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ABSTRACT: 

 
Fractional tree cover (Fcover) is an important biophysical variable for measuring forest degradation and characterizing land cover. 
Recently, atmospherically corrected Landsat data have become available, providing opportunities for high-resolution mapping of forest 
attributes at global-scale. However, topographic correction is a pre-processing step that remains to be addressed. While several methods 

have been introduced for topographic correction, it is uncertain whether Fcover models based on vegetation indices are sensitive to 
topographic effects. Our objective was to assess the effect of topographic correction on the accuracy of Fcover modelling. The study 
area was located in the Eastern Arc Mountains of Kenya. We used C-correction as a digital elevation model (DEM) based correction 
method. We examined if predictive models based on normalized difference vegetation index (NDVI), reduced simple ratio (RSR) and 
tasseled cap indices (Brightness, Greenness and Wetness) are improved if using topographically corrected data. Furthermore, we 
evaluated how the results depend on the DEM by correcting images using available global DEM (ASTER GDEM, SRTM) and a 
regional DEM. Reference Fcover was obtained from wall-to-wall airborne LiDAR data. Landsat images corresponding to minimum 
and maximum sun elevation were analyzed. We observed that topographic correction could only improve models based on Brightness 
and had very small effect on the other models. Cosine of the solar incidence angle (cos i) derived from SRTM DEM showed stronger 

relationship with spectral bands than other DEMs. In conclusion, our results suggest that, in tropical mountains, predictive models 
based on common vegetation indices are not sensitive to topographic effects. 

 

1. INTRODUCTION 

Landsat satellite images became available for free in 2008, which 
together with systematic data acquisition plan has fortified 
Landsat’s role as a primary source of information for global land 
change research (e.g., Wulder et al., 2012). Landsat images also 

have good data consistency among Landsat missions and 
historical archive since 1972. The pre-processing methods of 
Landsat data have reached the level of maturity and pre-
processed data sets have become available (e.g. Landsat Climate 
Data Record (CDR)) similar to moderate resolution data e.g. 
various MODIS data products (Masek et al., 2006). However, 
topographic correction remains as one of the pre-processing steps 
that have not been addressed globally.  

Topographical effects in satellite images are caused by 
illumination differences between the sunlit and shaded slopes. 
The magnitude of the effect depends on the time of the year 

because of variations in the sun elevation. Hence, in the 
topographic normalization, the dependency of reflectance factors 
on topographic position is removed. Topographic correction has 
been shown to improve land cover mapping using object-based 
classification (Moreira & Valeriano, 2014) and land cover 
classification accuracy (Pellikka, 1996; Vanonckelen et al., 
2013). 

Topographic correction methods can be grouped into three 
categories: those based on band ratios, those based on a 
Hyperspherical Direction Cosine Transformation (HSDC), and 
those requiring digital elevation model (DEM). DEM-based 

methods, can be summarized as three broad types: (1) empirical 
methods, (2) Lambertian methods and (3) non-Lambertian 
methods (Gao & Zhang, 2009).  The most often used methods are 
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Lambert cosine correction (Meyer et al., 1993), Minnaert 
correction (Smith et al., 1980), C-correction (Teillet et al., 1982) 

and Sun-canopy-sensor method (Gu & Gillespie, 1998). Several 
studies have demonstrated the viability of C-correction for 
radiometric correction of multitemporal images taken under 
different illumination conditions (Moreira & Valeriano, 2014; 
Reese & Olsson, 2011; Vanonckelen et al., 2013).  

Continuous fields of vegetation attributes can be estimated using 
a multitude of predictors derived from Landsat images. However, 
the topographic effect on different types of predictors can be 
different. For example, canopy cover, fractional tree cover 
(Fcover) and leaf area index (LAI) are typically estimated based 
on vegetation indices such as Normalized Difference Vegetation 

Index (NDVI) and Reduced Simple Ratio (RSR) (Majd et al., 
2013; Korhonen et al., 2013; Wu, 2011).  

NDVI is a simple index used to accentuate vegetation from 

imagery containing reflectance in the red and NIR portions of the 
spectrum. RSR is an empirical SWIR modification to the simple 
ratio (SR) vegetation index (Brown et al., 2000). Both indices 
attempt to depress background reflectance and improve the 
accuracy in extracting vegetation information from remotely 
sensed data.  

Tasseled Cap transformation (TC) compress spectral data into 
bands associated with the physical characteristics of scene (Crist, 
1985). TC indices (Brightness, Greenness and Wetness) have 
been used, for example, for forest disturbance detection (Healey 
et al., 2005; Jin & Sader 2005; Skakun et al. 2003) and forest 

classification (Dymond et al., 2002). 
 
The correction of satellite data for illumination differences due to 
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topography requires a DEM. Currently, there are several sources 

of global DEMs, such as SRTM and ASTER DEM. SRTM DEM 
at 30 m resolution was made recently globally available 
(https://lta.cr.usgs.gov/SRTM1Arc), improving its applicability 
for topographic correction of Landsat data. In addition to the 
global DEMs, many areas are supplemented by regional DEMs 
based on topographic map data. However, viability of different 
DEMs for topographic correction have been rarely assessed. 
 

Several authors have compared topographic correction methods 
for Landsat data (e.g., Hantson & Chuvieco, 2011; Moreira & 
Valeriano, 2014; Vanonckelen et al., 2013). However, these 
assessments are typically focusing on the removal of the 
topographic effect, instead of assessing how the accuracy of 
output products is affected. Although some studies have used 
topographic correction as a step to improve the land cover 
classification accuracy, it has been only rarely tested if 
topographic correction improves the accuracy of continuous 

variables (Törmä & Härmä, 2003), such as Fcover. Furthermore, 
classification is typically based on individual bands, but not 
vegetation indices, which are commonly used in Fcover, LAI and 
biomass mapping. 

In this study, our objective was to assess the effect of topographic 
correction on the accuracy of Fcover predictions based on 
Landsat images with and without topographic correction. In 
particular, we aimed to examine if predictive models based on 
NDVI, RSR and TC indices are affected differently, and if results 
depend on the source of DEM. 
 

 
2. MATERIAL AND METHODS 

2.1 Study area 

The Taita Hills (3°25´S, 38°20´E) are located in the northernmost 
part of the Eastern Arc Mountains in southeastern Kenya (Figure 

1). The area is characterized by distinct topographical variation 
and the mountainous hills raise up to 2200 m a.s.l. from the Tsavo 
Plains at 600−900 m a.s.l. Taita Hills are considered as one of the 
world’s most important biodiversity hotspots. However, due to 
the favorable climate and edaphic conditions, the indigenous 
cloud forests of the Taita Hills have suffered substantial 
deforestation and degradation due to agriculture, grazing and 
logging of forest for firewood and charcoal manufacturing since 
the early 1960´s (Pellikka et al., 2009). 

2.2 Landsat images 

Landsat surface reflectance (CDR) is a product of the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) 
at the National Aeronautics and Space Administration (NASA) 
Goddard Space Flight Center. The images have been calibrated 

to radiance, converted to top-of-atmosphere reflectance and then 
atmospherically corrected using the MODIS/6S methodology 
(Masek et al., 2006). 
 

 
The Taita Hills lies on the south east quarter of the Landsat image 
(WRS path 167 and row 62). Landsat scenes with cloud cover 

less than 30% in the lower right quarter in 2013 were downloaded 

and two images less affected by cloud, shadow and missing data 
due to Scan line corrector (SLC) off and corresponding to the 
minimum and maximum sun elevation were used in this study. 
Both images were acquired at 7:32 UTC time in the morning and 
image processing level was L1T. 
 

2.3 Digital elevation models 

DEM used for topographic correction were obtained from various 
sources. Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) Global Digital Elevation Model (GDEM) 
has been generated from the stereoscopic ASTER satellite images. 
ASTER GDEM is available at the resolution of 30 m. The 
ASTER GDEM covers land surfaces between 83°N and 83°S. It 
is a product of Ministry of Economy, Trade, and Industry (METI) 

and the National Aeronautics and Space Administration (NASA) 
(https://www.jspacesystems.or.jp/ersdac/GDEM/E/4.html). 

Shuttle Radar Topography Mission (SRTM) 1 arc-second global 

elevation data has been available since 23 September 2014 
(https://lta.cr.usgs.gov/SRTM1Arc). SRTM provides DEM for 
80% of the earth’s surface (all land areas between 60° N and 56° 
S). SRTM is a joint project between the National Geospatial-
Intelligence Agency (NGA) and NASA. The DEM has been 
filled to remove small artifacts. 

All Landsat images, ASTER and SRTM DEM were downloaded 
from the United States Geological Survey (USGS) Earth 
Explorer platform (http://earthexplorer.usgs.gov/). 
 
A regional DEM (TOPO DEM) for the Taita Hills was created 

using the contour lines of the topographic maps at 1:50 000 scale 
produced by the Survey of Kenya (Pellikka et al., 2004). DEM 
has a pixel size of 20 m × 20 m, and it was resampled to 30 m × 
30 m pixel size similar to the Landsat images. 
 
2.4 Airborne LiDAR data and fractional tree cover 

We used Fcover (1–canopy gap fraction) derived from airborne 
LiDAR as a reference data. Previous studies have shown that 
LiDAR provides canopy cover and gap fraction estimates with an 
accuracy comparable to the field measurements (Korhonen et al., 
2011; Heiskanen et al., in press). Furthermore, wall-to-wall 

LiDAR data provided a large sample size and the use of random 
sampling scheme in the logistically difficult terrain. 
 

Sensor Date  
Sun 
Elevation  

Sun 
Azimuth  

Landsat 7 ETM+ 29.9.2013 64.08° 89.79° 

Landsat 7 ETM+ 25.6.2013 51.35° 45.62° 

    

Table 1. Details of Landsat images used in this study. 

 
 

Figure 1. Location of the study area and hillshade view of 
the topography. 
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The discrete return LiDAR data was acquired 4–5 February 2013 
for 10 km × 10 km area (Table 2). Data were pre-processed by  
the data vendor (Topscan Gmbh) and delivered as georeferenced 
point cloud in UTM/WGS84 coordinate system with ellipsoidal 
heights. Vendor also filtered ground returns by using Terrascan 
software (Terrasolid Oy). Furthermore, we filtered buildings and 
powerlines. Then, the ground returns were used to generate DEM 

at 1 m cell size. We also removed the overlap between the 
adjacent flight lines based on minimum scan angle using 
lasoverage tool in LAStools software (rapidlasso GmbH). 

 

FUSION software (McGaughey, 2014) was used for computing 
a proxy of Fcover. We extracted LiDAR returns for 90 m × 90 m 
sample plots corresponding to 3 × 3 pixel windows of Landsat 
ETM+ images. Heiskanen et al. (in press) found that all echo 
cover index (ACI) (e.g., Morsdorf et al., 2006) gave an unbiased 
estimate of canopy gap fraction using the same LiDAR data. 
Hence, we used ACI as a proxy of Fcover. ACI was computed as: 
 

ACI (%) = 100
∑ Allcanopy

∑ All
                          (1) 

 

where, All refers to the returns of all return types (i.e. single, first, 
intermediate and last returns) and canopy refers to the returns 

from the forest canopy. Laser returns with height less than 1.5 m 
from the ground were considered as ground in order to exclude 
understory vegetation from Fcover. 
 
2.5 Topographic correction of Landsat-data 

C-correction is a semi-empirical topographic correction method, 
which consists of a modified cosine correction with the empirical 
parameter cλ (Reese & Olsson, 2011). cλ (Eq. 4) is calculated for 
every band (λ) separately based on the linear relationship (Eq. 3)  
between the spectral data and the cosine of the solar incidence 

angle (cos i) (Eq. 2). Each band were topographically corrected 
using Eq. 5.  

cos 𝑖 = cos 𝑠𝑧 × cos 𝑠𝑙 + 𝑠𝑖𝑛 𝑠𝑧 × 𝑠𝑖𝑛 𝑠𝑙 × 𝑐𝑜𝑠 (𝑎𝑧 − 𝑎𝑠)    (2) 

                   ρλ,t = 𝑏 λ + 𝑚 λ × cos 𝑖                                    (3) 

                        𝑐λ =
𝑏λ

𝑚λ
                                                             (4) 

                   ρλ,n = ρλ,t   
cos  𝑠𝑧+ 𝑐𝜆

cos  𝑖 +  𝑐𝜆
                                            (5) 

where,  
i         = solar incidence angle with respect to surface normal 
sz       = solar zenith angle 

sl        = slope 
az       = solar azimuth angle 
as       = aspect 
ρλ,t      = topographically influenced (t) reflectance of band λ 
bλ       = intercept of linear regression 
mλ      = slope of linear regression 
cλ       = c-factor calculated for every band separately 
ρλ,n     = topographically normalized (n) reflectance of  band λ 

 
cos i, slope and aspect were calculated from each DEM. 
Resolution of each DEM was made similar to Landsat image. 
Areas with a slope ≤ 2% were not included in the parameter 
estimation. Land cover stratification based on NDVI has been 
successfully used to consider the land cover dependency of cλ  

 

 
Figure 2. Overview of the methodology 

 

Parameter Value 
Date of acquisition 4–5 February, 2013 
Sensor Optech ALTM 

3100 3100 Mean flying height (m AGL) 760 
Flying speed (knots) 116–126 
Pulse rate (kHz) 100 
Scan rate (Hz) 36 
Maximum scan angle (degrees) 16 
Pulse density (pulses m−2) 
 
 

9.6 

Return density (returns m−2) 11.4 
Maximum number of returns per pulse 4 
Beam divergence at 1/e2 (mrad) 0.3 

Footprint diameter (cm) 23 

Table 2. Characteristics of the LiDAR data. 
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(Hantson & Chuvieco, 2011; McDonald et al., 2000). The study 
area was divided into three NDVI classes. Class 1 (NDVI < 0.4) 
covered urban areas, bare areas, grasslands and agriculture lands, 

Class 2 (NDVI 0.40.6) covered secondary forest, plantation and 

regeneration and Class 3 (NDVI 0.61) covered indigenous 

forest. Each class was further subdivided into five sub classes (-
1−0.4, 0.4–0.55, 0.55−0.70, 0.70–0.85, 0.85−1.0) based on cos i 
(Figure 3). 500 samples from each sub class, i.e. 2500 samples 
for each class and 7500 samples for each image were selected for 
linear regression between cos i and spectral bands. cλ was 
calculated for each NDVI class and each band. 

  
 
2.6 Predictor variables for fractional tree cover 

NDVI, RSR and TC indices (Brightness, Greenness and Wetness) 
were used as predictor variables. NDVI combines information 
only from NIR and Red bands, but RSR includes additional 
SWIR bands to reduce the effects of background reflectance 
(Brown et al., 2000). Since Landsat ETM+ images were in 
surface reflectance, tasseled cap coefficients for Landsat TM 
reflectance factor data were used.  

              NDVI =  
(NIR-R)

 (NIR+R) 
                                                      (6) 

             RSR =
NIR

R
×

(SWIR1max - SWIR1)

 (SWIR1max - SWIR1min)
                     (7) 

Brightness = 0.2043 × B + 0.4158 × G + 0.5524 × R + 0.5741 × 
NIR + 0.3124 × SWIR1 + 0.2303 × SWIR2           (8) 

Greenness = -0.1603 × B - 0.2819 × G - 0.4934 × R + 0.7940 × 
NIR - 0.0002 × SWIR1 - 0.1446 × SWIR2          (9) 

Wetness = 0.0315 × B + 0.2021 × G + 0.3102 × R + 0.1594 × 
NIR - 0.6806 × SWIR1 - 0.6109 × SWIR2              (10) 

where, B =blue band (450−520 nm), G = green band (520−600 
nm), R= red band (630−690 nm), NIR= NIR band (770−900 nm), 
SWIR1 = SWIR band (1550−1750 nm) and SWIR2 = SWIR band 

(2090−2350 nm). SWIR1max and SWIR1min were defined as 99% 

and 1% points in the cumulative histogram of the SWIR1 

respectively. NDVI, RSR and TC indices were calculated from 
topographically corrected and non-topographically corrected 
surface reflectance values of Landsat ETM + spectral bands.  

Finally, 2000 random sample plots (size of 90 m × 90 m 
corresponding to 3 pixels × 3 pixels windows of Landsat image) 
were chosen for extracting average NDVI, RSR, Brightness, 
Greenness and Wetness from Landsat image and for computing 
Fcover from LiDAR data. Only sample plots without any missing 
data were retained for the further analysis. Hence, the number of 
sample plots was reduced to around 1500. 
 

2.7 Regression analysis 

We used simple linear regression to model relationships between 
Fcover and NDVI, RSR, and TC indices. The results were 

evaluated based on coefficient of determination (R2) and root 
mean square error (RMSE).  
 
 

3. RESULTS 

The various predictor variables explained variation in Fcover 
differently (Figure 4). Out of all predictors, the highest R2 and 
the lowest RMSE were obtained using RSR. NDVI and 
Greenness showed the weakest relationships with Fcover. NDVI, 
RSR, Greenness and Wetness showed positive correlation with 
Fcover as they are affected by the amount of vegetation, while 

Brightness had negative correlation as it increases with the higher 
amount of open soil and lower vegetation cover.  

The strength of the relationship also varied between the images 
acquired under different illumination conditions (Table 3). NDVI, 
RSR, Brightness, Greenness and Wetness explained more 
variation in Fcover when extracted from the image with higher 
sun elevation angle (29.9.2013). For example, topographically 
uncorrected Brightness indices explained only 37.5% of variation 
in Fcover when extracted from the lower sun elevation angle 
image in comparison to 45.2% when extracted from the higher 
sun elevation angle image. NDVI was also affected by the time 

of image acquisition. This was consistent for all the predictor 
variables. 

The effect of topographic correction on Fcover regression models 
was not consistent for all predictors (Figure 4 and Table 3). The 
models based on Brightness and Wetness showed some 
improvement in terms of R2 and RMSE but other models were 
not significantly affected, particularly when based on the larger 
solar elevation angle image. In the case of NDVI, there was no 
improvement at all due to topographic correction in either image.  

 
 

Figure 3.  Five cos i classes based on (a) ASTER DEM, (b) SRTM DEM and (c) TOPO DEM.  
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The source of DEM also affected the results in different ways 
(Figure 4, Table 3), although differences were small like 
improvements in the model fit due to topographic correction. 
However, SRTM DEM performed better for Brightness and 
Greenness indices which were most affected by the topographic 
correction. Furthermore, when estimating c-factors by regression, 

the relationships between cos i and spectral bands were the 
strongest in terms of R2 (Table 4) when derived from SRTM 
DEM. 

 
 

 4. DISCUSSION 

According to our result RSR had the strongest linear relationship 
with Fcover obtained from LiDAR data. NDVI showed weak 
relationship with Fcover. These results are similar to those 
obtained by Korhonen et al. (2013) from a boreal forest site. 
However, our results differ from Majd et al. (2013) and Wu (2011) 

who found strong relationship between Fcover and NDVI in 
pecan orchards and savannas ecosystem. Weak relationship 
between NDVI and Fcover can be explained by the 
heterogeneous landscape in the study area and saturation of 
NDVI as the study area contains also patches of mountain rain 
forests. 

However, it is difficult to say if this is due to weaker topographic 
effects or a result of variations in vegetation phenology. Image 
with lower sun elevation match better in terms of phenology to 
LiDAR acquisition. 
 

Furthermore, our results demonstrate that topographic correction 
has very small or no effect on Fcover models. In the case of 
NDVI, no improvement was observed. Therefore, topographic 
correction might not be necessary for achieving the best Fcover 
prediction accuracy in tropical mountains that have relatively 
high solar elevation angles. In particular, models based on ratio 

based vegetation indices seem to be not affected by topographic 
correction. The fact that NDVI is less sensitive to topographic 
conditions has also been demonstrated by Matsushita et al. (2007). 
However, with multiplicative indices (e.g. Brightness), 
topographic correction is likely to have considerable effect.  

Even though artifacts could be clearly observed in the SRTM 
DEM, it performed well in comparison to other sources of DEM, 
in agreement with similar previous studies (Vanonckelen et al., 
2013; Balthazar et al., 2012). Most noticeably, SRTM DEM 
provided better R2 in the C-correction than regional DEM based 
on the best topographic maps of the study area. 

 
More comprehensive assessments on the effect of topographic 
correction in modelling vegetation attributes is necessary. 
Uncertainties related to the use of LiDAR data as a source of 
reference data needs to be further analyzed. Optimally, field data 
would be used but LiDAR data allowed us to sample Fcover from 
all topographical conditions with large sample size. Furthermore, 
we only considered one topographic correction method (C-

correction) and results could be different when other topographic 
correction methods are used. However, C-correction has usually 
performed well in comparison to other DEM-based topographic 
correction methods. Furthermore, similar comparisons would be 

 
 
Figure 4. Simple linear regression between Fcover and NDVI, RSR and TC indices before topographic correction (first row) and 
after topographic correction using ASTER DEM (second row), SRTM DEM (third row) and TOPO DEM (fourth row). The image 

was taken at 29.9.2013 with a solar elevation angle of 64.08°. 
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needed across larger latitudinal range because topographic 

effects increase with increasing latitude and decreasing solar 
elevations. 
 

 

 

5. CONCLUSIONS 
 
We assessed the effect of topographic correction on the accuracy 
of Fcover predictions based on Landsat images. Several sources 
of DEM were evaluated when performing the topographic 

correction. Among the tested indices, RSR provided the best 
regression model for Fcover. There were no major difference 
between the linear models based on topographically corrected or 
non-corrected NDVI and RSR, which indicates that NDVI and 
RSR are relatively robust against topographical effects. 
Therefore, in tropical mountain environments, studies based on 
NDVI or RSR do not necessarily need to consider the effect of 
topography. However, topographic correction should be 

considered for lower sun elevation angle images if models are 
developed using TC Brightness or Wetness. Finally, SRTM was 

shown to be the best DEM source for topographic corrections in 

the tested conditions.  
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Predictor variables 

25.6.2013 29.9.2013 

RMSE R2 RMSE R2 

NDVI 13.5 0.356 12.9  0.410 
NDVIASTER 13.5 0.355 13.0  0.405 
NDVISRTM 13.5 0.355 13.0  0.406 
NDVITOPO 13.5 0.355 12.9  0.408 
RSR 10.8 0.588 10.4  0.614 
RSRASTER 10.6 0.605 10.3  0.622 
RSRSRTM 10.6 0.600 10.4  0.617 

RSRTOPO 10.4 0.616 10.3  0.625 
Brightness 14.3 0.375 12.4  0.452 
BrightnessASTER 12.5 0.450 11.2  0.558 
BrightnessSRTM 11.8 0.508 11.1  0.567 
BrightnessTOPO 12.5 0.450 11.2  0.559 
Greenness 15.3 0.171 14.7 0.235 
GreennessASTER 15.3 0.180 14.7 0.239 
GreennessSRTM 15.1 0.192 14.5 0.252 

GreennessTOPO 15.3 0.170 14.6 0.241 
Wetness 12.6 0.438 11.8  0.508 
WetnessASTER 11.9 0.500 11.5  0.529 
WetnessSRTM 11.9 0.497 11.6  0.521 
WetnessTOPO 12.0 0.496 11.5  0.531 

 
Table 3. Summary of the linear regression results between 

different predictor variables and Fcover, and two images. The 
predictors with subscripts were topographically corrected 
using either ASTER, SRTM and TOPO DEM. Values in bold 
are the highest R2 and lowest RMSE. All the models were 
statistically highly significant (p < 0.0001). 
 

Image and 
DEM 

R2 

B G R NIR SWIR1 SWIR2 

2
5

.6
.2

0
1

3
 

ASTER 0.15 0.26 0.29 0.33 0.37 0.33 

SRTM 0.24 0.42 0.43 0.57 0.58 0.50 

TOPO  0.16 0.28 0.31 0.37 0.42 0.36 

2
9

.9
.2

0
1

3
 

ASTER 0.23 0.29 0.32 0.32 0.36 0.32 

SRTM 0.28 0.42 0.43 0.55 0.54 0.45 

TOPO 0.26 0.37 0.38 0.48 0.44 0.38 

 
Table 4. The mean R2 of three NDVI classes obtained from the 
linear regression between cos i from different DEMs and each 
spectral bands from the two images. Values in bold are the 

highest R2. 
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