

SCIENTIFIC ACHIEVEMENTS of the SMOS MISSION

Yann H. Kerr^a *, J.-P. Wigneron^b, P. Ferrazzoli^c, P. Richaume^a, N. Reul^d, J. Font^e, J. Boutin^f, P. Waldteufel^g, Achim Hahneⁱ, Steven Delwart^h, M. Druschⁱ, S. Mecklenburg^h.

^a Centre Détudes Spatiales de la Biopshère 18 avenue Edouard Belin 31401 toulouse cedex 9, France Yann.kerr@cesbio.cnes.fr, richaumep@cesbio.cnes.fr

^b INRA ISPA, Bordeaux - wigneron@bordeaux.inra.fr

^c Tor Vergata University Roma Italy - ferrazzoli@disp.uniroma2.it

^d IFREMER Toulon France - nreul@ifremer.fr

^e CSIC- ICM BEC Barcelona Spain - jfont@icm.csic.es

^f LOCEAN Paris France - jb@locean-ipsl.upmc.fr

^g LATMOS PARIS France - Philippe.waldteufel@latmos.ipsl.fr

^h ESA ESRIN Frascati Roma Italy - Steven.Delwart@esa.int, Susanne.Mecklenburg@esa.int

ⁱ ESA ESTEC Noordwijk, Netherlands - achim-hahne@t-online.de, Matthias.Drusch@esa.int

THEME: Water Cycle, **special session on** . “Scientific achievements of ESA's Earth Explorer missions”

KEY WORDS: SMOS, Soil Moisture, Ocean Salinity, L Band

ABSTRACT:

In November 2009 the SMOS satellite was launched. SMOs is based on a two D L band (1400 1427 MHz) interferometer covering the globe twice in less than 3 days. Shortly after launch, the first global maps of soil moisture ever measured from space were produced. Since then, the achieved accuracy has continuously improved to match the requirements. The long term trends of surface moisture can now be closely linked to precipitation regime, and SMOS results have been successfully used in response to extreme events. In parallel, even though more challenging, the first sea surface salinity maps were also produced and there also, ocean salinity results have also improved dramatically. Very quickly several amazing results were obtained over land and oceans ranging from river plumes or fresh water pools monitoring to hurricane tracking over the oceans, weather forecast improvements and flood and droughts monitoring, to name only a few. Moreover, new applications have been imagined in various fields such as of sea ice thickness, or freeze thaw maps. The most severe issue encountered was linked to illegal man made emission (Radio frequency interferences) which hampered somewhat the first results but is not better under control. This presentation will give an extensive status of the mission, emphasizing the many lessons learned and demonstrating some of the outstanding science results, as well as synergistic approaches with other missions. Some perspectives on the mission and future missions will also be given. A particular emphasis will be given on new level 4 products currently being produced as well as comparisons with other existing sensors.

* Corresponding author. This is useful to know for communication with the appropriate person in cases with more than one author.