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ABSTRACT: 

 

The objective of this study is to explore and compare the relationships between urban land surface temperature (LST), ground 

coverage ratio (GCR) and building volume density (BVD). Landsat ETM+ data of August 2011 and August 2013 are used to 

estimate the LST for Wuhan, China, metropolitan area, and maps of GCR and BVD are generated using building census data of 2011 

and 2013. Our analysis indicates there is a strong linear relationship between LST and GCR, and when GCR is lower, the linear 

correlation is more prominent, whereas the relationship between LST and BVD is not straightforward, but seems some underlying 

pattern. The result suggests GCR and BVD provide complementary metrics to the traditionally applied land use/land cover (LULC) 

for analysing LST quantitatively for surface urban heat island studies using thermal infrared remote sensing in an urbanized 

environment. This study is of positive significance to understand today’s urban heat island issues, and contributes to the planning 

work of urban architectural space. 

 

 

1. INTRODUCTION 

Known as urban heat island (UHI), the phenomenon means that 

the temperature in urban areas is higher than the rural 

counterparts due to urbanization (Voogt and Oke, 2003). With 

China’s rapid economic development and accelerated process 

of urbanization, the scales of cities is expanding, populations of 

cities are increasing dramatically, buildings are becoming taller 

and denser, private cars are getting more and more popular, and 

industries are increasingly discharging pollutions, all of which 

cause urban heat island effect to varying degrees in many cities. 

Urban heat island effects increase air conditioning demands, 

which will cost amounts of energy, produce more pollution, 

modify precipitation patterns, and exacerbate UHI effects by its 

discharged heat. As a result, the characteristics and causes of 

UHI effects have been major concerns of many urban climate 

and environmental studies. 

 

Being the basic variable in calculating UHI, the land surface 

temperature (LST) draws significant attention, as it modulates 

the air temperature of the lower layer of urban atmosphere, 

governs the energy balance and the surface radiation in urban 

area (Voogt and Oke, 1998), and applies to the issue of climate 

changes. Thermal infrared remote sensing data have been 

widely used to retrieve land surface temperature for analysing 

LST patterns and its relationships with surface characteristics. 

Time series Landsat TM/ETM+ images from 1997 to 2008 

were selected to quantify the impact of land-use/land cover 
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(LULC) changes on patterns of land surface temperature in 

Shanghai city(Li, et al., 2012; Zhang, et al., 2013). (Rajasekar 

and Weng, 2009) explored the relationship between land 

surface temperature created from ASTER images and 

biophysical/socioeconomic data in Indianapolis by utilizing the 

association rule mining model. (Yuan and Bauer, 2007) 

compares the normalized difference vegetation index (NDVI) 

and percent impervious surface as indicators of surface urban 

heat island effects in Landsat imagery. (Chen, et al., 2006 

attempted to employ a quantitative approach in exploring the 

relationship between LST and several indices, including the 

Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI), Normalized Difference 

Bareness Index (NDBaI) and Normalized Difference Build-up 

Index (NDBI), using Landsat TM/ETM+ images from 1990 to 

2000 in Pearl River Delta. 

 

Previous studies had related LST with biophysical properties of 

urban landscapes, such as impervious areas and several indices, 

characteristics of LULC, street geometry, population density, 

as well as anthropogenic activities. This paper further study the 

influences of urbanization on UHI effect, specifically explore 

the relationships between LST and ground coverage ratio 

(GCR), also called building density and building volume 

density (BVD) on the basis of those previous studies. 

 

2. METHODS 

2.1 Study area 

With an area of 8494 km2 and a population of 10.34 million, 

Wuhan, the capital of Hubei Province, is the fifth most 

populous city of the nation, locating in central China (Figure 1). 

The Yangtze River and its tributary Hanshui meet here, and cut 

the city into three parts of Hankou, Hanyang, and Wuchang, 

namely, three towns of Wuhan. Wuhan possesses humid 

subtropical climate, with oppressive humid summer, where air 

temperature is around 37 °C in the daytime and keeps in 30 °C 

at night, being called the “stove city”. Especially in recent 

years, with rapid development, the urban heat island effect 

Wuhan suffers is enhanced obviously, which makes a threat to 

the city residents’ comfortable life.  

 

Figure 1. Location of the study area 

 

2.2 Image pre-processing 

Two Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 

images, captured on August 19, 2011 and August 8, 2013 were 

employed. The L1T image products are pre-processed via 

radiometric, geometric corrections is implemented by utilizing 

both ground control points and digital elevation models to 

guarantee geodetic accuracy. To analyse the relationships 

between LST, GCR and BVD in the study region, Universal 

Transverse Mercator Zone 49 North projection is applied, and 

all images and building census data are registered to the same 

coordinate system (WGS84). 

 

2.3 LST retrieval 

The classic Mono-window Algorithm (Qin, et al., 2001) is 

employed to retrieve the land surface temperature, which 

represented as 

 

                                                (1) 

 

where  is the retrieved LST (°C) while  is the 

at sensor brightness temperature (K),  denotes effective 

mean atmospheric temperature (K),  and  are constants 

with value of 67.4 and 0.46 respectively,  and  are 

intermediate variables denoted as 

 

                  (2) 
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          (3) 

 

where  and  are land surface emittance and atmospheric 

transmittance. The average estimation error is 1.1 °C if the 

inaccuracy of ,  and  is considered (Qin, et al., 

2001). 

 

2.4 Calculation of GCR and BVD 

Ground coverage ratio (GCR), referring to the coverage of 

buildings, is a two-dimensional parameter commonly used by 

architects and urban planners (Edward, 2011). Specifically, 

GCR is defined as 

 

             (4) 

where  represents the domain area,  represents the built 

area,  is the average building width, and n is the number of 

buildings. GCR is an important indicator of architectural layout 

and urban morphology, which reflects the building density in a 

certain range of land. While, building volume density (BVD) 

introduces building height based on the two-dimensional GCR 

for observing the impact of the building height on urban 

morphology. 

 

In this study, we need to get GCR and BVD calculation results 

in raster type with spatial resolution of 60 meters, in order to 

correspond with ETM+ TIR band. Firstly, using “building 

height” as the field, convert the building census data of vector 

type to raster type with the cell size of 1 meter; and then, make 

the building height raster into a binary image, on which if the 

pixel value is one if it covers buildings, otherwise the pixel 

value gets zero. Secondly, make the above binary image 

aggregate to a raster with cell size of 60 meters, where the 

quantity of pixels with value one in a 60 meter resolution pixel 

is the area of buildings of the new pixel, the ratio of the area 

and 60 m2 makes the GCR value of this pixel. Finally, as the 

pixel value of the first raster is height, which equals to the 

building volume for the pixel with the size of one meter, the 

sum of the cell values that are encompassed by the extent of the 

new cell with 60 meter resolution makes its building volume 

(BV) value. The BV raster divided by its maximum value 

generates the BVD map. 

 

3. RESULTS AND DISCUSSIONS 

3.1 LST patterns 

The LST map of 2011 had a range of 19.5~46 °C with the 

highest surface temperatures located in the Qingshan and 

Zhuankou industrial zones, several compact mass of old and 

lower buildings, such as villages in Qiaokou District and 

Hongshan District, as well as some commercial centres. As 

shown in figure 2, the Yangtze River is the most obvious low 

temperature area, split the high temperature zones of the three 

towns. Other distinct low temperature zones are some large 

areas of water, including Hanshui River, East Lake, South Lake 

and so forth, which effectively block the continuous areas of 

high temperature. Some large parks with green space, such as 

Guishan Park, Liberation Park and Marshland Park, form a few 

low valley of urban heat surface. In some areas like Qiaokou 

District, the northwest of Jianghan District, and Zhuankou 

industrial zones, the high temperature region has broken 

through the boundary of the main city, which reveals the 

expansion direction of city space to some extent. As the air 

temperature of 2013.8.8 (28~37 °C) is higher than 2011.8.19 

(25~35.5 °C), the overall LST map of 2013 is higher 2011 with 

a range of 22-47.5 °C. The LST map of 2013 has a similar 

distribution pattern to 2011, but parts of high temperature areas 

are in the expansion, such as Qingshan and Zhuankou industrial 

zones. From the two LST maps, we can draw the conclusion 

that high temperature surfaces appeared in the industrial zones, 

residential areas and commercial centres filled with dense 

buildings, which suggest GCR and BVD have significant 

influences on LST and urban heat island effect.  

 

Figure 2. LST retrieved from ETM+ imagery for August, 2011 

and 2013 
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3.2 Maps of GCR and BVD 

Considering the large areas of water, the scattered building 

distribution, and the heat source of industry in Wuchang and 

Hanyang, Hankou with various forms of residential and 

commercial districts is of strong representation to study the 

distribution characteristics of GCR and BVD, and investigate 

the relationships between LST and them.  

 

Ground cover ratio with a continuous range of building density 

from 0-1 is mapped in Figure 3 building volume density 

introducing building height based on the two-dimensional are 

shown in figure 4. The detail in the maps allows one to easily 

locate the major roads, central business districts, as well as 

urban residential areas with varying densities and patterns. As 

shown in the GCR maps of the two years, high density areas 

are residential communities and wholesale markets with old 

and low buildings around Hanzheng Street, large residential 

areas along Hanshui River in Qiaokou District, and villages in 

city along Fazhan Road. BVD maps have different distribution 

patterns because of the building height factor. Unlike 

continuous planar areas of high density in GCR maps, high 

values are dotted located in central business districts and 

modern residential communities with numbers of tall 

architectures, which implies building height makes a more 

important role in calculating BVD than building density. 

Comparing GCR and BVD maps of two years, big changes 

have taken place in Hankou’s architectural layout, where tall 

buildings have been constructed on vacant lands, and some old 

and low residential buildings have been demolished to become 

vacant space or new modern communities.  

 

Figure 3. GCR images with the cell size of 60 meters derived 

from building census data of 2011 and 2013 

 

Figure 4. BVD images with the cell size of 60 meters derived 

from building census data of 2011 and 2013 

 

3.3 Relationships of LST to GCR and BVD 

In order to facilitate the comparison, sample points located in 

water bodies, bare soil, grass or any non-building areas, were 

excluded, which means the points of GCR (BVD) values above 

0 are selected. To investigate these relationships, a zonal 

analysis was utilized to evaluate the mean LST at each 0.01 

increment of GCR and BVD from 0 to 1. A very strong linear 

relationship(r = 0.921, 2011; r = 0.909, 2013) is shown between 

the mean LST and GCR for both the two dates (Figure 5), 

suggesting the variations in the LST can be accounted for very 

well by GCR. The diagrams of the two years have the same 

pattern: as GCR < 0.2 and 0.5 < GCR < 0.8, most of the 

scattered dots locate above the fitted line; as 0.2 < GCR < 0.5, 

more dots are below the line, as GCR > 0.8, the dots get 

diverging and the linear relationship becomes weaker, which 

suggests low GCR values appear stronger linear correlation. 

Therefore, a new diagram is drawn in Figure 6 on the condition 

of GCR < 0.8. The correlation of LST and GCR has improved, 

and the correlation coefficients increase from 0.909 to 0.98 in 

2013 and 0.921 to 0.977 in 2011. Accordingly，we infer that 

when GCR exceeds a certain threshold, the correlation of LST 

and GCR diminishes, or even it does not exist stable 

relationship. As GCR is less than different values, the 

corresponding correlation coefficients are shown in Table 1. 

 

Figure 5. Relationship of mean LST to ground coverage ratio 
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Figure 6. Relationship of mean LST to ground coverage ratio 

on the condition of GCR < 0.8 

 

GCR < 0.5 < 0.6 < 0.7 < 0.8 < 0.9 < 1 

2011 0.96 0.969 0.976 0.977 0.949 0.921 

2013 0.958 0.969 0.979 0.98 0.956 0.909 

Table 1. The corresponding correlation coefficients when GCR 

is less than different values 

 

Figure 7. Relationship of mean LST to building volume density 

 

On the other hand, the relationships between the mean LST and 

BVD graphed in Figure 7 are not straightforward. However, 

there are similar patterns in the diagrams of the two years, 

which seems potential regularities. For instance, as BVD is less 

than 0.03, there is a positive correlation, and 0.03 < BVD < 0.2 

appears negative correlation, furthermore, when BVD is more 

than 0.2, the dots scatter without rules, where BVD values is 

higher, the scatter is greater and more irregular. Thus, GCR has 

much more impacts on LST than BVD. Some analysis for this 

results have been tried: when BVD values are lower, as BVD 

increases, buildings are more dense, BVD has the same effects 

as GCR on LST; when BVD values are higher, the pixels of 

high values no longer corresponds to dense building areas, but 

may be sparse buildings with higher floors. From this point of 

view, lower and dense buildings make a greater contribution to 

rise land surface temperature，thereby aggravating urban heat 

island effect. 

 

4. CONCLUSIONS 

The study explored the relationships between the LST, GCR, 

and BVD in Wuhan metropolitan area. Results indicate there is 

a strong linear relationship between LST and GCR for both the 

two years, whereas the relationship between LST and BVD 

does not have obvious linear correlation, but seems some 

underlying pattern. The strong linear relationship model 

between the LST and GCR suggests that GCR accounts for 

most of the variation in LST dynamics. It suggests GCR 

provides complementary metrics to the traditionally applied 

land use/land cover (LULC) for analysing LST quantitatively 

for surface urban heat island studies using thermal infrared 

remote sensing in an urbanized environment. The results 

demonstrate that the hottest places are usually occupied by 

thousands of old and low dense buildings except factories 

which have surface heat sources. It has greater potential of 

reconstruction and redevelopment in the following regulation 

and planning, and of significance to relieve the current urban 

heat island issues. 

 

We also realize that the conclusion is based on only one area, 

one season, and two different years. Although the data is 

limited, the analysis is not enough thorough, the results 

nevertheless provide useful information for measuring and 

understanding LST, GCR, BVD, their relationships, and urban 

heat island effect. Further studies of additional metropolitan 

areas and more remote sensing data are recommended. 
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