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ABSTRACT:

The objective of this study is to explore and compare the relationships between urban land surface temperature (LST), ground
coverage ratio (GCR) and building volume density (BVD). Landsat ETM+ data of August 2011 and August 2013 are used to

estimate the LST for Wuhan, China, metropolitan area, and maps of GCR and BVD are generated using building census data of 2011

and 2013. Our analysis indicates there is a strong linear relationship between LST and GCR, and when GCR is lower, the linear

correlation is more prominent, whereas the relationship between LST and BVD is not straightforward, but seems some underlying

pattern. The result suggests GCR and BVD provide complementary metrics to the traditionally applied land use/land cover (LULC)

for analysing LST quantitatively for surface urban heat island studies using thermal infrared remote sensing in an urbanized

environment. This study is of positive significance to understand today’s urban heat island issues, and contributes to the planning

work of urban architectural space.

1. INTRODUCTION

Known as urban heat island (UHI), the phenomenon means that
the temperature in urban areas is higher than the rural
counterparts due to urbanization (Voogt and Oke, 2003). With
China’s rapid economic development and accelerated process
of urbanization, the scales of cities is expanding, populations of
cities are increasing dramatically, buildings are becoming taller
and denser, private cars are getting more and more popular, and
industries are increasingly discharging pollutions, all of which
cause urban heat island effect to varying degrees in many cities.
Urban heat island effects increase air conditioning demands,
which will cost amounts of energy, produce more pollution,
modify precipitation patterns, and exacerbate UHI effects by its
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discharged heat. As a result, the characteristics and causes of
UHI effects have been major concerns of many urban climate
and environmental studies.

Being the basic variable in calculating UHI, the land surface
temperature (LST) draws significant attention, as it modulates
the air temperature of the lower layer of urban atmosphere,
governs the energy balance and the surface radiation in urban
area (Voogt and Oke, 1998), and applies to the issue of climate
changes. Thermal infrared remote sensing data have been
widely used to retrieve land surface temperature for analysing
LST patterns and its relationships with surface characteristics.
Time series Landsat TM/ETM+ images from 1997 to 2008
were selected to quantify the impact of land-use/land cover
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(LULC) changes on patterns of land surface temperature in
Shanghai city(Li, et al., 2012; Zhang, et al., 2013). (Rajasekar
and Weng, 2009) explored the relationship between land
surface temperature created from ASTER images and
biophysical/socioeconomic data in Indianapolis by utilizing the
association rule mining model. (Yuan and Bauer, 2007)
compares the normalized difference vegetation index (NDVI)
and percent impervious surface as indicators of surface urban
heat island effects in Landsat imagery. (Chen, et al., 2006
attempted to employ a quantitative approach in exploring the
relationship between LST and several indices, including the
Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI), Normalized Difference
Bareness Index (NDBal) and Normalized Difference Build-up
Index (NDBI), using Landsat TM/ETM+ images from 1990 to
2000 in Pearl River Delta.

Previous studies had related LST with biophysical properties of
urban landscapes, such as impervious areas and several indices,
characteristics of LULC, street geometry, population density,
as well as anthropogenic activities. This paper further study the
influences of urbanization on UHI effect, specifically explore
the relationships between LST and ground coverage ratio
(GCR), also called building density and building volume
density (BVD) on the basis of those previous studies.

2. METHODS
2.1 Study area

With an area of 8494 km2 and a population of 10.34 million,
Wuhan, the capital of Hubei Province, is the fifth most

populous city of the nation, locating in central China (Figure 1).

The Yangtze River and its tributary Hanshui meet here, and cut
the city into three parts of Hankou, Hanyang, and Wuchang,
namely, three towns of Wuhan. Wuhan possesses humid
subtropical climate, with oppressive humid summer, where air
temperature is around 37 °C in the daytime and keeps in 30 °C
at night, being called the “stove city”. Especially in recent
years, with rapid development, the urban heat island effect
Wuhan suffers is enhanced obviously, which makes a threat to
the city residents’ comfortable life.
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Figure 1. Location of the study area

2.2 Image pre-processing

Two Landsat-7 Enhanced Thematic Mapper Plus (ETM+)
images, captured on August 19, 2011 and August 8, 2013 were
employed. The L1T image products are pre-processed via
radiometric, geometric corrections is implemented by utilizing
both ground control points and digital elevation models to
guarantee geodetic accuracy. To analyse the relationships
between LST, GCR and BVD in the study region, Universal
Transverse Mercator Zone 49 North projection is applied, and
all images and building census data are registered to the same
coordinate system (WGS84).

2.3 LST retrieval

The classic Mono-window Algorithm (Qin, et al., 2001) is
employed to retrieve the land surface temperature, which
represented as
Tsurfr.' e =
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where Tgypface is the retrieved LST (°C) while Tienzor is the

at sensor brightness temperature (K), T; denotes effective

mean atmospheric temperature (K), @ and & are constants

with value of 67.4 and 0.46 respectively, € and I' are

intermediate variables denoted as
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where £z and T are land surface emittance and atmospheric
transmittance. The average estimation error is 1.1 °C if the
inaccuracy of £.m;, T and T; is considered (Qin, et al,

2001).

2.4  Calculation of GCR and BVD

Ground coverage ratio (GCR), referring to the coverage of
buildings, is a two-dimensional parameter commonly used by
architects and urban planners (Edward, 2011). Specifically,
GCR is defined as

_ A _wen ;
GCR=F="F (=1 @)

where A represents the domain area, Ay represents the built

area, W is the average building width, and n is the number of

buildings. GCR is an important indicator of architectural layout
and urban morphology, which reflects the building density in a
certain range of land. While, building volume density (BVD)
introduces building height based on the two-dimensional GCR
for observing the impact of the building height on urban
morphology.

In this study, we need to get GCR and BVD calculation results
in raster type with spatial resolution of 60 meters, in order to
correspond with ETM+ TIR band. Firstly, using “building
height” as the field, convert the building census data of vector
type to raster type with the cell size of 1 meter; and then, make
the building height raster into a binary image, on which if the
pixel value is one if it covers buildings, otherwise the pixel
value gets zero. Secondly, make the above binary image
aggregate to a raster with cell size of 60 meters, where the
quantity of pixels with value one in a 60 meter resolution pixel
is the area of buildings of the new pixel, the ratio of the area
and 60 m? makes the GCR value of this pixel. Finally, as the
pixel value of the first raster is height, which equals to the
building volume for the pixel with the size of one meter, the

sum of the cell values that are encompassed by the extent of the
new cell with 60 meter resolution makes its building volume
(BV) value. The BV raster divided by its maximum value

generates the BVD map.

3. RESULTS AND DISCUSSIONS
3.1 LST patterns

The LST map of 2011 had a range of 19.5~46 °C with the
highest surface temperatures located in the Qingshan and
Zhuankou industrial zones, several compact mass of old and
lower buildings, such as villages in Qiaokou District and
Hongshan District, as well as some commercial centres. As
shown in figure 2, the Yangtze River is the most obvious low
temperature area, split the high temperature zones of the three
towns. Other distinct low temperature zones are some large
areas of water, including Hanshui River, East Lake, South Lake
and so forth, which effectively block the continuous areas of
high temperature. Some large parks with green space, such as
Guishan Park, Liberation Park and Marshland Park, form a few
low valley of urban heat surface. In some areas like Qiaokou
District, the northwest of Jianghan District, and Zhuankou
industrial zones, the high temperature region has broken
through the boundary of the main city, which reveals the
expansion direction of city space to some extent. As the air
temperature of 2013.8.8 (28~37 °C) is higher than 2011.8.19
(25~35.5 °C), the overall LST map of 2013 is higher 2011 with
a range of 22-47.5 °C. The LST map of 2013 has a similar
distribution pattern to 2011, but parts of high temperature areas
are in the expansion, such as Qingshan and Zhuankou industrial
zones. From the two LST maps, we can draw the conclusion
that high temperature surfaces appeared in the industrial zones,
residential areas and commercial centres filled with dense
buildings, which suggest GCR and BVD have significant
influences on LST and urban heat island effect.

b. Aug &, 2013
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Figure 2. LST retrieved from ETM+ imagery for August, 2011
and 2013
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3.2 Maps of GCR and BVD

Considering the large areas of water, the scattered building
distribution, and the heat source of industry in Wuchang and
Hanyang, Hankou with various forms of residential and
commercial districts is of strong representation to study the
distribution characteristics of GCR and BVD, and investigate
the relationships between LST and them.

Ground cover ratio with a continuous range of building density
from 0-1 is mapped in Figure 3 building volume density
introducing building height based on the two-dimensional are
shown in figure 4. The detail in the maps allows one to easily
locate the major roads, central business districts, as well as
urban residential areas with varying densities and patterns. As
shown in the GCR maps of the two years, high density areas
are residential communities and wholesale markets with old
and low buildings around Hanzheng Street, large residential
areas along Hanshui River in Qiaokou District, and villages in
city along Fazhan Road. BVD maps have different distribution
patterns because of the building height factor. Unlike
continuous planar areas of high density in GCR maps, high
values are dotted located in central business districts and
modern residential communities with numbers of tall
architectures, which implies building height makes a more
important role in calculating BVD than building density.
Comparing GCR and BVD maps of two years, big changes
have taken place in Hankou’s architectural layout, where tall
buildings have been constructed on vacant lands, and some old
and low residential buildings have been demolished to become
vacant space or new modern communities.

b. aug s, 2013

a. Awg 19, 2011

Figure 3. GCR images with the cell size of 60 meters derived

from building census data of 2011 and 2013

b. aug . 2013

a. Aug 19, 2011
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Figure 4. BVD images with the cell size of 60 meters derived

from building census data of 2011 and 2013

3.3 Relationships of LST to GCR and BVD

In order to facilitate the comparison, sample points located in
water bodies, bare soil, grass or any non-building areas, were
excluded, which means the points of GCR (BVD) values above
0 are selected. To investigate these relationships, a zonal
analysis was utilized to evaluate the mean LST at each 0.01
increment of GCR and BVD from 0 to 1. A very strong linear
relationship(r = 0.921, 2011; r = 0.909, 2013) is shown between
the mean LST and GCR for both the two dates (Figure 5),
suggesting the variations in the LST can be accounted for very
well by GCR. The diagrams of the two years have the same
pattern: as GCR < 0.2 and 0.5 < GCR < 0.8, most of the
scattered dots locate above the fitted line; as 0.2 < GCR < 0.5,
more dots are below the line, as GCR > 0.8, the dots get
diverging and the linear relationship becomes weaker, which
suggests low GCR values appear stronger linear correlation.
Therefore, a new diagram is drawn in Figure 6 on the condition
of GCR < 0.8. The correlation of LST and GCR has improved,
and the correlation coefficients increase from 0.909 to 0.98 in
2013 and 0.921 to 0.977 in 2011. Accordingly, we infer that
when GCR exceeds a certain threshold, the correlation of LST
and GCR diminishes, or even it does not exist stable
relationship. As GCR is less than different values, the
corresponding correlation coefficients are shown in Table 1.

a. Aug 19, 2011 b. hug &, 2013

Figure 5. Relationship of mean LST to ground coverage ratio
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Figure 6. Relationship of mean LST to ground coverage ratio

on the condition of GCR < 0.8

GCR <05 <06 <07 <08 <09 <1

2011 0.96 0.969 0976 0977 0.949 0.921
2013 0958 0969 0979 0.98 0.956  0.909

Table 1. The corresponding correlation coefficients when GCR

is less than different values

a. Aug 19, 2011 b. Aug 8, 2013
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Figure 7. Relationship of mean LST to building volume density

On the other hand, the relationships between the mean LST and
BVD graphed in Figure 7 are not straightforward. However,
there are similar patterns in the diagrams of the two years,
which seems potential regularities. For instance, as BVD is less
than 0.03, there is a positive correlation, and 0.03 < BVD < 0.2
appears negative correlation, furthermore, when BVD is more
than 0.2, the dots scatter without rules, where BVD values is
higher, the scatter is greater and more irregular. Thus, GCR has
much more impacts on LST than BVD. Some analysis for this
results have been tried: when BVD values are lower, as BVD
increases, buildings are more dense, BVD has the same effects
as GCR on LST; when BVD values are higher, the pixels of
high values no longer corresponds to dense building areas, but
may be sparse buildings with higher floors. From this point of
view, lower and dense buildings make a greater contribution to
rise land surface temperature, thereby aggravating urban heat
island effect.

4. CONCLUSIONS

The study explored the relationships between the LST, GCR,
and BVD in Wuhan metropolitan area. Results indicate there is
a strong linear relationship between LST and GCR for both the
two years, whereas the relationship between LST and BVD
does not have obvious linear correlation, but seems some
underlying pattern. The strong linear relationship model
between the LST and GCR suggests that GCR accounts for
most of the variation in LST dynamics. It suggests GCR
provides complementary metrics to the traditionally applied
land use/land cover (LULC) for analysing LST quantitatively
for surface urban heat island studies using thermal infrared
remote sensing in an urbanized environment. The results
demonstrate that the hottest places are usually occupied by
thousands of old and low dense buildings except factories
which have surface heat sources. It has greater potential of
reconstruction and redevelopment in the following regulation
and planning, and of significance to relieve the current urban

heat island issues.

We also realize that the conclusion is based on only one area,
one season, and two different years. Although the data is
limited, the analysis is not enough thorough, the results
nevertheless provide useful information for measuring and
understanding LST, GCR, BVD, their relationships, and urban
heat island effect. Further studies of additional metropolitan

areas and more remote sensing data are recommended.
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