randomly selected for each scene; points in the ocean, were
subsequently deleted leading to a total of 120608 points. Each
point was then buffered to create a circle with 50 m diameter.
For each circle the number of building points from the

SBC2012 data set as well as the zonal statistics of the built-up
density layer was calculated. In order to create a contingency
table each 50 m circle was declared as built-up according to the
reference, if at least one building point was present.
Accordingly a circle was declared as built-up in the output, if at
least one pixel had a value greater than zero. Since the
percentage of built-up in an area is generally very low, there is a
tendency to underestimate the built-up with the standard
threshold of zero. Therefore, a receiver operating characteristic
(ROC) analysis was carried out to determine the best threshold
for the built-up. The Minimum Error Rate (MER) threshold was
0,30. For both thresholds the accuracy measures were calculated
as described in section 3.4 (Table 1).

Accuracy Measures Standard Optimized
threshold [0] threshold [-0.30]
Accuracy 0.9734 0.9668
Sensitivity 0.8037 0.8359
Specificity 0.9777 0.9702
Precision 0.4772 0.4151
Balanced_Accuracy 0.8907 0.9030
TSS/Informedness 0.7814 0.8061
Ommission 0.1963 0.1641
Commission 0.5228 0.5846
Table 1. Accuracy measures for the standard and optimised
threshold.

The overall accuracy is very strong with 97%. However, as
anticipated earlier this is strongly influenced by the large
percentage of non-built-up areas. Nevertheless, also the
balanced accuracy with 90% and the true skill statistics with
0.78/0.81 are very good. These values tend to be more robust
against the skewed distribution of built-up and non-built-up.
The error of omission is acceptable with 19.63% and 16.41%,
respectively. The error of commission is rather high with
52.28% and 58.46%. To some extent this is due inaccuracies of
the reference layer rather than processing errors. Figure 4 shows
an area west of the international airport of Cape Town with the
Boquinar Airport Industrial Area in the north-east and the
Gugulethu and Nyanga townships in the south and south-west.
While most of the township dwellings and industrial buildings
are marked with points or polygons, the central part including
the informal settlements of Kanana, Barcelona and KTC, is not
marked at all. There are various other examples in the data set
not shown here. Additional sources of commission error occur
in coastal zones (rocky shoreline or sand dunes with patches of
vegetation), areas with rock outcrops and bush land areas with
small groups of shrubs and trees mixed with open herb- or
grassland. The selected area (Figure 4) highlights also some of
the problems of the current workflow settings. In the industrial
area a number of big buildings are not mapped properly. In fact
the current workflow uses a maximum building size limit to
speed-up the processing and avoiding erroneous classification
of agricultural areas as built-up areas (due to their often
rectangular shape). For the wall-to-wall mapping of settlements
this has to be taken into account.

On the other hand it is exactly these areas that are not available
in the reference data that show the added value of the
automatically generated settlement map for monitoring of the
urbanisation in South Africa: the layer is able to highlight new
or missed out settlement developments.
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Figure 4. Cape Town. Coarlsono SBC oits (rd dos and
polygons) with built-up mask (top) and reference image
(bottom).

For the landuse map no adequate independent data set was
available for validation. Hence we provide here only a
qualitative assessment. Prior to the information extraction the
NLC2000 data was recoded to reduce the number of classes
from initially 49 to 18. The recoding focussed mostly the non-
built-up; the full list of classes is available in Kemper at al.
(2014). Figure 5 (top) shows the landuse classes that were
obtained from the coarser resolution NLC 2000 (Figure 5,
bottom) for the same area as in Figure 4. The new high-
resolution landuse map shows a much greater level of detail
compared to the NLC 2000. While the large clusters of
industrial, informal squatter camp and township are present, the
new map also highlights important details such as open and
vegetated areas. On the other hand there is a significant portion
of noise due to single pixels (or small clusters), e.g. the small
clusters of water in the industrial areas, which are most likely
misclassifications of shadow areas. Such noise should be
reduced with post-classification filtering approaches. In
addition, the example shows the limitations of automated image
analysis in terms of separation of similar landuse classes. From
an image information mining point of view there is hardly any
difference between the dwellings in a formal township and
those in informal squatter camps. Consequently, we see a lot of
areas in the informal squatter camp area mapped as formal
township.
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Figure 5. Cape Town. Comparison of high resolution landuse
map (top) with coarse resolution learning input (bottom).

5. CONCLUSIONS

There is a strong demand for up-to-date information on formal
and informal settlements in South Africa. This paper
demonstrated the potential of remote sensing to map the
settlements of South Africa in an automated manner. The study
proofed that the tools developed by the JRC for the Global
Human Settlement Layer (Pesaresi et al., 2013) could be
adapted to the South African context. With the new workflow
developed for South Africa it is even possible to go beyond the
state of the art. Instead of providing information on the presence
of settlements, the new workflow allows also the classification
of major LULC classes.

However, at this point only the built-up area product was
validated with satisfactory results. Also here some shortcomings
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were identified. In particular the identification of larger
buildings is currently not optimal and needs improvement. In
addition, there is more work needed for the LULC classes: To
what level can different settlement types (e.g. formal vs.
informal township) be separated? How do we assure that LULC
classes are consistent in neighbouring scenes?

The above mentioned points will be taken into consideration in
the improvements of the workflow for the creation of a wall-to-
wall settlement map for South Africa of the year 2012, which is
planned for 2015. Subsequently it is foreseen to process on the
one hand older archived imagery and on the other hand to
process newer information layers, possibly including the new
SPOT 6 and 7 data acquired by SANSA.
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