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ABSTRACT:

Remote sensing is one of the most reliable ways to monitor land use and land cover change of large areas. On the other hand, satellite
images from different agencies are becoming accessible due to the new user dissemination policies. For that reason, interpretation of
remotely sensed data in a spatiotemporal context is becoming a valuable research topic. In the present day, a map of change has a great
significant for scientific purposes or planning and management applications. However, it is difficult to extract useful visual information
from the large collection of available satellite images. For that reason, automatic or semi-automatic exploration is needed. One of
the key stages in the change detection methods is threshold selection. This threshold determination problem has been addressed by
several recent techniques based on Change Vector Analysis (CVA). Thus, this work provides a simple semi-automatic procedure that
defines the change/no change condition and a comparative study will be involved together with the previous existing method called
Double Flexible Pace Search (DFPS). This study uses Landsat Thematic Mapper scenes acquired on different dates in an Algerian
region. First, some training data sets containing all possible classes of change are required and their respective supervised posterior
probability maps for each scene are obtained. The selected supervised classifier is based on the Maximum Likelihood method. Then
four training sets (two sets from each date) are chosen from their corresponding probability maps based on their spatial location in the
original images. The optimal average will be obtained as an average of the thresholds obtained at every set. This work verifies that the
proposed approach is effective on the selected area, providing improved change map results.

1. INTRODUCTION

Satellite data contain very useful information that can provide
spatiotemporal changes in land cover/ land use. Different change
detection techniques were used in the past to define the cover
changes as resumed in (Lu et al., 2004). Change vector anal-
ysis (CVA) is a very effective method used in the process of
extracting, analyzing and defining the change information from
the satellite data, as described in (Bovolo and Bruzzone, 2007),
(Malila, 1980) and (Xian. et al., 2009). CVA can present as out-
put data the total magnitude of change and the angle of change
direction between two different time samples from multispectral

satellite images as shown in (Collins and Woodcock, 1994), (Jensen,

1995) and (Johnson and Kasischke, 1998).

In previous works, several automatic and semiautomatic meth-
ods were developed to search the threshold of change magnitude.
The threshold selection is a key stage in CVA that has deserved
further investigation in (Ding et al., 1998), (Johnson and Kasis-
chke, 1998) and (Smits and Annoni, 2000). In this work, a semi-
automatic method called Double-Window Flexible Pace Search
(DFPS) (Chen et al., 2003) was used as a starting point. Then,
a modification of this method is proposed. The main difference
in the employment of four samples from the two images. This
new methodology is explained and the corresponding results are
presented in this communication.

Finally, a comparison and complexity evaluation between the orig-
inal and the modified method will be done. The Success Percent-
age as in (Chen et al., 2003) will be the tool used to define the
optimal threshold selection.

*Corresponding author. This is useful to know for communication
with the appropriate person in cases with more than one author

Dates Landsat ID N®  Instrument Path/Row
14-06-2002 ™ 5 Bumper 196/035
04-06-2010 ™ 5 Bumper 196/035

Table 1: Characteristics of the studied area.

2. METHODOLOGY
2.1 Study area

The selected area have been acquired from the Landsat 5 program
by the Bumper instrument. It is available in the (USGS) archive
(USGS, 2014).

The study area in Blida, Algeria is located in north central region
of Africa as shown in Fig. 1. Two Landsat images acquired re-
spectively on June 14, 2002 and June 4, 2010, shown in Fig. 2,
were employed in this study. It presents a total surface equal
to 788.18km?, located at a latitude of 36.34° (North) to 36.13°
(North) and longitude of 1.98° (East) to 2.36° (East). In this
study, a sub-area of 1130x775 pixels is chosen for further analy-
sis.

2.2 Image pre-processing

In Remote Sensing, energy reflected by Earth surface is repre-
sented by a Digital Number that depends on the fraction of incom-
ing solar radiation value, the surface slope and its orientation, the
possible surface anisotropy, and the variable atmospheric compo-
nents as described in (Srinivasulu and Kulkarni, 2004). It obvi-
ously also depends on the instantaneous state of the land surface.
Therefore, radiometric normalization is required for correcting all
possible pixel spectral changes caused by the following factors:
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Figure 1: Map localisation of the studied area of Algeria.

a) differences between the images due to changes in illumina-
tion values, variation in Sun and Earth distance, solar azimuth or
zenith angle, b) changing atmospheric conditions causing differ-
ent scattering and absorption, ¢) sensor differences, d) soil mois-
ture and e) vegetation phenology. Some of these factors must be
corrected in order to make sure that the obtained changes are only
caused by surface changes. The selected radiometric correction
is based on finding permanent image features, that can also help
for image co-register.

Geometric correction and co-registration is also needed as de-
scribed in (Xiangyang. et al., 2010). The geometric correction
and co-register provides a unique grid in a common coordinate
system for both images. After geometric rectification and im-
age co-registration provided by the ENVI tools using 100 control
points, the Root Mean Square Error (RMSE) between the images
in Fig. 2 was approximately equal to 0.11 pixels.

2.3 Change Vector Analysis

The general concept of change detection technique based on dy-
namic changes in the multispectral space using CVA was pre-
sented in (Malila, 1980). The CVA method employs the angle of
change and the magnitude of change from time ¢; to time ¢5 as
shown in (Johnson and Kasischke, 1998) and (Lu et al., 2004).

In this paper, we have implemented the change vector analysis
in posterior probability space. The posterior probability vectors
were obtained from the supervised Maximum Likelihood Clas-
sifier (MLC) classifier using five pre-defined classes: bare soil,
dense vegetation, no-dense vegetation, urban and water areas. All
bands from Landsat 5 TM sensor were used except from the ther-
mal infrared one. The MLC technique provides two Posterior
Probability Maps, each one for each date of acquisition:

Pm:(p’in’pan"..’pzn)’ (1)

P" = (p7,p3,...,p0), ()

where P™ and P™ represent the posterior probability map at time
t1 and t2, respectively. Index 1,2,...,c denotes the class in-
volved.

The relationship between the corresponding pixel pair of poste-
rior probability maps can be characterized by a change vector.
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Figure 2: The studied area of Algeria: image acquired on June
14, 2002 in a), and image acquired on June 04, 2010 in b).

The change vector of the posterior probability space can be rep-
resented as follows:

AP =P" — P™, 3)

where AP is the posterior probability difference. It contains all
the change information between the images taken at time ¢; and
time ¢».

The magnitude of AP is given by:

IAPI = /07 — g 4.+ e — ) )

In this context, a large value for ||AP|| indicates a high possi-
bility of change pixel. However, if a hard decision (change/no
change) has to be taken, then a threshold selection is a very crit-
ical step in the procedure. Figure 3 shows this procedure, where
the optimal threshold selection step is the stage that will be fur-
ther analyzed.

2.4 The Double-Window Flexible Pace threshold selection

The original DFPS described in (Chen et al., 2003) calculates the
optimal threshold to identify the changed and unchanged pixels in
the change magnitude with the evaluation of the best final success
percentage. It is based on the selection of the threshold from
one training sample in the study area. A threshold related to the
maximum accuracy of change detection in the training samples
will be considered as optimal threshold for the DFPS method.

The key step is how to get this assured threshold. In the present
paper, an enhancement has been made to DFPS method to achieve
the highest accuracy.
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Figure 3: Flowchart of the CVA change detection.
2.5 The proposed Algorithm for threshold selection

In this work, a modified algorithm for threshold selection is pro-
posed. Therefore, the key of this section is to get the adequate
threshold value. Figure. 4 shows the selected flowchart that pro-
vides an optimum threshold. We select four typical training sam-
ples that contain all possible changes at different geographic lo-
cations in the image.

First, we select the appropriate training samples. Then, we com-
pute | A P|| for each pixels of the training set. We assume that the
change magnitude || A P|| is in the range [|| AP||min, [|AP||maz]
for each training set. The flow plan is as follow:

1. Choose the precision value, which is a parameter that stops
the iteration process as in (Chen et al., 2003).

2. Calculate the maximum (|| AP || maz), minimum (|| AP||min),
and the mean(||A P||4v4) of each training sample separately.

3. The initial pace is taken as || AP||qug-

4. If the precision condition is not satisfied, then a new search
process begins in the same interval with the pace value taken
as |APlavg/2, |APavg/4, - ...

5. The optimal threshold value will depend on the highest Kappa
coefficient and a reasonable demanded accuracy in the search
process using the success rate defined in (Chen et al., 2003).

The final number of iterations obviously increases with the de-
manded accuracy. This semi-automatic technique gets the opti-
mal threshold to identify land cover change. As an advantage, this
method controls the final precision of the search process, since it
balances commission and omission errors. This optimal value
can change according to the training samples and to the desired
success rate.

3. RESULTS

The Double-Window Flexible Pace Search is based on searching
the threshold by comparing both images within a sample training
data set at different times ¢1and t2. The search process began in
the range [0 - 6.4031] with the pace of 0.6403 at the first step.
The optimal threshold is related to the success rate percentage
between the maximum and the minimum value was less than 0.05

Calculate the mean value
of the selected sub-arcas

Calculate the maximum and the
minimum value

New search
process

Select the interval for each <
sub-area

Calculate the changed/unchanged
pixels in the sub-areas

Calculate the accuracy and the
Kappa coefficient

| Optimal threshold |

Figure 4: Flowchart of the proposed threshold determination al-
gorithm.

percent of each iteration at this process as described in (Chen et
al., 2003).

As a result, the threshold of change magnitude was obtained as
the value 3.2015 with a success percentage of 64.26%. Table 2
presents the progress of the search process in the previous range
with the paces 0.6403, 0.2134, 0.0711, and 0.0355. The process
of search needed 31 iterations. The optimal threshold to decide if
a pixel was changed or not in the studied area was 3.2015 using
DFPS.

The proposed method needs the selection of four different spatial
localization samples as first step. The search process was based
on the four training samples at the change magnitude.

As the four samples training contains all types of change, the
computing of the algorithm parameters was done within the range
[0 - 6.4031], with the paces of 2.1425, 1.2667, 1.5558, 0.4796,
for the first, second, third, and the fourth samples training, re-
spectively. The selection of the best optimal threshold was done
by the percentage of the success rate in the iteration process fol-
lowing the success rate definition in (Chen et al., 2003).

As a result, the best value of threshold was obtained 3.1116 in
the third set with a success percentage of 93.959%. The progress
of the searching process is shown in the Table 3 for all the se-
lected training samples. It contains 2, 5, 4 and 13 iterations for
the first, second, third, and the fourth selected training samples,
respectively.

In order to compare the performance of both methods, Table 4
presents the accuracy results obtained in the selected sub area
with for each threshold value. A Kappa coefficient of 0.864 and
0.865 with an overall accuracy of 93.962%, and 93.959% were
achieved for the DFPS and the proposed algorithm, respectively.
The accuracy of change was estimated using validation data.

Method Overall Accuracy | Kappa Coefficient
DFPS 93.962% 0.864
Algorithm 93.959% 0.865

Table 4: Accuracy assessment of the methods
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Range = 6.4031 - 0 Range = 3.8418 - 2.5612

Range =3.4149-2.9881 Range = 3.2726 - 3.1304

Pace = 0.6403 Pace =0.2134 Pace =0.0711 Pace = 0.0355
Threshold SU®S  Threshold 5" preshold OUSS  Threghold SUCeeSS
Percentage Percentage Percentage Percentage
6.4031 30.07% 3.8418 59.13% 3.4149 62.98% 3.2726 64.12%
5.7627 39.17% 3.6284 61.73% 3.3438 63.36% 3.2371 64.20%
5.1224 43.39% 3.4149 62.98% 3.2726 64.12% 3.2015 64.26%
4.4821 51.28% 3.2015 64.26% 3.2015 64.26% 3.1659 64.22%
3.8418 59.13% 2.9881 63.54% 3.1304 64.17% 3.1659 64.22%
3.2015 64.26% 2.7746 62.63% 3.0592 64.02% 3.1304 64.17%
2.5612 61.10% 2.5612 61.10% 2.9881 63.54%
1.9209 56.96%
1.2806 60.28%
0.6403 11.13%
0.000 8.27%

Table 2: Results of threshold selection with the Double-window Flexible Pace Search (DFPS).

First set Second set Third set Fourth set
Pace = 2.1425 Pace = 1.2667 Pace = 1.5558 Pace = 0.4796
Threshold 0" Threshold S"“™S  Threshold "> Threshold U6
Percentage Percentage Percentage Percentage
2.1425 67.543% 1.2667 55.947% 1.5558 57.832% 0.4796 42.781%
4.2849 71.282% 2.5334 70.021% 3.1116 93.959% 0.9592 53.327%
3.8001 89.261% 4.6673 66.481% 1.4388 56.452%
5.0669 60.901% 6.2231 48.724% 1.9184 64.725%
6.3336 45.027% 2.3980 68.432%
2.8776 72.329%
3.3572 92.027%
3.8368 89.084%
4.3163 69.623%
4.7959 66.209%
5.2755 58.431%
5.7551 52.739%
6.2347 48.204%
Table 3: Results of threshold selection with the proposed algorithm.
These results indicate that the proposed method is effective for REFERENCES
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