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ABSTRACT:

The recognition of vegetation by the analysis of very high resolution (VHR) aerial images provides meaningful information about
environmental features; nevertheless, VHR images frequently contain shadows that generate significant problems for the
classification of the image components and for the extraction of the needed information.

The aim of this research is to classify, from VHR aerial images, vegetation involved in the balance process of the environmental
biochemical cycle, and to discriminate it with respect to urban and agricultural features. Three classification algorithms have been
experimented in order to better recognize vegetation, and compared to NDVI index; unfortunately all these methods are conditioned
by the presence of shadows on the images. Literature presents several algorithms to detect and remove shadows in the scene: most of
them are based on the RGB to HSI transformations. In this work some of them have been implemented and compared with one based
on RGB bands. Successively, in order to remove shadows and restore brightness on the images, some innovative algorithms, based
on Procrustes theory, have been implemented and applied. Among these, we evaluate the capability of the so called “not-centered
oblique Procrustes” and “anisotropic Procrustes” methods to efficiently restore brightness with respect to a linear correlation
correction based on the Cholesky decomposition.

Some experimental results obtained by different classification methods after shadows removal carried out with the innovative

algorithms are presented and discussed.

1. INTRODUCTION

High resolution images like those acquired by UAV and
satellite missions such as IKONOS or Quickbird, have
increased remote sensing application fields, since they
provide a greater detail than usual technologies (Arevalo et
al., 2008). High resolution aerial images can support energy
studies, for biomass estimation, water analysis , specifically
for detecting pollution, environment and ecology
investigations, for estimating urban sprawl and measurement
of the climate change.

Classification of vegetation, in particular, is a key instrument
for ecology and environmental management; in fact plants
play an important role as component of ecosystems and they
are involved in the regulation of different biogeochemical
cycles like that of carbon (Xiao et al., 2004, Xie et al., 2008).
For the purposes of extracting vegetation from images,
literature commonly uses automatic classification procedures
or specific spectral indexes in order to identify land cover
data and discern vegetation in urban and rural areas (Xie et
al., 2008). Classification methods indeed, recognize different
surface types on the images and can automatically generate
thematic maps, without the intervention of the user or with
minimal actions of him. These techniques are based on
spectral information of the pixels: each one is classified into a
specific land cover class based on its reflectance. Two kinds
of procedures, supervised and unsupervised methods, are
commonly used for classifying images (Richards, 2013).
Supervised classification is based on the idea that a user can
orient the classification by assigning a specific class to a
group of pixels, while the unsupervised classification is based
on a software analysis of the image and the user provides
only the number of the output classes. In the unsupervised
classification the analyst plays no role in class attribution
until the computations are completed. Pixels are allocated to
a cluster through a minimum distance assignment rule and if
a group of pixels is identified with a land cover class, all
pixels of that cluster are consider to belong to that (Richards,

2013). This approach is usually used when training data for
supervised classification are not obtainable, or are too
expensive to acquire, or when the dataset presents high
dimensions.

Specifically, literature presents several methods to achieve a
correct unsupervised classification for detecting vegetation;
among these Maximum Likelihood (Gromyko and
Shevlakov, 2004), K-means (Thomas and Cathcart, 2008)
and Self Organizing Map (Yuan et al., 2009) are some of the
techniques more used in the last years.

An alternative to the unsupervised classification methods for
the automatic detection of vegetation, is the calculation of a
conventional spectral vegetation index: the most commonly
used index is the Normalized Difference Vegetation Index
(NDVI) (Saha et al., 2005, Xie et al.,2008). This index takes
into account the near infrared band (IR band) and the red
band (R band). NDVI values, by definition, range between -1
and +1, where high positive values indicate increasing green
vegetation while negative values show non-vegetated surface
features such as water, ice, snow, or clouds.

As already mentioned, VHR images provide much details
about the scene; however they also introduce problems like
cloud and cast shadows that generate big troubles in the
classification of images and can bring to incorrect derived
spectral information (Domenech and Mallet, 2014).
Generally, shadows cause partial or even more total loss of
radiometric information in the investigated area and, as a
consequence, the process of classification and object
detection can be biased or even fail. Exceptionally, shadows
can be helpful for interpreting aerial images or when
geometric parameters like shape and length can be derived
for the 3D building reconstruction (Arevalo et al., 2008).
From the previous considerations, in order to better classify
images it is necessary to reduce or remove shadows; these
operations are carried out in two steps, and consist in a
preliminary accurate detection of shadows followed by the
removal of them (Li et al., 2014).
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1.1 Shadow Detection

Several computer vision applications deal with shadow
detection, in particular for the enhancement of photographic
images (Xu et al., 2006) and video sequences (Prati et al.,
2011).

The existing algorithms for shadow detection described in
literature involve many user input parameters, but for the
purpose of automation, i.e. for the aim of this work, priority
is given to techniques that facilitate the automatic extraction
of shadows from the scene.

Analyzing the state of the art of detection methods, literature
categorizes the first step of shadow analysis -the detection
one- into two classes (Arevalo et al., 2008): property- based
and model-based methods. Adeline et al., (2013) later
introduced two more categories: physics-based and machine
learning methods.

The property based methods take into account the properties
of shadows that can be gather from images and do not require
any a priori information. These methods comprise techniques
like histogram thresholding, invariant color models and
object segmentation.

Otsu (1979) for the first time developed a method to identify
shadow pixels from no shadow ones evaluating the gray-level
of the images. In the same year Nagao et al. (1979) combined
four bands of an aerial image in the following relation, for
defining a shadow mask (SM):

SM= (1/6)*(2R+G+B+NIR) @)

where  NIR =Near Infrared Band
R=Red band
G=Green band
B=Blue band

Following this kind of approach, Dare (2005), Chen (2007)
and Yamazaki (2009) used satellite panchromatic images to
detect shadows by a thresholding method.

As previously mentioned, it is possible to detect shadows also
by using invariant color models. Tsai and Lin (2006)
converted RGB images into HSI (Hue- Saturation and
Intensity), HSV (High- Saturation - Value), HCV (Hue-
Chroma- Value) and YChCr (SECAM color TV standard
with  luminance and two chrominance components)
component spaces. The same authors (2006) also developed a
spectral ratio between Hue and Intensity. Chung et al. (2009)
improved the spectral ratio of Tsai and Lin (2006) and
demonstrated that their method is more accurate compared to
that of Tsai and Lin.

Model based methods can be divided in geometrical and
physics-based ones. Geometrical methods need some a priori
information like 3D geometry of the scene and illumination
condition. Nakajima et al. (2002) and Zhan (2005), developed
a first solution that takes into account Airborne Laser
Scanning (ALS) data. From these data it is possible to derive
the Digital Surface Model (DSM). Afterwards from DSM,
high spatial resolution data, introducing sun azimuth and
zenith, it is possible to calculate the location of shadows.
Physical methods instead require information about material
reflectance and an accurate knowledge on the environmental
and atmospheric conditions of the scene. Finally, machine
learning methods concern an unsupervised or supervised
classification of the scene.

1.2 Shadow Restoration
As mentioned, in order to classify vegetation in a high

resolution image it is necessary to eliminate or at list reduce
shadows. Literature presents three main categories of shadow

correction methods: gamma correction, histogram matching
and linear correlation (Sarabandi, 2004).

1.2.1 Gamma Correction. Gamma correction methods
consider shadows as an inconvenient that disturbs brightness
images in few digital numbers. To solve the problem, a new
digital number called DN recovered is calculated as follows.

1
DN ecovered= (DNshadow) 2

In the case of 11-bit image, the equation is solved as follows:

1
DNpecovered = 2047 * (DNghadow/2047)7 3)

The vy value should be estimated for every image using local
sampling data and it is specific only for the class of land use
for which it is computed. To calculate y coefficient, the mean
value of shadow pixels and the mean value of neighboring
sunlight pixels of the same land cover class are used; from
these two sets of pixels a linear regression formula can be
obtained (Yamazaki et al., 2009).

1.2.2 Linear Correlation The method is based on the idea
that the brightness of shadow pixels can be restored by a
linear function.

Using the least squares error criterion, the linear function for
restoring shadow pixels is:

__ Onon-shadow
DNrecovered s (DNshadow -
shadow

ushadow+pnon—shadow (4)

w is considered the mean value; o is the standard deviation of
the shadow/non shadow region (Sarabandi, 2004).

Chang and Tsay (2010) modified this equation introducing
the non constancy of the parameters Znen=shadow g4

Oshadow
Unon—shadow- They supposed to add the difference of

shadow/non shadow mean values to each shadow pixel. In
this way recovered pixels would be more related to the
previous shaded pixel value. The equation becames:

_ (Onon-shad
DNrecovered - ( n;n SN + 1)(DNshadow -
shadow

ushadow+pnon—shadow (5)

1.2.3 Histogram Matching. This method is used for
restoring the DN values of shadow pixels matching the
histogram of a shadow region with the histogram of the
bright region of the same land-use class. This operation is
problematic because results depend on the extension of the
window defined by the user.

The aim of this work is the recognition of vegetation from the
analysis of very high resolution aerial images containing a
large amount of shadows. In this paper authors developed an
approach to detect shadows in high resolution RGB images
and they applied an innovative restoring method to remove
shadow. With this approach, a shadow free image is obtained,
making possible a reclassification and a vegetation detection.
The paper is organized as follows. Section 1 illustrates the
impact of shadows for the classification and the consequent
problems. Section 2 depicts some methods for shadow
detection and restoration as well as the algorithms developed
by the authors; section 3 presents reclassification results of
images after three de-shadowing algorithms were applied and
finally section 4 completes the paper with some final
considerations.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-419-1

2. METHOD APPLIED

Image classification is usually performed by traditional
unsupervised methods like K-means and Self Organised
Maps (SOM). These approaches are often used in thematic
mapping from imagery, including vegetation cover
identification. In the unsupervised classification methods the
image is used to generate clusters and all pixels can be
allocated to one of the clusters through a minimum distance
criterium. Because of the presence of shadows in the scene,
automatic classification methods cannot give good results and
alternative methods like the spectral indexes for detecting
vegetation are used instead. Spectral vegetation index
evaluation is affected by the presence of shadows in the
scene, so the authors considered necessary shadow detection
and removal before applying the classification process.

2.1 Classification methods

In this paper it was decided to elaborate unsupervised
classifications because of their automatic approach and
because no land cover data at a suitable level of detail was
available.

Moreover, for technical choice, authors used only the visible
band-red, green, blue- for the clustering step due to the fact
that Infrared band in VHR images is rarely provided.

At first, a classification of the original image was performed.
Authors considered only unsupervised techniques like K-
means and Self Organizing Map implemented in Matlab and
Maximum Likelihood implemented in Grass.

In remote sensing literature, Maximum Likelihood is
commonly considered a supervised classification method.

A specific utilization of this technique in Grass software can
be associated to an unsupervised classification, processing
first the i.cluster algorithm and then the i.maxlik one. In this
way classification is based on the spectral signature generated
by i.cluster and then refined by i.maxlik (Neteler and
Mitasova, 2008).

The K-means clustering algorithm implemented in Matlab
was used to partition the image in clusters and to produce a
classification map. Square Euclidean distance measure was
used in Matlab for cluster assignment.

Finally a Self-Organizing Maps classification was performed.
The procedure considers the detection of five classes for the
study area and the results cannot be considered suitable for
the presence of shadows in the scene.

To test the results of the classification methods, thanks to the
availability of the IR band for the dataset analyzed, the NDVI
was calculated as follows:

NDVI= IRband-Rband (6)

IRpand*Rband

2.2 Shadow Detection

For detecting shadows the spectral ratioing techniques
developed by Tsai and Lin (2006) and that developed by
Domenech and Mallet (2014) were performed. In the
following step Otsu's method (Otsu, 1979) was applied for
automatic determining of the optimal threshold to delineate
shadows from no shadows regions.

The indexes considered and compared were those develop by
Tsai and Lin (2006) and derived from the transformation of
RGB bands to HIS, HSV YCbCr respectively, the NSDVI
index proposed by Ma et al. (2008), and the WBI index of
Domenech and Mallet (2014). These indexes are defined as
follows:

B-R
WBI = —— (7
where B= Blue band
R= Red band
_ sV
NSDVI = — (8)
where S= Saturation
V= Value
—H
HV = v 9)
where H= High
V= Value
HI = ? (10)
where H= High
I= Intensity
Y
YCr = = (11)

where: Y= Luminance
Cr=Chroma

The Otsu’s method that finds an optimal threshold T, was
applied for every index map calculated. As a consequence, a
Boolean shadow mask of the shadow region was obtained
and applied to the aerial color images. To evaluate the
performance of the method a real shadow mask was
generated manually, with Photoshop CS5. Through a
comparison of the real mask of shadows and the masks
produced by the indexes, pixels were classified in true/false
positive/negative. TP (true positive) is the total amount of
pixels identified correctly as shadow; FN (false negative)
were the total number of true shadow pixels identified like
non shadow pixels. FP (false positive) denoted the total
number of non-shadow pixels identified as true shadow
pixels, finally TN (true negative) were pixel correctly
classified as non-shadow.

On the basis of these classifications three indexes of
goodness were evaluated: PA (Producer's Accuracy), CA
(Consumer's Accuracy) and the OA (Overall Accuracy)
defined in the following equations:

TP

PA = TP+FN (12)
_ TP
~ TP+FP 13)
_ TP+TN
0A = TP+TN+FP+FN 14

For completeness, another index the specificity (SP) proposed
by Kanji (1999) was evaluated.

TN
b= TN+FP

(15)
2.3 Shadow Restoration

Several shadow restoration methods are proposed in literature
but they don't give a real solution for the compensation of
shadows. Authors present a further approach to restore
brightness in shadow pixels.

From an algebraic point of view, the relationship between
shadow and light can be modeled by a transformation of the
color space, i.e. of the RGB components of the pixels
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involved. Due to the large variety of image characteristics
(exposure, contrast, saturation etc.) the conversion algorithm
and its parameters must be chosen properly. Assuming an
arbitrary transformation model, its coefficients can be locally
computed, image by image, on the basis of a set of
corresponding features, whose RGB pixel coordinates are
known in shadow and light conditions.

Said L (light) the nx3 matrix formed by the RGB
components of the n pixels in light, and S (shadow) the nx3
matrix of the corresponding n pixels in shadow, we assume
the existence of a generic transformation T (nxn), for which:

L=T-S (16)
Lorenzi et al. (2012) proposed the following relationship:
L=R-ST+g-17 (17)

where R is directly computed by way of the Cholesky
decomposition of the covariance matrices of Sand L, g is a
translation vector and 1 is a unitary 1-by-n vector.

Said Cgg the covariance matrix of S, and C, that of L, the
Cholesky decomposition gives Css=S¢'-Sc and C; =S, "S,,
where S¢ and S, are both upper triangular matrices. It follows
that: R=S,"(S¢")™, and g=mean(L)"-R-mean(S)".

In this equation, R has no specific properties, while g
(translation) can be interpreted as a general increment of
every RGB components.

To evaluate further conversion alternatives, having an
eventual physical interpretation, the authors implemented and
tested other transformation models, all derived from the
Procrustes analysis. The algorithms considered are: the
orthogonal Procrustes (OP), the extended orthogonal
Procrustes (EOP), the oblique Procrustes without centering
(ObP), the oblique Procrustes with centering (ObPC), and the
extended anisotropic orthogonal Procrustes (EAOP) (Gower
and Dijksterhius, 2004).

The orthogonal Procrustes model is similar to the Cholesky's

one:

L=R-ST+g 17 (18)

but here R is ortoghonal, that is R R'=R" R=1, where I is the
identity matrix.

R is computed in direct way as R=V W, where VV and W, in
turn, are the eigenvector matrices of the Singular Value
Decomposition of the matrix product of the original S and L:

[V,D, W] = SVD{[S — (1 - mean(S)")]” -L} (19)

and g = mean(L)” — R-mean(S)”.

The extended orthogonal Procrustes model is an extension of
the previous one in which a global scale factor c is
introduced:

L=c-R-ST+g- 17 (20)

The transformation matrix R is computed by the same SVD
of the matrix product of S and L, but here the scale factor c
and the translation g are respectively ¢ = trace(RT - S)/
trace([S - (1 -mean(S)” )] -S) and g = mean(L)” — R~
mean(c-R-S)T.

The oblique Procrustes without centering is a straightforward
transformation:

L=S-R (1)

Where R is directly computed as: R = (ST-§)"1 - ST L

Similar form has the algorithm of the oblique Procrustes with
centering. Here, L and S are first centered: Lg =
L- (1 -mean(L)")and Sg=S- (1 -mean(S)T) then R
is computed in similar way: R = (S§ - SB)_1 -ST- Lg.

The relationship between shadow and light in the ObPC
model becomes:

L= Sg-R+1 -mean(L)” (22)

Last, the extended anisotropic orthogonal Procrustes,
although not strictly a direct solution, has nevertheless a fast
converging iterative computation (Garro et al., 2012).
Respect to the EOP case, in which a global scale factor
affects all the components of the color space, here an
independent scale factor is applied to each RGB component.
The RGB color rotation matrix R is still orthogonal.

After having initialized the scale factors vectoras D = [1 1 1],
the following quantities:

B=[S- (1 -mean(s)")| L (23)

[V,D, W] = SVD{B - diag(D)} (24)

R=V-WT (25)
diag(BTR).

D= diag([S - (1 -‘mean($)T)]S) (26)

where ./ represents the element-wise division, were
repeatedly computed until convergence. The resulting
transformation is:

L=S-diag(L)-RT+1 -gT 27)

and g = (L — S-diag(L) - RT)T - 1/n, where n, number of
pixels, is given by n = 1 17, (Fusiello et al., 2013).

The preliminary tests carried out, let us to select and compare
for our goals the Cholesky, ObP and EAOP methods.

Due to the limited space, the implementation of the analytical
models for shadow removal, and an extended report on the
experiments performed will be discussed in a separate paper.

3. DISCUSSION AND RESULTS

To evaluate the performance of the algorithm developed, a
test dataset of Tavagnacco, a municipality in Friuli Venezia
Giulia (Italy) has been firstly selected. The image of the area,
dated December 2011, has a size of 20M pixel and a pixel
resolution of 9 cm.

The scene is dominated by the presence of green areas and is
contaminated by different types of long shadows, covering
about 20% of the surface.

A first classification of the original image was performed
with the automatic classifiers previously mentioned.
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Figure 1: Original image classificated respectively with
Maximum Likelihood (ML), K-Means (KM) and Self
Organized Map(SOM)

Results of the three methods showed that a large portion of
pixels were misclassified due to the presence of shadows in
the scene; the images reported before (figure 1) underline
this.

In addition classifiers were not in accordance in the detection
of vegetation.

The result of the NDVI index, reported in figure 2 underlines
the fact that the presence of shadows compromised again the
detection of vegetation.

Figure 2: Elaboration of the NDV1 index

As already said shadow removal is a mandatory step before
performing any Kkind of classification.

3.1 Shadow detection

Table 1 summarizes the accordance of the different shadow
detection indexes with respect to the real shadow mask.
Results underline that WBI and NSDVI indexes better
identified shadow pixels and no shadow ones, with the WBI
(figure 3) having an overall accuracy (OA) slightly better
than NSDVI.

WBI | NSDVI | YCr HI HV

FP 3.54 251 2274| 36.10| 33.80
FN 10.79| 1331 0.64 0.41 0.43
TP | 1817| 1564| 2832| 2855| 2852
TN | 6751| 6853 4830| 3495| 37.25
PA | 62.74| 54.02| 97.80| 98.60| 98.51
CA | 83.71| 86.16| 5546| 44.16| 45.77
OA | 85.68| 84.17| 76.62| 63.49| 6577
SP 95.02| 96.46| 67.99] 49.19| 5243

Table 1: Comparison of shadow detection methods

So this index elaborated by Domenech et Mallet (2014) can
be used as a good mask to evidence shadows in the image.

Figure 3: Shadows mask calculated with the WBI index
3.2 Shadow restoration

Automatic shadow removal in a complex scene constitutes a
challenging problem. For all the algorithms described the
critical step is the correct identification of the corresponding
set of pixels, in shadow and light conditions, to compose the
matrices S and L respectively. In theory, this task would be
performed locally, matching surfaces of the same nature (i.e.
vegetation vs. vegetation, asphalt vs. asphalt, bare soil vs.
bare soil etc.). At this stage of the research we adopted a
global approach. We considered simultaneously all the pixels
in shadow, and all the pixels in light on the image. Both lists
were sorted on the basis of their panchromatic intensity. Then
the largest dataset was under-sampled in order to obtain S
and L of the same size. Finally, de-shadowing algorithms
were applied.

Figure 4: Original image and image after deshadowing
approaches. In order: EAOP, ObP and Cholesky
deshadowing methods

To this aim the authors used the EAOP, ObP and Cholesky
methods, described before, that provided better performances
in specific tests for the reconstruction of shadows.

The considered algorithms recreated an image with a residual
amount of shadows, as reported in figure 4.

Some shadows still remain also after the deshadowing
approaches, as a consequence of the detection method
adopted, but a large amount of them are in any case
compensated.
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3.3 De-shadowed Map Classification

When the process of shadow removal was completed it was
necessary to reclassify the images to compare the results
between the three classification methods adopted. The images
reported below significantly describe an enhancement of the
classification after performing a shadow restoration.

The unsupervised classifications performed returns five
classes that would be correspond to pavement roads, roofs,
trees, grass and bare soil.

Figure 5: Reclassification of reconstructed image with
Anisotropic Procrustes method. In order ML, KM, SOM
classifier

Figure 6: Reclassification of reconstructed image with
not centered oblique Procrustes method. In order ML, KM,
SOM classifier

Figure 7: Reclassification of reconstructed image with
Cholesky method. In order ML, KM, SOM classifier

From table 2 it is clear that classification depends from the
type of classifier used and not from the shadow removal
methodology.

Anisotropic Procrustes

% of agreement

ML/SOM 39.35
KM/SOM 27.81
ML/KM 57.21
Cholesky % of agreement
ML/KM 55.28
KM/SOM 63.80
ML/SOM 57.98
Not- centered obligue Procrustes | % of agreement
ML/SOM 34.69
ML/KM 58.42
KM/SOM 63.00

Table 2: Agreement between classifier results relative to
different deshadowing methods

Moreover table 2 shows that the maximum likelihood
classication is the more robust because it is in accordance
with all shadow removal methods.

K-means % of agreement
EAOP /Cholesky 59.74
Cholesky/ ObP 81.38
EAOP / ObP 55.11
Maximum Likelihood | % of agreement
EAOP / ObP 84.86
Cholesky/ ObP 89.12
EAOP /Cholesky 90.21

SOM % of agreement
EAOP /Cholesky 70.16
Cholesky/ ObP 69.22
EAOP / ObP 78.04
Table 3: Agreement between deshadowing methods results

relative to different classification techniques
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K-means classifier instead gives different results based on the
shadow removal technique.

With the same shadow removal method instead, results of the
images classifiers are different as demonstrated in table 3.

4. CONCLUSIONS

This paper covered a large number of topics in vegetation
classification using high resolution imagery. After carrying
out the state of this particular field of research the most
common classifiers were applied to the original image to
detect vegetation. Experiments show that the presence of
shadows in the image cause a significant loss of radiometric
information and produce wide and significant classification
errors. It is undoubtedly that it is necessary to remove
shadows for the enhancement of the results.

Removing shadows is a key step for an efficient detection of
vegetation.

Furthermore, because of the radiometric limitations of the
RGB channels, classification methods would be improved
considering spatial information like context and texture. In a
successive paper authors will present the results derived from
the use of these new parameters extracted from RGB images
associated with geometrical information obtained from ALS
surveys.

REFERENCES

Adeline K.R.M., Chen M., Briottet X., Pang S.K. and
Paparoditis N., 2013. Shadow detection in very high spatial
resolution aerial images: A comparative study. ISPRS
Journal of Photogrammetry and Remote Sensing 80 (2013)
21-38.

Arevalo V., Gonzales J., Ambrosio G., 2008. Shadow
detection in colour high-resolution satellite images.
International Journal of Remote Sensing. Vol.29, No. 7, 10
April 2008, 1945-1963.

Chang C. and Tsay J., 2010. Shadow Detection and
Information Recovery in Aerial Images. In Proceedings of the
31st Asian Conference on Remote Sensing 2010.

Chen Y., Wen D., Jing L. and Shi P., 2007. Shadow
information recovery in urban areas from very high
resolution satellite imagery International Journal of Remote
Sensing, 28:15, 3249-3254.

Chung K., Lin Y. andHuang Y., 2009. Efficient shadow
detection of color aerial images based on successive
thresholding scheme. IEEE transaction on Geoscience and
Remote Sensing 47 (2) 671-682.

Dare P., 2005. Shadow analysis in high-resolution satellite
imagery of urban areas. Photogrammetric Engineering and
Remote Sensing, 71, pp. 169-177.

Domenech E. and Mallet C., 2014. Change Detection in High
resolution land use/land cover geodatabases (at object level).
EuroSDR official publication No.64. April 2014.

Finlayson G.D., Hordley, S.D., Cheng Lu, Drew, M.S., 2006.
On the Removal of Shadows From Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence
28 (1), 59-68.

Fusiello A, Maset E., Crosilla F., 2013. Reliable exterior
orientation by a robust anisotropic orthogonal Procrustes
Algorithm. Int. Arch. of Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. XL-5/W1, pp. 81-87.

Garro V., Crosilla F., Fusiello A., 2012. Solving the PnP
Problem with Anisotropic Orthogonal Procrustes Analysis. In
3dimpvt, pag 262-269.

Gower J.C. and Dijksterhius G.B., 2004. Procrustes
problems. Oxford University press 2004.

Gromyko M. and Shevlakov A., 2004. Classification Analysis
of LANDSAT Images of Mixed Coniferous and Deciduous
Riparian Forest in Nature Conservation Zone Using
GRASS/PostGIS Link. Proceedings of the FOSS/GRASS
Users Conference — Bangkok, Thailand, 12—14 September
2004.

Kanji G.K., 1999. 100 Statistical Tests (Thousand Oaks, CA:
SAGE).

Lorenzi L. Melgani F. and Mercher G., 2012. A Complete
Processing Chain for Shadow Detection and Reconstruction
in VHR Images. IEEE Transaction on Geoscience and
Remote Sensing, Vol. 50, No. 9, September 2012.

Ma H., Qin Q., and Shen X., 2008. Shadow segmentation and
compensation in high resolution satellite images. Geoscience
and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE
International. Vol. 2. IEEE, 2008.

Nakajma T., Tao G. and Yasuoka Y., 2002. Simulated
recovery of information in shadow areas on IKONOS image
by combining ALS data. Proceedings of Asian Conference on
Remote Sensing (ACRS).

Neteler M. and Mitasova H., 2008. Open Source GIS: A
GRASS GIS Approach. Third Edition. The International
Series in Engineering and Computer Science: Volume 773.
406 pages, 80 illus., Springer, New York. ISBN:
038735767X | ISBN-13: 978-0-387-35767-6 eBook e-ISBN-
13: 978-0-387-68574-8.Published 1st Nov. 2007.

Otsu N., 1979. A threshold selection method from gray level
histograms. IEEE Transaction on Systems, Man, Cybernetics
9 (1), 62-66.

Prati A., Mikic I., Trivedi M.M. and Cucchiara R., 2003.
Detecting Moving Shadows: Formulation, Algorithms and
Evaluation. IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 25, no. 7, pp. 918-923, July 2003.

Richards J.A., 2013. Remote Sensing Digital Image Analysis.
An Introduction. Fifth Edition. Springer.

Saha A.K., Arora R.K., Csaplovics E. and Gupta R.P., 2005.
Land Cover Classification Using IRS LISS 1Il Image and
DEM in a Rugged Terrain: A Case Study in Himalayas.
Geocarto International, VVol. 20, No. 2, June 2005.

Sarabandi P., Yamazaki F., Matsuoka M., Kiremidjian
A.,2004. Shadow detection and radiometric restoration in
satellite high resolution images. IEEE IGARSS. Sep (2004),
vol. 6, pp. 3744-3747.

Thomas A.M. and Cathcart J.M., 2008. Adaptive Spatial
Sampling Schemes for the Detection of Minefields in
Hyperspectral Imagery. in Proc. of SPIE Detection and
Sensing of Mines, Explosive Objects, and Obscured Targets
X111 6953(28) (2008).

Tsai I-C. and Lin C.H., 2006. A comparative Study of Shadow
Compensation of Color Aerial Images in Invariant Color
Models. IEEE Transaction on Geoscience and Remote
Sensing, Vol. 44, No. 6, June 2006.

Xiao X.M., Zhang Q., Braswell B., 2004. Modeling gross
primary production of temperate deciduous broadleaf forest



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-419-1

using satellite images and climate data. Remote Sens
Environ 91:256-70.

Xie Y., Sha Z., Yu M., 2008. Remote sensing imagery in
vegetation mapping: a review.J Plant Ecol (2008) 1 (1): 9-
23 doi:10.1093/jpe/rtm005.

Xu L., Qi F., Jiang R., Hao Y., Wu G. and Xu L., 2006.
Shadow detection and removal in real images: A survey.
Technical report, Shangai JiaoTong University, PR China.

Yamazaki F., Liu W. and Takasaki M., 2009. Characteristics
of shadow and removal of its effects for remote sensing

imagery. In: Proc. International Geoscience and Remote
Sensing Symposium, IGARSS, Cape Town, South Africa, 12
- 17 July, 4, pp 426-429.

Yuan H., Shi C.F. and Xiao S., 2009. An Automated Artificial
Neural Network System for Land Use/Land Cover
Classification from Landsat TM Imagery. Remote Sens.
2009, 1, 243-265; doi:10.3390/rs1030243.

Zhan Q., Shi W. and Xia Y., 2005. Quantitative analysis of
shadow effects in high-resolution images of urban areas.
International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences 36 (8/W27) 6p.



