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ABSTRACT:

Full-waveform (FWF) LiDAR (Light Detection and Ranging) systems have their advantage in recording the entire backscattered
signal of each emitted laser pulse compared to conventional airborne discrete-return laser scanner systems. The FWF systems can
provide point clouds which contain extra attributes like amplitude and echo width, etc. In this study, a FWF data collected in 2010
for Eisenstadt, a city in the eastern part of Austria was used to classify four main classes: buildings, trees, waterbody and ground by
employing a decision tree. Point density, echo ratio, echo width, normalised digital surface model and point cloud roughness are the
main inputs for classification. The accuracy of the final results, correctness and completeness measures, were assessed by
comparison of the classified output to a knowledge-based labelling of the points. Completeness and correctness between 90% and
97% was reached, depending on the class. While such results and methods were presented before, we are investigating additionally
the transferability of the classification method (features, thresholds ...) to another urban FWF lidar point cloud. Our conclusions are
that from the features used, only echo width requires new thresholds. A data-driven adaptation of thresholds is suggested.

1. INTRODUCTION

Airborne LiDAR has already proven to be a state-of-the-art
technology for high resolution and highly accurate topographic
data acquisition with active and direct determination of the
earth surface elevation (Vosselman and Maas, 2010). Generally,
two different generations of receiver units exist: discrete echo
recording systems, which are able to record multiple echoes on-
line and typically sort up to four echoes per laser shot
(Lemmens, 2009) and full-waveform (FWF) recording systems
capturing the entire time-dependent variation of the received
signal power with a defined sampling interval such as 1ns (1
nanosecond) (Mallet and Bretar, 2009; Wagner et al., 2006).
With signal processing methods, FWF data provide additional
information which offers the opportunity to overcome many
drawbacks of classical multi-echo LiDAR data on reflecting
characteristics of the objects, which are relevant in urban
classification.

Airborne LiDAR data have been used in various applications in
urban environments, particularly aiming at mapping and
modelling the city landscape in 3D with its artificial land cover
types such as buildings, power lines, bridges, roads. Moreover,
as urban environments are active regions with respect to
alteration in land cover, urban classification plays an important
role in update changed information (Matikainen et al., 2010). If
FWF data is available, amplitude, echo width, and the integral
of the received signal are additional information. Furthermore, a
higher number of detected echoes has been reported for FWF
data in comparison to discrete return point clouds. These
additional attributes were successfully used in classification
(Alexander et al., 2010). The classification methods applied
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reach from simple decision trees to support vector machines
(SVM). (Ducic et al., 2006) applied a decision tree based on
amplitude, pulse width, and the number of pulses attributes of
full-waveform data in order to distinguish the vegetation points
and non-vegetation points. (Rutzinger et al., 2008) used a
decision tree based on the homogeneity of echo width to
classify points from full-waveform ALS data to detect tall
vegetation - trees and shrubs. (Mallet et al., 2008) used SVM to
classify four main classes in urban area (e.g. buildings,
vegetation, artificial ground, and natural ground). In these
studies the parameters of the classification (threshold values,
etc.) are set by expert knowledge or learned from training data.
Thus, these values are optimal for the investigated data set.

The transferability of classification approaches between
different full waveform LiDAR data sets has received less
attention so far (Lin, 2015). The aim of this paper is therefore
to:
e demonstrate that high classification accuracy can be
reached with decision trees, and to
e study, if this classification approach using the selected
features and the thresholds can be transferred to
another data set, and finally to
e suggest a method to re-compute the echo width
threshold for different missions acquiring urban full
waveform point clouds.

In this study, the following attributes are used.
e echo width: full waveform attribute, describing
variation of the target along the ranging direction,
e  Sigma0: local smoothness,
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e echo ratio: a measure of surface penetration, and
e nDSM: normalized digital surface model, height
above ground.

Four main classes are derived for the built up areas of
Eisenstadt and Vienna: buildings, vegetation, water body, and
ground. They are classified based on decision tree method using
OPALS (Pfeifer et al., 2014).

To quantify the transferability of parameter between the
different regions/data sets, the parameters are applied for the
Eisenstadt set and then applied to the Vienna set. This indicates
which parameter is stable for various study areas and which
need conversion.

2. STUDY AREA AND DATA USED
2.1 Study area

Eisenstadt is a town in the south eastern part of Austria. It is
characterized by buildings of medium size. The centre of
Eisenstadt was selected for the analysis located on lat. N
47°50°51”, long. E 16°31°5”.

Vienna is the capital of Austria and characterized by old large
buildings in the centre, but also open park areas and trees along
a boulevard. The center of study area located on lat. N
48°12°26”, long. E 16°21°52”.

2.2 Data

The full-waveform airborne LiDAR data were available for the
two mentioned cities. Eisenstadt area was scanned with a Riegl
LMS-Q560 sensor in April 2010. The resulting point density
was approximately 8 points/m? in the non-overlapping areas,
while the laser-beam footprint was not larger than 60 c¢cm in
diameter. The Vienna city-center area was scanned with the
same model of the scanner, in January 2007. The resulting point
density was 12 points/m? in the non-overlapping area, and the
laser-footprint was not larger than 30 cm. The investigated area
covers 2.5 km? for Eisenstadt and 1.4 km?for Vienna.

Both raw full-waveform data sets were processed in the same
way using the software OPALS and sensor manufacturer
software. First, Gaussian decomposition (Wagner et al., 2006)
was applied to extract geometrical (range) and full-waveform
(amplitude and echo with) attributes per echo. No additional
information on how echo width was specified (FWHM,
std.dev.) was available for this research. Then, considering
additionally the trajectory information (GPS and INS
information), direct georeferencing was performed for each
strip. The output of this procedure was strip-wise georeferenced
point clouds, stored in the OPALS datamanager (ODM) format
and projected in ETRS89/UTM zone 33N. Each ODM file
includes point attributes: X-, Y-and Z-coordinate, Echo
Number, Number of Echoes, Amplitude, Echo Width, and strip
identifier as the primarily acquired (“measured”) attributes of
each echo. The ODM does allow storage of freely defined
attributes at each point and provides spatial access, e.g. used in
neighborhood queries for computing additional point attributes
(see below).

Additionally to the LiDAR data, RGB Orthophotos - projected
in the same coordinate system - were used for visually
interpretation.

3. METHODOLOGY

First, a number of attributes is computed for each point, using
the paradigm of point cloud processing (Otepka et al., 2013).
From these attributes different images are computed
(“gridding™) at a pixel size of 1m. A terrain model is derived
also. Then, a decision tree is applied to classify each pixel into
one of the four classes: building, vegetation, ground, and water
body. Image algebra (e.g., morphological operations) is used in
between to refine the results. The quality of the results is
assessed using the completeness and the correctness measure.

Mallet et al. (2008) showed that for urban area classification
from Lidar data a combination of attributes should be used to
obtain classification results of high quality. In their analysis of
feature (attribute) importance, it was demonstrated that
attributes considering the local dispersion of the point cloud,
attributes describing geometric properties, and the echo width
of FWF Lidar should be used together. This was used in the
selection of attributes for the present study.

3.1 DTM creation

The Digital Terrain Model (DTM) give important geometric
information about objects in urban area, e.g. object heights, and
thus, they were directly derived from the LiDAR data. To
calculate the DTM, first the LiDAR ground points were selected
by applying the robust filtering algorithm (Kraus and Pfeifer,
1997; Pfeifer and Mandlburger, 2008) implemented in the
software SCOP++. Then, the DTM was interpolated from the
selected ground points using the moving plane interpolation
implemented in OPALS.

3.2 Attributes for the classification

Prior to attribute computation in each point, the LiDAR point
clouds are checked in order to remove erroneous points which
influenced to the accuracy of further processing steps. The
relative height of each point above the DTM, nH = z (point)-
z(DTM), was computed. All points with nH below -1m and
above > 40m are removed. For the Vienna data set the highest
buildings are approx. 100m, but also no erroneously high points
were found in the data. Thus only the lower threshold was
applied for Vienna.

The value nH defines the attribute nDSM, i.e. normalized
surface model (object height). The nDSM represents, as written
above, the height of points above the terrain. In the
classification it is used to distinguish all the point above the
terrain such as buildings and vegetation from the ground points.

To distinguish buildings and vegetation points the Echo Ratio
(Hofle et al., 2009; Rutzinger et al., 2008) is used. The echo
ratio (ER) is a measure for local transparency and roughness
and is calculated in the 3D point cloud. The ER is derived for
each laser point and is defined as follows:

Echo Ratio ER[%] = n3p / nyp * 100.0 1)

nzp = Number of points within distance measured in 3D
(sphere).

n,p = Number of points within distance measured in 2D
(unbounded vertical cylinder).

In building and ground, the ER value reach a high number
(approximately 100%), but for vegetation and permeable object
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ER < 100%. ER is created by using OpalsEchoRatio module,
with search radius is 1m, slope-adaptive mode. For the further
analyses the slope-adaptive ER is aggregated in 1m cells using
the mean value within each cell.

The attribute SigmaO is the plane fitting accuracy (std.dev. of
residuals) for the orthogonal regression plane in the 3D
neighborhood (ten nearest neighbors) of each point. It is
measured in meter. Not only the roofs, but also the points on a
vertical wall are in flat neighborhoods. Echo Ratio and Sigma0
both represent the dispersion measures. Concerning their value
they are inverse to each other (vegetation: low ER, high
Sigma0). What is more, Sigma0 is only considering a spherical
neighborhood and looks for smooth surfaces, which may also be
oriented vertically. The ER, on the other hand, considers
(approximately) the measurement direction of the laser rays
(vertical cylinder). Those two attributes play an importance role
in discriminate trees and buildings. Using OpalsGrid module
with moving least square interpolation the Sigma, image with
the grid size of 1m was created.

The Echo Width (EW) represents the range distribution of all
individual scatterers contributing to one echo. The width
information of the echo pulse provides information on the
surface roughness, the slope of the target (especially for large
footprints), or the depth of a volumetric target. Therefore, the
echo width is narrow in open terrain areas and increases for
echoes backscattered from rough surfaces (e.g. canopy, bushes,
and grasses). Terrain points are typically characterized by small
echo width and off-terrain points by higher ones. The echo
width also increases with increasing width of the emitted pulse.
It is measured in nano seconds. OpalsCell module is used to
create the EW image with the final gird size of 1m.

The local density of echoes can be used for detecting water
surfaces. As demonstrated by (Vetter et al., 2009) water areas
typically feature areas void of detected echoes or very sparse
returns. It is measured in points per square meter. Density was
also computed for 1m cells.

The attributes used for classification are thus: nDSM, Echo
Ratio, Sigma0, Echo Width, and Density.

3.3 Obiject classification

First each pixel is classified using the decision tree shown in
Fig. 1 including the threshold values. After the first 2 classes,
water and building (candidates) are extracted, mathematical
morphology is applied to refine the building results. The pixels
not classified are then tested for fulfilling the vegetation criteria.
If they are not in vegetation, they are considered to be ground.

Water is first identified, based on the low point density. As
mentioned above, water has very low backscatter, and often no
detected echo.

Building objects are distinguished from other objects by height
(above 3m) and surface roughness. ER is used to distinguish
buildings from tree objects. However, with various shapes of
building roof and some buildings being covered by high trees,
only ER is not sufficient and would include vegetation in the
building class. Thus, EW is used to detect only hard surfaces.
Buildings are contiguous objects and have typically a minimum
size. This is considered by analysing all the pixels classified as
buildings so far with mathematical morphology. A closing
operation is applied first to fill up all small holes inside the

buildings, and then opening is performed to remove few pixel
detections (“noise”) from the building set. This also makes the
outlines of buildings smoother.
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Figure 1. Decision tree for the classification.

ER, Sigma0 and EW are then used to classify trees. The building
mask is applied to classify only pixels not classified before. Also
this result is refined with image morphological operations.
Finally, all pixels not classified so far are considered ground.

3.4 Echo Width normalisation

An initial assumption was that the thresholds for the decision
tree derived for one data set can also be used for the other data
set. The rational was that:

e Density is a physical measure (points per square
meter) and the overall shot density was similar (8 vs.
10 points per square meter).

e Height above ground (nDSM) is a measure
independent of the measurement device and also
independent of the sampling distance.

e Echo Ratio is by definition a relative measure and
should therefore adapt itself to the data distribution.

e Sigma0 is the local plane fitting accuracy. For data
sets of similar measurement accuracy (same sensor
model used for both areas) and similar
neighbourhoods, both number of neighbours and
spatial extent, it should deliver comparable values.

e Echo width obviously depends on the width of the
emitted pulse (same sensor model used for both data
sets), but may also depend on the footprint diameter
(which was different in the two data sets investigated)
or other effects.

Due to the doubts of echo width transferability, a method to
normalize echo width is suggested. Weak, low amplitude echoes
typically lead to a poor determination of echo width. Thus only
stronger echoes (larger amplitude) are used for deriving the
echo width normalization parameters.
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Assuming that each data set contains some bright, flat surfaces
(orthogonal to the incident Lidar signal), a minimum echo
width, EW,i,, was chosen based on single echoes (i.e. extended
targets) of high amplitude and narrow width. A maximum echo
width, EW,.,, was chosen based on the assumption that in each
data set tree crowns can be found. Those cause large echo
width. Thus, strong, first-of-many echoes with a large width
were chosen for a maximum echo width. One way to find
specific values of EWy;, and EW, is to use quantiles of the
distribution of echo width and amplitude. Using quantiles is
suggested because of their robust stochastic properties.

The normalized value of EW for the two datasets can then be
computed using:

EW - EW _ 2

NorEW = ——— ™
EW . —EW .

It is noted that this can lead to negative normalized EW, which
may be left as they are or set to zero. Also values larger than 1
can appear, e.g. for very wide echoes not considered in the
normalization due to low amplitude.

A different method to normalize EW value is proposed by (Lin,
2015) which used concept of Fuzzy Small membership.

4., RESULT AND DISCUSSION
4.1 Classification results

The thresholds for the classification were set manually, based
on exploratory analysis of the data sets and on expectation of
the objects. This was done for both data sets independently.

The main properties of ER, EW, Sigma0, nDSM, and Density
values for both Eisenstadt and Vienna are summed up in Table
1. From that properties and combining with empirical selection,
the threshold for each parameter was set in the Table 2.

ER [%] EW [ns] Sigma0 [m] nDSM [m] | Density
[pt/m?’ ]
Eisenstadt | 4.2-100 | 0-29 0-19 -1.52-39 | 0-724
Vienna 2.5-100 | .,003-66 0-3474 -1-884 0-63

Table 1. The range of ER, EW, Sigma0 nDSM, Density for
Eisenstadt and Vienna.

Building Tree Water

ER EW nDSM | ER EW Sig.0 | Density
Eisenstadt | >55 <4.7 >3 <60 >4.5 >1 <2
Vienna >55 <9.8 >2 <60 >9.6 >1 <2

Table 2. The threshold values using for decision tree
classification of buildings, trees and water body region for
Eisenstadt and Vienna.

The results were evaluated quantitatively and qualitatively.
Based on the point density characteristic of water region it
produces a good result. All the water bodies in the interested
area are classified. However, some small parts of the study area
where the laser signal could not reach the ground because of
occlusion by high buildings, are misclassified. This could
possibly be improved with the overlap of another strip.

While buildings in general can be classified well, very complex
roof shapes and walls cause difficulties. It was observed that
selecting threshold conservatively the shape of the building is
maintained, while its size is reduced slightly.

The tree class includes high trees but also lower vegetation
(bushes, etc.), also at heights below 3m. Especially for the latter
category EW proofed helpful in distinguishing between
vegetation and building edges and also in identifying single
trees. For very tall trees, Sigma0 and ER allow reliable
detection.
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Figure 2. Urban full-waveform classification in Eisenstadt.
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Figure 3. Urban full-waveform classification in Vienna.

Ground includes all objects such as: roads, grass land, car park,
fields... A further split into artificial and natural ground was
explored but finally not performed. Both Sigma0 and Amplitude
were considered candidates for this separation. Natural ground
tends to have higher Amplitude than artificial ground. However,
while valid locally, no global thresholds could be found in the
data sets studied.
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The final classification results were then assessed based on
Correctness and Completeness (Heipke et al., 1997). Some
buildings, trees and water bodies are digitized manually as
reference data. Comparing the results of the automated
extraction to reference data, an entity classified as an object that
also corresponds to an object in the reference is classified as a
True Positive (TP). A False Negative (FN) is an entity
corresponding to an object in the reference that is classified as
background, and a False Positive (FP) is an entity classified as
an object that does not correspond to an object in the reference.
A True Negative (TN) is an entity belonging to the background
both in the classification and in the reference data.

Figure 4. (a) Ground truth data; (b) classified result; (c)
accuracy assessment

The Completeness and Correction for building, tree, and water
class are given in Table 3. It is also illustrated for one building
in Figure 4. The two main classes of building and tree feature
values above 93%.

Comp Corr Quality
Building 97.3% 96.0% 93.7%
Tree 97.8% 93.9% 92.0%
Water 89.0% 90.7% 81.6%

Table 3. Accuracy assessments of Building, Tree and Water
classes in Eisenstadt region.

4.2 Echo width normalisation

After estimate the threshold values, a comparison of the used
thresholds for both regions is carried out to find which
parameters keep stable through different dataset and which
required to be normalised. As can be seen in the table 2, the
threshold of ER, nDSM, Sigma0 and Density can be applied for
both Eisenstadt and Vienna. In other words, those values can be
transferable between different regions. However, the EW
threshold is notably different. Thus, the normalization
suggested in Sec. 3.4 was applied to evaluate its usability.

The Figure 5 and Figure 8 show the distribution of EW for the
two regions. The ranges of EW are unexpected wide, from
4.003ns to 66.877ns for Vienna, and 0 to 29.000ns for
Eisenstadt, given the emitted pulse width of approx. 4ns.
However, more than 96% of EW values fall in a more narrow
range, from approx. 7ns to 18ns for Vienna, and from approx.
3ns to 10ns for Eisenstadt. This demonstrates the reason for
normalization.

As suggested in Sec. 3.4, the minimum EW, EW,,;,, value is the
5% quantile of single, strong echoes. Strong echoes are those
that have amplitude more than 1% of the highest amplitude
found in the data set. Thus, only 5% of all “strong” echoes have
a shorter EW than this EW,,,. (See Figures 6 and 9). The

maximum EW is chosen as the 99% quantile of EW from the
strongest third of the first-of-many echoes with the highest
amplitude (Figures 7 and 10). The thresholds for normalizing
EW for Eisenstadt and Vienna are summed up in Table 4:

EW
Min Max Mean Std
Eisenstadt | 4.4000 9.1000 4.632 0.295
Vienna 8.9480 16.7190 9.538 0.404

Table 4. The EW thresholds for Eisenstadt and Vienna

Applying the normalization, the threshold for normalized EW in
Eisenstadt and Vienna are presented in Table 5 While the
normalization brings those values closer together (buildings
have normalized EW below 6% and 11% respectively, and trees
have normalized EW above 3% and 9% respectively), they are
not as close together as for the other thresholds (Table 2).

Building Tree

EW EW
Eisenstadt <0.064 >0.027
Vienna <0.106 >0.085

Table 5. Normalized EW thresholds for Eisenstadt and Vienna.

Comp Corr Quality
Building 97.3% 96.9% 94.4%
Tree 93.5% 93.3% 87.6%

Table 6. Accuracy assessments of Building, Tree classes in
Eisenstadt region after Echo Width normalisation.

Another way of evaluating the normalization is to apply the
thresholds on normalized echo width from one dataset for
classifying the other data set. The Eisenstadt values applied to
Vienna led to a result of lower quality, but the Vienna
thresholds applied to Eisenstadt did produce qualitatively a very
similar classification. The completeness and correctness
measures are shown in Table 6 . The loss in completeness and
correctness does not change for the building class and is below
5% for the tree class.

5. CONCLUSION

This study used full-waveform LiDAR data to classify urban
areas, i.e. Eisenstadt and Vienna. Four classes were built: Water
bodies, Buildings, Trees and Ground. The computations were
executed in OPALS, ArcGIS and FugroViewer. Overall, a high
accuracy (>93%) could be achieved.

Full-waveform LiDAR with its additional attributes is an
advanced data to classify urban area. The echo width proofed
valuable in classifying vegetation and buildings reliably. The
other attributes used were Echo Ratio, Sigma0, nDSM, and
Density.

Applying the classification thresholds, i.e. those with
normalized Echo Width, derived for the Vienna dataset to the
Eisenstadt dataset demonstrated that thresholds are, indeed,
transferable between missions, resulting in a minor loss of
accuracy (5%) in comparison to the classification tailored for
the Eisenstadt mission.
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Figure 5. Histogram of echo width value in Eisenstadt region

Figure 8. Histogram of echo width value in Vienna region
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Figure 6. Eisenstadt dataset: Scatterplot of Echo Width versus
Amplitude for single echoes. Echoes with more than 1% of the
highest Amplitude are placed above the red horizontal line. The
vertical line shows the minimum echo width EW,,;;, which is 5%

quantile of the single echoes above the Amplitude threshold.
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Figure 9. Vienna dataset: Scatterplot of Echo Width versus
Amplitude for single echoes. Echoes with more than 1% of the
highest Amplitude are placed above the red horizontal line. The
vertical line shows the minimum echo width EW,;;, which is 5%

quantile of the single echoes above the Amplitude threshold.
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Figure 7. Eisenstadt dataset, Scatterplot of Echo Width versus
Amplitude for the first-of-many echoes. The red horizontal line
separates the weak (66.6%) from the strong echoes (“highest
third”). The vertical line shows the maximum echo width EW .
which is the EW at the 99% quantile of the strong echoes.

Figure 10. Vienna dataset: Scatterplot of Echo Width versus
Amplitude for the first-of-many echoes. The red horizontal line
separates the weak (66.6%) from the strong echoes (“highest
third”). The vertical line shows the maximum echo width EW,5
which is the EW at the 99% quantile of the strong echoes.
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For the two different study areas the threshold applied for Echo
Ratio, Sigma0, and nDSM were the same. Echo Width was
shown to depend on the flight mission parameters. The cause
was not studied, but the footprint size may have influence. It is
noted that using the differential cross section, instead of echo
width would not necessarily change this. The differential cross
section is obtained by deconvolving (Jutzi and Stilla, 2006;
Roncat et al., 2011) the received signal with the emitted pulse
shape (more precisely the system waveform).

A simple model for normalizing echo width was suggested.
Improvements of this model, e.g., choice of minimum and
maximum echo width for normalization, could be investigated,
e.g. histogram matching.
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