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ABSTRACT:

Fractional tree cover (Fcover) is an important biophysical variable for measuring forest degradation and characterizing land cover.
Recently, atmospherically corrected Landsat data have become available, providing opportunities for high-resolution mapping of forest
attributes at global-scale. However, topographic correction is a pre-processing step that remains to be addressed. While several methods
have been introduced for topographic correction, it is uncertain whether Fcover models based on vegetation indices are sensitive to
topographic effects. Our objective was to assess the effect of topographic correction on the accuracy of Fcover modelling. The study
area was located in the Eastern Arc Mountains of Kenya. We used C-correction as a digital elevation model (DEM) based correction
method. We examined if predictive models based on normalized difference vegetation index (NDVI), reduced simple ratio (RSR) and
tasseled cap indices (Brightness, Greenness and Wetness) are improved if using topographically corrected data. Furthermore, we
evaluated how the results depend on the DEM by correcting images using available global DEM (ASTER GDEM, SRTM) and a
regional DEM. Reference Fcover was obtained from wall-to-wall airborne LiDAR data. Landsat images corresponding to minimum
and maximum sun elevation were analyzed. We observed that topographic correction could only improve models based on Brightness
and had very small effect on the other models. Cosine of the solar incidence angle (cos i) derived from SRTM DEM showed stronger
relationship with spectral bands than other DEMs. In conclusion, our results suggest that, in tropical mountains, predictive models

based on common vegetation indices are not sensitive to topographic effects.

1. INTRODUCTION

Landsat satellite images became available for free in 2008, which
together with systematic data acquisition plan has fortified
Landsat’s role as a primary source of information for global land
change research (e.g., Wulder et al., 2012). Landsat images also
have good data consistency among Landsat missions and
historical archive since 1972. The pre-processing methods of
Landsat data have reached the level of maturity and pre-
processed data sets have become available (e.g. Landsat Climate
Data Record (CDR)) similar to moderate resolution data e.g.
various MODIS data products (Masek et al., 2006). However,
topographic correction remains as one of the pre-processing steps
that have not been addressed globally.

Topographical effects in satellite images are caused by
illumination differences between the sunlit and shaded slopes.
The magnitude of the effect depends on the time of the year
because of variations in the sun elevation. Hence, in the
topographic normalization, the dependency of reflectance factors
on topographic position is removed. Topographic correction has
been shown to improve land cover mapping using object-based
classification (Moreira & Valeriano, 2014) and land cover
classification accuracy (Pellikka, 1996; Vanonckelen et al.,
2013).

Topographic correction methods can be grouped into three
categories: those based on band ratios, those based on a
Hyperspherical Direction Cosine Transformation (HSDC), and
those requiring digital elevation model (DEM). DEM-based
methods, can be summarized as three broad types: (1) empirical
methods, (2) Lambertian methods and (3) non-Lambertian
methods (Gao & Zhang, 2009). The most often used methods are
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Lambert cosine correction (Meyer et al., 1993), Minnaert
correction (Smith et al., 1980), C-correction (Teillet et al., 1982)
and Sun-canopy-sensor method (Gu & Gillespie, 1998). Several
studies have demonstrated the viability of C-correction for
radiometric correction of multitemporal images taken under
different illumination conditions (Moreira & Valeriano, 2014;
Reese & Olsson, 2011; Vanonckelen et al., 2013).

Continuous fields of vegetation attributes can be estimated using
a multitude of predictors derived from Landsat images. However,
the topographic effect on different types of predictors can be
different. For example, canopy cover, fractional tree cover
(Fcover) and leaf area index (LALI) are typically estimated based
on vegetation indices such as Normalized Difference Vegetation
Index (NDVI) and Reduced Simple Ratio (RSR) (Majd et al.,
2013; Korhonen et al., 2013; Wu, 2011).

NDVI is a simple index used to accentuate vegetation from
imagery containing reflectance in the red and NIR portions of the
spectrum. RSR is an empirical SWIR modification to the simple
ratio (SR) vegetation index (Brown et al., 2000). Both indices
attempt to depress background reflectance and improve the
accuracy in extracting vegetation information from remotely
sensed data.

Tasseled Cap transformation (TC) compress spectral data into
bands associated with the physical characteristics of scene (Crist,
1985). TC indices (Brightness, Greenness and Wetness) have
been used, for example, for forest disturbance detection (Healey
et al., 2005; Jin & Sader 2005; Skakun et al. 2003) and forest
classification (Dymond et al., 2002).

The correction of satellite data for illumination differences due to
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topography requires a DEM. Currently, there are several sources
of global DEMs, such as SRTM and ASTER DEM. SRTM DEM
at 30 m resolution was made recently globally available
(https://lta.cr.usgs.gov/SRTM1Arc), improving its applicability
for topographic correction of Landsat data. In addition to the
global DEMs, many areas are supplemented by regional DEMs
based on topographic map data. However, viability of different
DEM s for topographic correction have been rarely assessed.

Several authors have compared topographic correction methods
for Landsat data (e.g., Hantson & Chuvieco, 2011; Moreira &
Valeriano, 2014; Vanonckelen et al., 2013). However, these
assessments are typically focusing on the removal of the
topographic effect, instead of assessing how the accuracy of
output products is affected. Although some studies have used
topographic correction as a step to improve the land cover
classification accuracy, it has been only rarely tested if
topographic correction improves the accuracy of continuous
variables (Térmé & Harmd, 2003), such as Fcover. Furthermore,
classification is typically based on individual bands, but not
vegetation indices, which are commonly used in Fcover, LAl and
biomass mapping.

In this study, our objective was to assess the effect of topographic
correction on the accuracy of Fcover predictions based on
Landsat images with and without topographic correction. In
particular, we aimed to examine if predictive models based on
NDVI, RSR and TC indices are affected differently, and if results
depend on the source of DEM.

2. MATERIAL AND METHODS
2.1 Study area

The Taita Hills (3°25°S, 38°20°E) are located in the northernmost
part of the Eastern Arc Mountains in southeastern Kenya (Figure
1). The area is characterized by distinct topographical variation
and the mountainous hills raise up to 2200 m a.s.l. from the Tsavo
Plains at 600—900 m a.s.1. Taita Hills are considered as one of the
world’s most important biodiversity hotspots. However, due to
the favorable climate and edaphic conditions, the indigenous
cloud forests of the Taita Hills have suffered substantial
deforestation and degradation due to agriculture, grazing and
logging of forest for firewood and charcoal manufacturing since
the early 1960°s (Pellikka et al., 2009).

2.2 Landsat images

Landsat surface reflectance (CDR) is a product of the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS)
at the National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center. The images have been calibrated
to radiance, converted to top-of-atmosphere reflectance and then
atmospherically corrected using the MODIS/6S methodology
(Masek et al., 2006).

Sun Sun
Sensor Date Elevation | Azimuth
Landsat 7 ETM+ 29.9.2013 | 64.08° 89.79°
Landsat 7 ETM+ 25.6.2013 |51.35° 45.62°

Table 1. Details of Landsat images used in this study.

The Taita Hills lies on the south east quarter of the Landsat image
(WRS path 167 and row 62). Landsat scenes with cloud cover

less than 30% in the lower right quarter in 2013 were downloaded
and two images less affected by cloud, shadow and missing data
due to Scan line corrector (SLC) off and corresponding to the
minimum and maximum sun elevation were used in this study.
Both images were acquired at 7:32 UTC time in the morning and
image processing level was L1T.
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Figure 1. Location of the study area and hillshade view of
the topography.

2.3 Digital elevation models

DEM used for topographic correction were obtained from various
sources. Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model (GDEM)
has been generated from the stereoscopic ASTER satellite images.
ASTER GDEM is available at the resolution of 30 m. The
ASTER GDEM covers land surfaces between 83°N and 83°S. It
is a product of Ministry of Economy, Trade, and Industry (METTI)
and the National Aeronautics and Space Administration (NASA)
(https://www.jspacesystems.or.jp/ersdac/ GDEM/E/4.html).

Shuttle Radar Topography Mission (SRTM) 1 arc-second global
elevation data has been available since 23 September 2014
(https://lta.cr.usgs.gov/SRTM1Arc). SRTM provides DEM for
80% of the earth’s surface (all land areas between 60° N and 56°
S). SRTM s a joint project between the National Geospatial-
Intelligence Agency (NGA) and NASA. The DEM has been
filled to remove small artifacts.

All Landsat images, ASTER and SRTM DEM were downloaded
from the United States Geological Survey (USGS) Earth
Explorer platform (http://earthexplorer.usgs.gov/).

A regional DEM (TOPO DEM) for the Taita Hills was created
using the contour lines of the topographic maps at 1:50 000 scale
produced by the Survey of Kenya (Pellikka et al., 2004). DEM
has a pixel size of 20 m x 20 m, and it was resampled to 30 m x
30 m pixel size similar to the Landsat images.

2.4 Airborne LIiDAR data and fractional tree cover

We used Fcover (1-canopy gap fraction) derived from airborne
LiDAR as a reference data. Previous studies have shown that
LiDAR provides canopy cover and gap fraction estimates with an
accuracy comparable to the field measurements (Korhonen et al.,
2011; Heiskanen et al., in press). Furthermore, wall-to-wall
LiDAR data provided a large sample size and the use of random
sampling scheme in the logistically difficult terrain.
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Figure 2. Overview of the methodology

The discrete return LiDAR data was acquired 4-5 February 2013
for 10 km x 10 km area (Table 2). Data were pre-processed by
the data vendor (Topscan Gmbh) and delivered as georeferenced
point cloud in UTM/WGS84 coordinate system with ellipsoidal
heights. Vendor also filtered ground returns by using Terrascan
software (Terrasolid Oy). Furthermore, we filtered buildings and
powerlines. Then, the ground returns were used to generate DEM
at 1 m cell size. We also removed the overlap between the
adjacent flight lines based on minimum scan angle using
lasoverage tool in LAStools software (rapidlasso GmbH).

Parameter Value

Date of acquisition 4-5 February, 2013
Sensor Optech ALTM
Mean flying height (m AGL) 760

Flying speed (knots) 116-126
Pulse rate (kHz) 100

Scan rate (Hz) 36

Maximum scan angle (degrees) 16

Pulse density (pulses m2) 9.6

Return density (returns m-2) 11.4
Maximum number of returns per pulse 4

Beam divergence at 1/e2 (mrad) 0.3

Footprint diameter (cm) 23

Table 2. Characteristics of the LiDAR data.

FUSION software (McGaughey, 2014) was used for computing
a proxy of Fcover. We extracted LiDAR returns for 90 m x 90 m
sample plots corresponding to 3 x 3 pixel windows of Landsat
ETM+ images. Heiskanen et al. (in press) found that all echo
cover index (ACI) (e.g., Morsdorf et al., 2006) gave an unbiased
estimate of canopy gap fraction using the same LiDAR data.
Hence, we used AClI as a proxy of Fcover. ACI was computed as:

% A“canopy

ACI (%) =100 =%

@

where, All refers to the returns of all return types (i.e. single, first,
intermediate and last returns) and canopy refers to the returns

from the forest canopy. Laser returns with height less than 1.5 m
from the ground were considered as ground in order to exclude
understory vegetation from Fcover.

2.5 Topographic correction of Landsat-data

C-correction is a semi-empirical topographic correction method,
which consists of a modified cosine correction with the empirical
parameter ¢, (Reese & Olsson, 2011). ¢; (Eq. 4) is calculated for
every band () separately based on the linear relationship (Eq. 3)
between the spectral data and the cosine of the solar incidence
angle (cos i) (Eq. 2). Each band were topographically corrected
using Eq. 5.

cosi = cossz X cossl + sinsz X sinsl X cos (az—as) (2)

Pat = by +my X cosi 3)
_h
o= 4)
_ COS sz+Cy

PAn = PAt o513 cf ©®)
where,
i = solar incidence angle with respect to surface normal
sz =solar zenith angle
sl =slope
az = solar azimuth angle
as = aspect
p.e = topographically influenced (t) reflectance of band A
b: = intercept of linear regression
m; = slope of linear regression
ci = c-factor calculated for every band separately
pan = topographically normalized (n) reflectance of band A

cos i, slope and aspect were calculated from each DEM.
Resolution of each DEM was made similar to Landsat image.
Areas with a slope < 2% were not included in the parameter
estimation. Land cover stratification based on NDVI has been
successfully used to consider the land cover dependency of c;




The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-390-3

ASTER DEM Cos i

I 1 <cosi<o.a [ 0.4<cosi<o0.s55 [ 0.55<cosi<0.7 [ 0.7<cosi<0.85 ] 0.85<cosi<1[__| DEM Void

TOPO DEM Cos i N

0 1 2 4
e Kilometers

Figure 3. Five cos i classes based on (a) ASTER DEM, (b) SRTM DEM and (c) TOPO DEM.

(Hantson & Chuvieco, 2011; McDonald et al., 2000). The study
area was divided into three NDVI classes. Class 1 (NDVI < 0.4)
covered urban areas, bare areas, grasslands and agriculture lands,
Class 2 (NDVI 0.4-0.6) covered secondary forest, plantation and
regeneration and Class 3 (NDVI 0.6-1) covered indigenous
forest. Each class was further subdivided into five sub classes (-
1-0.4, 0.4-0.55, 0.55-0.70, 0.70-0.85, 0.85—1.0) based on cos i
(Figure 3). 500 samples from each sub class, i.e. 2500 samples
for each class and 7500 samples for each image were selected for
linear regression between cos i and spectral bands. ci was
calculated for each NDVI class and each band.

2.6 Predictor variables for fractional tree cover

NDVI, RSR and TC indices (Brightness, Greenness and Wetness)
were used as predictor variables. NDVI combines information
only from NIR and Red bands, but RSR includes additional
SWIR bands to reduce the effects of background reflectance
(Brown et al., 2000). Since Landsat ETM+ images were in
surface reflectance, tasseled cap coefficients for Landsat TM
reflectance factor data were used.

NDVI = NIR-R) (6)
(NIR+R)
RSR = MR o _(SWIR1max - SWIR1) ™

R (SWIR1max - SWIR 1min)

Brightness = 0.2043 x B +0.4158 x G + 0.5524 x R + 0.5741 x
NIR +0.3124 x SWIR1 + 0.2303 x SWIR2 (8)

Greenness = -0.1603 x B - 0.2819 x G - 0.4934 x R + 0.7940 x
NIR - 0.0002 x SWIR1 - 0.1446 x SWIR2 9

Wetness = 0.0315 x B + 0.2021 x G + 0.3102 x R + 0.1594 x
NIR - 0.6806 x SWIR1 - 0.6109 x SWIR2 (10)

where, B =blue band (450-520 nm), G = green band (520—600
nm), R=red band (630—690 nm), NIR= NIR band (770-900 nm),
SWIR1=SWIR band (15501750 nm) and SWIR2 = SWIR band
(2090-2350 nm). SWIR1max and SWIR1min were defined as 99%
and 1% points in the cumulative histogram of the SWIR1
respectively. NDVI, RSR and TC indices were calculated from
topographically corrected and non-topographically corrected
surface reflectance values of Landsat ETM + spectral bands.

Finally, 2000 random sample plots (size of 90 m x 90 m
corresponding to 3 pixels x 3 pixels windows of Landsat image)
were chosen for extracting average NDVI, RSR, Brightness,
Greenness and Wetness from Landsat image and for computing
Fcover from LiDAR data. Only sample plots without any missing
data were retained for the further analysis. Hence, the number of
sample plots was reduced to around 1500.

2.7 Regression analysis

We used simple linear regression to model relationships between
Fcover and NDVI, RSR, and TC indices. The results were
evaluated based on coefficient of determination (R?) and root
mean square error (RMSE).

3. RESULTS

The various predictor variables explained variation in Fcover
differently (Figure 4). Out of all predictors, the highest R? and
the lowest RMSE were obtained using RSR. NDVI and
Greenness showed the weakest relationships with Fcover. NDVI,
RSR, Greenness and Wetness showed positive correlation with
Fcover as they are affected by the amount of vegetation, while
Brightness had negative correlation as it increases with the higher
amount of open soil and lower vegetation cover.

The strength of the relationship also varied between the images
acquired under different illumination conditions (Table 3). NDVI,
RSR, Brightness, Greenness and Wetness explained more
variation in Fcover when extracted from the image with higher
sun elevation angle (29.9.2013). For example, topographically
uncorrected Brightness indices explained only 37.5% of variation
in Fcover when extracted from the lower sun elevation angle
image in comparison to 45.2% when extracted from the higher
sun elevation angle image. NDVI was also affected by the time
of image acquisition. This was consistent for all the predictor
variables.

The effect of topographic correction on Fcover regression models
was not consistent for all predictors (Figure 4 and Table 3). The
models based on Brightness and Wetness showed some
improvement in terms of R? and RMSE but other models were
not significantly affected, particularly when based on the larger
solar elevation angle image. In the case of NDVI, there was no
improvement at all due to topographic correction in either image.
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Figure 4. Simple linear regression between Fcover and NDVI, RSR and TC indices before topographic correction (first row) and
after topographic correction using ASTER DEM (second row), SRTM DEM (third row) and TOPO DEM (fourth row). The image

was taken at 29.9.2013 with a solar elevation angle of 64.08".

The source of DEM also affected the results in different ways
(Figure 4, Table 3), although differences were small like
improvements in the model fit due to topographic correction.
However, SRTM DEM performed better for Brightness and
Greenness indices which were most affected by the topographic
correction. Furthermore, when estimating c-factors by regression,
the relationships between cos i and spectral bands were the
strongest in terms of R? (Table 4) when derived from SRTM
DEM.

4. DISCUSSION

According to our result RSR had the strongest linear relationship
with Fcover obtained from LiDAR data. NDVI showed weak
relationship with Fcover. These results are similar to those
obtained by Korhonen et al. (2013) from a boreal forest site.
However, our results differ from Majd et al. (2013) and Wu (2011)
who found strong relationship between Fcover and NDVI in
pecan orchards and savannas ecosystem. Weak relationship
between NDVI and Fcover can be explained by the
heterogeneous landscape in the study area and saturation of
NDVI as the study area contains also patches of mountain rain
forests.

However, it is difficult to say if this is due to weaker topographic
effects or a result of variations in vegetation phenology. Image
with lower sun elevation match better in terms of phenology to
LiDAR acquisition.

Furthermore, our results demonstrate that topographic correction
has very small or no effect on Fcover models. In the case of
NDVI, no improvement was observed. Therefore, topographic
correction might not be necessary for achieving the best Fcover
prediction accuracy in tropical mountains that have relatively
high solar elevation angles. In particular, models based on ratio
based vegetation indices seem to be not affected by topographic
correction. The fact that NDVI is less sensitive to topographic
conditions has also been demonstrated by Matsushita et al. (2007).
However, with multiplicative indices (e.g. Brightness),
topographic correction is likely to have considerable effect.

Even though artifacts could be clearly observed in the SRTM
DEM, it performed well in comparison to other sources of DEM,
in agreement with similar previous studies (Vanonckelen et al.,
2013; Balthazar et al., 2012). Most noticeably, SRTM DEM
provided better R? in the C-correction than regional DEM based
on the best topographic maps of the study area.

More comprehensive assessments on the effect of topographic
correction in modelling vegetation attributes is necessary.
Uncertainties related to the use of LiDAR data as a source of
reference data needs to be further analyzed. Optimally, field data
would be used but LiDAR data allowed us to sample Fcover from
all topographical conditions with large sample size. Furthermore,
we only considered one topographic correction method (C-
correction) and results could be different when other topographic
correction methods are used. However, C-correction has usually
performed well in comparison to other DEM-based topographic
correction methods. Furthermore, similar comparisons would be
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needed across larger latitudinal range because topographic
effects increase with increasing latitude and decreasing solar
elevations.

25.6.2013 29.9.2013

Predictor variables RMSE | R? |RMSE| R?

NDVI 135 0.356 | 12.9 0.410
NDVlasTer 135 0.355 | 13.0 0.405
NDVIsrtv 135 0.355 | 13.0 0.406
NDVlroro 135 0.355 | 12.9 0.408
RSR 10.8 0.588 | 10.4 0.614
RSRasTeER 10.6 0.605 | 10.3 0.622
RSRsrtm 10.6 0.600 | 10.4 0.617
RSRToro 10.4 0.616 | 10.3 0.625
Brightness 14.3 0.375|12.4 |0.452
Brightnessaster 125 0.450 | 11.2 0.558
Brightnesssrtv 11.8 0.508 | 11.1 0.567
Brightnesstoro 125 0.450 | 11.2 0.559
Greenness 15.3 0.171 | 14.7 0.235
GreennessasTer 15.3 0.180 | 14.7 0.239
Greennesssrtv 15.1 0.192 | 14.5 0.252
Greennesstoro 15.3 0.170 | 14.6 0.241
Wetness 12.6 0.438 | 11.8 0.508
WetnessasTer 11.9 0.500 | 11.5 0.529
Wetnesssrmv 11.9 0.497 | 11.6 0.521
WetnessToro 12.0 0.496 | 11.5 0.531

Table 3. Summary of the linear regression results between
different predictor variables and Fcover, and two images. The
predictors with subscripts were topographically corrected
using either ASTER, SRTM and TOPO DEM. Values in bold
are the highest R? and lowest RMSE. All the models were
statistically highly significant (p < 0.0001).

Image and R?

DEM B| G | R | NIR]|SWIRL|SWIR2
»| ASTER [0.15]0.26 |0.29 | 0.33| 037 | 0.33
8|SRTM  [0.24 | 0.42 |0.43 | 057| 058 | 050
| ToPO (016|028 | 031 | 037 042 | 0.36
D ASTER (023|029 [0.32 | 032 036 | 032
SISRTM (028 | 0.42 043 | 0.55| 054 | 045
& Toro  [0.26|0.37 |0.38 | 0.48| 044 | 0.38

Table 4. The mean R? of three NDVI classes obtained from the
linear regression between cos i from different DEMs and each
spectral bands from the two images. Values in bold are the
highest R?.

5. CONCLUSIONS

We assessed the effect of topographic correction on the accuracy
of Fcover predictions based on Landsat images. Several sources
of DEM were evaluated when performing the topographic
correction. Among the tested indices, RSR provided the best
regression model for Fcover. There were no major difference
between the linear models based on topographically corrected or
non-corrected NDVI and RSR, which indicates that NDVI and
RSR are relatively robust against topographical effects.
Therefore, in tropical mountain environments, studies based on
NDVI or RSR do not necessarily need to consider the effect of
topography. However, topographic correction should be
considered for lower sun elevation angle images if models are
developed using TC Brightness or Wetness. Finally, SRTM was

shown to be the best DEM source for topographic corrections in
the tested conditions.
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