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ABSTRACT:

The identification and surveillance of agricultural management and the measurement of biophysical canopy parameters in grasslands
is relevant for environmental protection as well as for political and economic reasons, as proper grassland management is partly
subsidized. An ideal monitoring tool is remote sensing due to its area wide continuous observations. However, due to small-scaled
land use patterns in many parts of central Europe, a high spatial resolution is needed. In this study, the feasibility of RapidEye data to
derive leaf area index (LAI) time series and to relate them to grassland management practices is assessed. The study area is the
catchment of river Ammer in southern Bavaria, where agricultural areas are mainly grasslands. While extensively managed grasslands
are maintained with one to two harvests per year and no or little fertilization, intensive cultivation practices compass three to five
harvests per year and turnover pasturing.

Based on a RapidEye time series from 2011 with spatial resolution of 6.5 meters, LAl is derived using the inverted radiation transfer
model PROSAIL. The LAl in this area ranges from 1.5 to 7.5 over the vegetation period and is estimated with an RMSE between 0.7
and 1.1. The derived LAI maps cover 85 % of the study area’s grasslands at least seven times. Using statistical metrics of the LAI time
series, different grassland management types can be identified: very intensively managed meadows, intensively managed meadows,
intensively managed pastures, and extensively managed meadows and moor. However, a precise identification of the mowing dates
highly depends on the coincidence with satellite data acquisitions. Further analysis should focus therefor on the selection of the
temporal resolution of the time series as well as on the performance of further vegetation parameters and indices compared to LAI.

1. INTRODUCTION al. 2012). Remote sensing based research on managed grassland

The identification and surveillance of agricultural practices,
especially of management intensities, is relevant for a range of
ecological, conservation, and political issues. In the alpine
region, livestock farming is the predominant agricultural land
use, and at the same time, various different pasturing and mowing
intensities exist. The ecological relevance of grassland usage
intensity is linked to exchange fluxes of water, energy, and gases
between the land surface and the atmosphere. Knowledge on use
intensities can hence improve greenhouse gas inventories
(Schaller et al. 2011). In addition, the conservation status of
grassland needs to be monitored to assess the ecological value of
landscapes. Traditional and other extensive types of agricultural
land use can maintain the biodiversity of grassland landscapes.
Especially semi-natural, extensively used grasslands play an
important role as habitats with a high conservation value (Oster
et al. 2008; Sullivan et al. 2010). Intensification or abandonment
of these grassland managements on the other hand can cause
biodiversity loss (Henle et al. 2008). Furthermore, knowledge on
mowing and pasturing intensities are important for political and
economic reasons, as proper grassland management is partly
subsidized in the EU.

The monitoring of agricultural management intensities often
relies on remote sensing data, as they provide repetitive and area
wide continuous observations. Due to the small-scaled land use
patterns in the alpine areas of central Europe, the used remote
sensing images need a high spatial resolution, which becomes
increasingly feasible with relatively new sensors such as
RapidEye, Landsat 8, and, soon, Sentinel-2. Nevertheless, the
potential of satellite imagery for the inventory of grassland use
intensity on individual fields has barely been assessed (Franke et

mainly focused on extent, status, and primary production
assessment (see e.g. Seaquist et al. 2003, Mutanga et al. 2004,
Boschetti et al. 2007, Vescovo and Gianelle 2008), but only
rarely on grassland management. In addition, mostly large-scale
biomes such as semi-arid or subtropical grasslands have been
assessed (Numata et al. 2007, Kurtz et al. 2010). Another issue is
the temporal resolution of grassland observations, since with high
spatial resolution data the coverage of a certain study area at
regular intervals is often impeded, especially in areas prone to
frequent cloud cover such as the Alpine area.

In this study, the feasibility of RapidEye data to derive leaf area
index (LAI) time series and to relate them to grassland
management practices is assessed. The LAl is a key parameter of
vegetation structure and particularly important for quantifying
exchange fluxes in the biosphere, photosynthesis and biomass
production. The advantage of LAI based grassland use intensity
estimation is the physical meaning of the LAI parameter. The
usually used vegetation index (V1) values trace only a relative
abundance and health of vegetation, and often vary e.g. with soil
conditions, local viewing and illumination conditions, and
canopy structure. These effects that are reduced during physical
LAI estimation through taking the canopy and scene geometry
specifications into account. While the canopy light absorption,
which is the process influencing V1 levels, can be diminished e.g.
by droughts or senescence, the actual biomass status can be better
represented by LAI. Furthermore, descriptive statistics such as
the range or the accumulated LAI are directly comparable
between sites as the resulting numbers are absolute values.
Therefore, statistical metrics derived from a LAI time series for
the year 2011 will be used in this study to characterize some
common grassland usage schemes in the Bavarian Alpine upland.
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2. STUDY AREA

The study area is the catchment of the river Ammer in the
Bavarian alpine upland covering 770 km? (see Fig.1). This
catchment constitutes the TERENO Prealpine Observatory
(http://teodoor.icg.kfa-juelich.de). The rural land cover of the
study area is representative for the European alpine upland. The
landscape is dissected by small settlements, forest patches and
small-scale agricultural patches. These agricultural areas are
mainly grasslands used for pasturing and mowing. In the alpine
upland, many pastures are cultivated using rotational grazing and
cutting hayfield systems. With the grazing and/or vegetation
cuttings followed by rapid re-growth, these grasslands undergo
multiple growing cycles within a single vegetation period
(Wohlfahrt and Cernusca, 2002). Apart from the intensively used
grasslands, i.e. habitats consisting of few, mesophilic species,
there are also extensively managed grassland types in the Ammer
catchment which consist of rarer species that are more adapted to
very humid, dry, cold, or nutrient poor conditions. Two European
agro-environmental schemes aiming at the preservation of
biodiversity are implemented in the area: the High Nature Value
(HNV) farmland indicator and the habitats Natura 2000 directive.
These extensively managed grasslands are semi-natural
grasslands maintained with one to two harvests per year and no
or little fertilization.

3. DATA AND METHODS
3.1 Remote Sensing data

All analyses conducted in this study are based on a RapidEye
time series consisting of nine images acquired between April and
September 2011 (see Tab. 1). The RapidEye constellation
consists of five satellites located in the same sun-synchronous
orbital plane. The sensors are push broom scanners with five
spectral bands in the visible (blue [440 — 510 nm], green [520 —
590 nm], red [630 — 685 nm]) and infrared (red edge [690 — 730
nm] and near infrared [760 — 850 nm]) domain. The spatial
resolution of RapidEye level 1B images is 6.5 m.

The preprocessing of the level 1B data consisted of a
transformation into UTM (WGS 84 datum) projection by using a
nearest neighbor algorithm; orthorectification using RPCs
associated with the RapidEye data and a 30 m Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM);
precise georeferencing using ground control points; and finally a
topographic and atmospheric correction using ATCOR (Richter
and Schlapfer 2012).

The individual RapidEye images cover the Ammer catchment to
different extents. Clouds further reduce the spatial information

Date Scene Cloud Cover
Coverage [%] [%]
April 8 100 24.9
April 20 100 17.5
May 5 24.8 2.3
May 9 100 0.0
May 25 99.5 3.6
July 16 100 2.0
August 21 100 5.3
September 6 100 8.2
September 26 94.2 6.9

Table 1: Acquisition dates during the vegetation period 2011,
percentage of the study area covered by the image, and
percentage of pixels within the study area masked due to
cloud cover of the RapidEye images used in this study.
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Figure 1. Location of the study area covering the Ammer
catchment in the Bavarian alpine upland and number of
RapidEye observations during 2011.

available individually for each scene (see Tab. 1). The resulting
number of observations per pixel is illustrated in Fig. 1. A lower
number of observations is given in some areas of the southern
half of the study area, which is part of the Bavarian Limestone
Alps, due to higher cloud occurrence close to the mountains.

3.2 Field measurements

In situ LAl measurements have been collected during four weeks
contemporaneous to the RapidEye data acquisitions in May, July,
and September 2011. The measurements were arranged within a
two-stage nested design (Morisette et al. 2006) resulting in 20 -
33 plots per time step. LAI was measured at 20 points on two
transects within each plot using a LAI-2000 Plant Canopy
Analyzer (PCA) (LI-COR Biosciences, Lincoln, NE, USA), and
corrected afterwards using an empirical relationship that was
established between LAI-2000 measurements and destructive
LAI samplings from 14 of the above mentioned locations at the
respective same days. The LAI in situ values per plot cover a data
range from 1.5 to 7.4 with a mean of 3.6. For more details on the
field measurements the readers can refer to Asam et al. (2013).
At the same time information on the status of management of the
observation sites have been noted.

3.3 Land cover classification

All water bodies, snow covered areas, clouds, and cloud shadows
were masked manually in the RapidEye images. The same water
mask was applied to all images, whereas all other masks were
created scene-specifically. A grassland mask was derived in a
next step based on a ‘random forest’ land cover classification
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(Breiman 2001). For the classification, three RapidEye images
with a high scene coverage and only little cloud cover were used
(May 9, July 16, and September 6). A multi-temporal
classification approach was chosen because some of the land
cover classes, for example “winter wheat” and “grasslands”,
show similar spectral signatures in advanced development stages,
but distinctly different phenologies. The scenes were stacked into
one data frame together with three VIs derived for each scene
respectively, namely the Normalized Difference Vegetation
Index (NDVI), the Soil Adjusted Vegetation Index (SAVI), and
an adjusted NDVI with the red edge band substituting the red
band, resulting in a 24 layer feature space. The training and
validation data, in total about 83000 pixels, were collected in situ
during the field campaigns and complemented by visual
interpretation within the RapidEye scenes using Google Earth
imagery in order to increase the number and diversity of land
cover units used for classifier training. The number of trees
within the random forest was set to 500 in order to achieve
convergence. The overall classification error of the areas which
are covered by all three images (86.1 % of the study area) is 3.4
%. No distinction between grassland types could be made at this
stage, due to the relatively low number of field campaigns
conducted (see above) and the very high heterogeneity of the
grassland fields.

3.4 LAl derivation

LAl is derived from the RapidEye data using the inverted
radiation transfer model (RTM) PROSAIL (Jacquemoud et al.
2009). RTMs simulate the interactions of radiation with
vegetation elements and the soil while traveling through the
canopy, i.e. absorbance, reflectance and transmittance are
considered. Based on these processes, the radiation leaving a
canopy can be related to the spectral and structural properties of
the canopy. In order to derive LAI, the RTM is first run in
forward mode to calculate reflectances for given specific
canopies and observation configurations. Therefor different
multiple canopy realizations are implemented using varying
combinations of input parameter values. Based on a global
sensitivity analysis, the influence of each parameter on the
spectral domains covered by the RapidEye bands was identified

first, which was used to determine the sampling interval of each
parameter. PROSAIL was then characterized by its leaf and
canopy variables based on values collected in the field and on
literature values (e.g. Weiss et al. 2000, Darvishzadeh et al. 2008,
Feret et al. 2008; Table 2). Additionally, the local, i.e.
topographically corrected, viewing and illumination were
considered in this process. For all parameters, a uniform
distribution was used. The parameterization resulted in 33516 to
198450 variable combinations for the different RapidEye time
steps. This was mainly caused by the small sampling intervals
and the differing value ranges of the LAI parameter, since this
range is larger in summer than during spring and autumn (see
Table 2). These values were stored in look up tables (LUTS)
together with the respective calculated reflectances. After
calculating the reflectances of these multiple canopy realizations,
the model was inverted, i.e. for each pixel of the satellite image
the parameter set (including LAI) which produced the
reflectances most similar to the reflectances measured by the
remote sensing sensor in all bands was selected. Additionally to
the original spectral bands, two Vs, namely the ratio vegetation
index (RVI, Jordan, 1969) and the Curvature index (Conrad et
al., 2012), have been used as input features to invert the RTM.
For the inversion a cost function based on the normalized root
mean square error (RMSE) was applied and the median of a
multiple solution sample (0.5 % of all LUT entries) was extracted
as solution.

3.5 Assessment of Management Intensities

In a next step the LAI time series is analyzed regarding their
suitability to discriminate four different classes of grassland use
intensities:

e  “Very intensively managed meadows’ that undergo
four or more harvests per year,

e ‘Intensively managed meadows’ that undergo two to
three harvests per year,

e ‘Intensively managed pastures’ that are alternately
grazed and cut, and

e ‘Extensively managed meadows and moor’ that are cut
at most once a year due to the framework regulation of

Qrel Relative azimuth angle

Parameter Min Max Interval

PROSPECT
N Structure coefficient 13 1.9 0.3
Cab Chlorophyll a + b pg*cm-2 10-20 40 - 80 10
Car Carotenoid pg*cm-2 4-12 4-12 -
Cw Equivalent water thickness 0.02 0.02 -
Cm Dry matter g*cm2 0.004 0.012 0.004
Chp Brown pigments 0.4 0.4 -
SAIL
LAl  Leaf area index m2*m-2 0.2 3.8-7.0 0.2
angl  Average leaf angle 36 78 6
hs Hot spot parameter m*m-! 0.10-0.14 | 0.10-0.14 -
psoil  Soil reflectance coefficient 0.0-0.1 07-1 0.1
skyl  Diffuse/total incident radiation 0.1-0.18 0.1-0.18 -
0s Solar zenith angle * * *
0o Observer zenith angle * * *

* * *

Table 2: PROSAIL parameter settings for the 2011 RapidEye scenes. For each parameter, the minimum, maximum, and sampling
interval is given. For the parameters whose upper and lower boundaries varied throughout the year, the respective highest and lowest
minimum and maximum boundary values used are given. If a parameter was fixed to a certain value, no interval is indicated. The
sun and sensor zenith and azimuth angles (*) were calculated for each pixel based on the scene specific sun and sensor angles as
well as on an SRTM DEM, grouped into classes for the reflectance modelling, and fixed during inversion.
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the Natura 2000 directive (Bundesamt fiir Naturschutz,
2013).

To prevent usage intensity underestimation due to a low number
of RapidEye observations, the further analysis are only
conducted on areas for which at least seven observation were
available, so that theoretically at least one observation is
available every three to four weeks. Considering the grassland
areas, the available RapidEye data cover 85 % of the study area’s
grasslands at least seven times (see green signatures in Fig. 1).
For these pixels, basic statistical properties of the LAI time series
were derived in order to capture the following characteristics of
the differently used grassland areas.

First of all it can be observed that grassland areas on which the
human impact is kept small, i.e. extensively managed areas such
as moors, flood plains, and fallow lands, show a low LAl
variability since neither a quick biomass accumulation nor abrupt
LAI decreases take place. This low LAl variability is identified
using the standard deviation. In addition to this basic distinction
between extensively managed meadows and other management
forms, different levels of variability indicate differing numbers
of mowing events, enabling the identification of intensively and
very intensively managed meadows. Hence, the standard
derivation o of each pixel’s time series of the lengthn =7 to 9
is derived in order to detect the overall variability of the LAI
values:

n
1 _
o= —Z(LAIL- —LAD? 1)
n—1« 4
i=

A measure that is calculated in a similar way is the ‘Mean
Absolute Spectral Dynamic (MASD)’ index introduced by
Franke et al. (1012). Also in this formula, n is the number of
observations, but in addition the observation date t is taken into
account for a direct comparison of LAI values to the respective
prior value. Thus a distinction between LAI time series with
continuously increasing LAI values and fluctuating LAI time
series should be improved. The MASD is hence a detailed
measure for LAI level changes with respect to the prior condition,
i.e. the number of harvests and the strength of a change, and
should therefore be useful to distinguish intensively managed
pastures from intensively managed meadows which are assumed
to be characterized by more abrupt changes. Since MASD was
adapted to the usage with LAI values instead of spectral
reflectances in this study, it becomes the ‘Mean Absolute LAI
Dynamic (MALD)’:

n-1

1
MALD = mz |LAIF — LAIF | )
t=1

In a last step each pixel’s accumulated productivity should be
measured to distinguish meadows and pastures. Since no
continuous (e.g. daily) LAI time series exists due to the high
spatial resolution, instead of accumulating the single values, the
area under curve (AUC) was calculated using a linear trapezoidal
method over the n time steps t;:

n
1
AUC = ) 2 (AL + LAl ) (b — ) ®)

i=1

The statistical measures were then used in the rule set of a
decision tree in order to classify the grassland use intensities (see
Fig. 2). The structure as well as the thresholds applied in the

Ext. used
meadows and
moors

—J —
yes no yes
Very int.
i Int. managed Int. managed
managed
meadow meadow
meadow
Int. managed Int. managed
pasture meadow

Figure 2. Decision tree rule set used for identifying the
different grassland management intensities.

decision tree have been adapted empirically based on the
grassland management types observed at the 20 repeatedly
visited field measurement plots (see section 3.2). One advantage
of a decision tree is that one class which includes different
occurrences due to different evironmental factors or varying
harvesting times, such as the ‘intensively managed meadows’,
can be identified based on different rule sets.

4. RESULTS AND DISCUSSION
4.1 LAI time series

Based on the above described model set-up of the inverted
PROSAIL model a high spatial resolution LAI time series with a
maximum of nine LAI measurements (or less in case of cloud
occurrence) was generated for the Ammer catchment. The LAI
was validated for the four images for which contemporaneous
field measurements exist resulting in root mean square errors
(RMSEs) ranging from 0.73 and 1.14 and a relative RMSE in the
range of 20 - 30 %. A similar error rate is expected for the other
five LAI maps since the filed measurements cover the complete
growing season.

Figure 3 displays the LAl map derived from the September 6,
2011 scene and gives an impression of the landscape structure
and spatial variability of LAI. In the mountainous south-western
part of the catchment, only few grassland areas exist. They can
be distinguished into valley bottom areas with a high LAI, and
mountain pastures with overall lower LAI, which are not
intensively used due to the topography and climatic conditions.
Following the further course of the Ammer River, conventionally
managed grasslands with LAI values around 5 can be
distinguished from dry and calcareous Natura 2000 habitats such
as the ‘Ammertaler Wiesmahdhénge’ or moor areas ‘Moore im
oberen Ammertal’ with a comparably lower LAl (Fig.3, upper
left zoom). In the alpine foreland to the north, significantly more
areas are covered by grassland. These meadows and pastures
have an overall higher LAI, as they profit from more nutrient rich
soils and higher temperatures. The map also displays the partly
strong spatial differences in between fields resulting from
different managements.

4.2 Grassland Management Intensities

Since continuous field observations with regard to management
intensities were only available at few selected points, and since
this information has been used to build the decision tree, only a
qualitative accuracy assessment could be conducted in this study
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Figure 3. Grassland LAl in the Ammer catchment on
September 6, 2011 including a zoom on the grassland sites
in the Ammer valley with the Natura 2000 habitats hay
meadows (orange outline) and moors (purple outline).
While the intensively used grasslands at the valley bottom
have LAI values around four to five, the Natura 2000 sites,
which are subject to more extensive management, show
distinctively lower LAI values.

(see Fig. 4). However, from the in situ observations as well as
from the spatial patterns of the resulting classification it can be
concluded that the different management intensities could be
reasonably distinguished. For example Fig. 4 shows that fewer
very intensively managed meadows (red signature) are located in
the more alpine parts of the study area but in the northern half
instead. Also, extensively managed meadows and moors (green
signatures) are mapped where they would be expected, i.e. at
Natura 2000 sites, at fallow lands e.g. of abandoned gravel pits,
and close to lakes and rivers.

Although some redundant information is carried in the standard
deviation, AUC, and MALD (the correlation coefficients
between the layers range between 0.33 and 0.78), they show
different sensitivities for differently managements. Especially the
AUC and the standard deviation highlight specific conditions
such as an accumulation of biomass on intensively used but not
too often cut meadows, or the distinction between fields purely
used for fodder generation and those also used for pasturing,
which show a lower variability.

Nevertheless, the performance of the presented methodology
relies on a precise capture of the moving dates, which in turn
highly depends on the coincidence with the acquisition time of
the satellite data. Figure 5 illustrates exemplarily the timing of

10°50'0"E 11°100"E
. h

48°0'0"N
1

47°50'0"N
L
T
47°50'0"N

T
47°40'0"N

t Types

4T400N
|

Extensively
I mznaged meadows
& moor

i \n{ensive\y managed
l:l pﬁslulss

|:| Intensively managed
meadows

- Very intensively
ménaged meadows

—— Ammer

10 Kilometers

Senvice Layer Credits: Esri, HERE, DaLorme, Mapmyindia, &
OpenStreethtap contributors, and the GIS user community 1

T T
10°50'0"E 11°0'0"E

T
47°30'0"N

T
11°10'0"E

Figure 4: Map of the derived grassland management types
including a zoom on the grassland sites in the Ammer valley with
the Natura 2000 habitats hay meadows (orange outline) and
moors (purple outline). Pixels for which the LAI time series was
shorter than 7 points in time are left blank.

cutting events with respect to the LAI time series derived from
the RapidEye images for the in situ measurement site near Fendt
(47°49'58.48"N, 11° 3'38"E). At this site, the dates of the mowing
events are derived from a hemispherical camera installed on the
site. While the first, third, and fourth mowing are well
reproduced, the second and the last harvest remain
unrecognized. It can be assumed that the insufficient acquisition

Sensor
-+ RapidEye
in situ

LAl

Harvests

‘\‘JU '%D ZISU Z%D 3“)‘]

poy
Figure 5: LAI time series with eight cloud free satellite
observations derived from the RapidEye imagery of a field
measurement plot near Fendt compared to field measurement
values and the mowing events observed on this meadow.
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frequency observed on this plot is a limiting factor also on other
sites within the Ammer catchment. With two to three harvests
normally taking place on very intensively managed meadows in
the Bavarian alpine upland between the beginning of June and
end of August, as well as one more harvest often scheduled for
October, some of these events are very likely unnoticed given the
above described time series. This suggests that an acquisition
frequency of two to three weeks as well as a time series covering
also the month of October are a requirement for a precise
mapping of management intensities in the Bavarian alpine
upland.

5. CONCLUSION AND OUTLOOK

In this study, the feasibility of very high spatial resolution LAI
time series for the assessment of agricultural grassland usage
intensities was analyzed. With the LAI providing comparable and
physically meaningful measures of vegetation growth and sudden
LAI reductions due to harvests, different management types
could be distinguished by using statistical time series parameters.
The high spatial resolution, allowing for the delineation of every
single field and therewith a high pixel purity, enabled an adapted
establishment of a decision tree rule set for the small-scaled
heterogeneous landscape. However, it was also shown that the
used time series has too large gaps during June/July and October
to cover every harvest on very intensively managed meadows.
While a higher acquisition frequency is preferable, further
analysis should also focus on the optimal selection of remote
sensing time steps. Also the performance of other vegetation
parameters or indices could be tested.

The most important next step however is the establishment of a
field observations data base against which the derived
categorization can be quantitatively assessed.
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