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ABSTRACT: 

 

Full-waveform (FWF) LiDAR (Light Detection and Ranging) systems have their advantage in recording the entire backscattered 

signal of each emitted laser pulse compared to conventional airborne discrete-return laser scanner systems. The FWF systems can 

provide point clouds which contain extra attributes like amplitude and echo width, etc. In this study, a FWF data collected in 2010 

for Eisenstadt, a city in the eastern part of Austria was used to classify four main classes: buildings, trees, waterbody and ground by 

employing a decision tree. Point density, echo ratio, echo width, normalised digital surface model and point cloud roughness are the 

main inputs for classification. The accuracy of the final results, correctness and completeness measures, were assessed by 

comparison of the classified output to a knowledge-based labelling of the points. Completeness and correctness between 90% and 

97% was reached, depending on the class. While such results and methods were presented before, we are investigating additionally 

the transferability of the classification method (features, thresholds …) to another urban FWF lidar point cloud. Our conclusions are 

that from the features used, only echo width requires new thresholds. A data-driven adaptation of thresholds is suggested.  

 

 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

Airborne LiDAR has already proven to be a state-of-the-art 

technology for high resolution and highly accurate topographic 

data acquisition with active and direct determination of the 

earth surface elevation (Vosselman and Maas, 2010). Generally, 

two different generations of receiver units exist: discrete echo 

recording systems, which are able to record multiple echoes on-

line and typically sort up to four echoes per laser shot 

(Lemmens, 2009) and full-waveform (FWF) recording systems 

capturing the entire time-dependent variation of the received 

signal power with a defined sampling interval such as 1ns (1 

nanosecond) (Mallet and Bretar, 2009; Wagner et al., 2006). 

With signal processing methods, FWF data provide additional 

information which offers the opportunity to overcome many 

drawbacks of classical multi-echo LiDAR data on reflecting 

characteristics of the objects, which are relevant in urban 

classification. 

 

Airborne LiDAR data have been used in various applications in 

urban environments, particularly aiming at mapping and 

modelling the city landscape in 3D with its artificial land cover 

types such as buildings, power lines, bridges, roads. Moreover, 

as urban environments are active regions with respect to 

alteration in land cover, urban classification plays an important 

role in update changed information (Matikainen et al., 2010). If 

FWF data is available, amplitude, echo width, and the integral 

of the received signal are additional information. Furthermore, a 

higher number of detected echoes has been reported for FWF 

data in comparison to discrete return point clouds. These 

additional attributes were successfully used in classification 

(Alexander et al., 2010). The classification methods applied 

reach from simple decision trees to support vector machines 

(SVM). (Ducic et al., 2006) applied a decision tree based on 

amplitude, pulse width, and the number of pulses attributes of 

full-waveform data in order to distinguish the vegetation points 

and non-vegetation points. (Rutzinger et al., 2008) used a 

decision tree based on the homogeneity of echo width to 

classify points from full-waveform ALS data to detect tall 

vegetation - trees and shrubs. (Mallet et al., 2008) used SVM to 

classify four main classes in urban area (e.g. buildings, 

vegetation, artificial ground, and natural ground). In these 

studies the parameters of the classification (threshold values, 

etc.) are set by expert knowledge or learned from training data. 

Thus, these values are optimal for the investigated data set. 

 

The transferability of classification approaches between 

different full waveform LiDAR data sets has received less 

attention so far (Lin, 2015). The aim of this paper is therefore 

to: 

 demonstrate that high classification accuracy can be 

reached with decision trees, and to 

 study, if this classification approach using the selected 

features and the thresholds can be transferred to 

another data set, and finally to 

 suggest a method to re-compute the echo width 

threshold for different missions acquiring urban full 

waveform point clouds.  

 

In this study, the following attributes are used. 

 echo width: full waveform attribute, describing 

variation of the target along the ranging direction, 

 Sigma0: local smoothness,  

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-422-6



 

 echo ratio: a measure of surface penetration, and  

 nDSM: normalized digital surface model, height 

above ground.  

 

Four main classes are derived for the built up areas of 

Eisenstadt and Vienna: buildings, vegetation, water body, and 

ground. They are classified based on decision tree method using 

OPALS (Pfeifer et al., 2014).  

 

To quantify the transferability of parameter between the 

different regions/data sets, the parameters are applied for the 

Eisenstadt set and then applied to the Vienna set. This indicates 

which parameter is stable for various study areas and which 

need conversion. 

 

2. STUDY AREA AND DATA USED 

2.1 Study area 

Eisenstadt is a town in the south eastern part of Austria.  It is 

characterized by buildings of medium size. The centre of 

Eisenstadt was selected for the analysis located on lat. N 

4750’51”, long. E 1631’5”. 

 

Vienna is the capital of Austria and characterized by old large 

buildings in the centre, but also open park areas and trees along 

a boulevard. The center of study area located on lat. N 

4812’26”, long. E 1621’52”. 

 

2.2 Data 

The full-waveform airborne LiDAR data were available for the 

two mentioned cities. Eisenstadt area was scanned with a Riegl 

LMS-Q560 sensor in April 2010. The resulting point density 

was approximately 8 points/m2 in the non-overlapping areas, 

while the laser-beam footprint was not larger than 60 cm in 

diameter. The Vienna city-center area was scanned with the 

same model of the scanner, in January 2007. The resulting point 

density was 12 points/m2 in the non-overlapping area, and the 

laser-footprint was not larger than 30 cm. The investigated area 

covers 2.5 km2 for Eisenstadt and 1.4 km2 for Vienna. 

 

Both raw full-waveform data sets were processed in the same 

way using the software OPALS and sensor manufacturer 

software. First, Gaussian decomposition (Wagner et al., 2006) 

was applied to extract geometrical (range) and full-waveform 

(amplitude and echo with) attributes per echo. No additional 

information on how echo width was specified (FWHM, 

std.dev.) was available for this research. Then, considering 

additionally the trajectory information (GPS and INS 

information), direct georeferencing was performed for each 

strip. The output of this procedure was strip-wise georeferenced 

point clouds, stored in the OPALS datamanager (ODM) format 

and projected in ETRS89/UTM zone 33N. Each ODM file 

includes point attributes: X-, Y-and Z-coordinate, Echo 

Number, Number of Echoes, Amplitude, Echo Width, and strip 

identifier as the primarily acquired (“measured”) attributes of 

each echo. The ODM does allow storage of freely defined 

attributes at each point and provides spatial access, e.g. used in 

neighborhood queries for computing additional point attributes 

(see below).  

 

Additionally to the LiDAR data, RGB Orthophotos - projected 

in the same coordinate system - were used for visually 

interpretation.  

 

3. METHODOLOGY 

First, a number of attributes is computed for each point, using 

the paradigm of point cloud processing (Otepka et al., 2013). 

From these attributes different images are computed 

(“gridding”) at a pixel size of 1m. A terrain model is derived 

also. Then, a decision tree is applied to classify each pixel into 

one of the four classes: building, vegetation, ground, and water 

body. Image algebra (e.g., morphological operations) is used in 

between to refine the results. The quality of the results is 

assessed using the completeness and the correctness measure.  

 

Mallet et al. (2008) showed that for urban area classification 

from Lidar data a combination of attributes should be used to 

obtain classification results of high quality. In their analysis of 

feature (attribute) importance, it was demonstrated that 

attributes considering the local dispersion of the point cloud, 

attributes describing geometric properties, and the echo width 

of FWF Lidar should be used together. This was used in the 

selection of attributes for the present study.  

 

3.1 DTM creation 

The Digital Terrain Model (DTM) give important geometric 

information about objects in urban area, e.g. object heights, and 

thus, they were directly derived from the LiDAR data. To 

calculate the DTM, first the LiDAR ground points were selected 

by applying the robust filtering algorithm (Kraus and Pfeifer, 

1997; Pfeifer and Mandlburger, 2008) implemented in the 

software SCOP++. Then, the DTM was interpolated from the 

selected ground points using the moving plane interpolation 

implemented in OPALS.  

 

3.2 Attributes for the classification  

Prior to attribute computation in each point, the LiDAR point 

clouds are checked in order to remove erroneous points which 

influenced to the accuracy of further processing steps. The 

relative height of each point above the DTM, nH = z (point)-

z(DTM),  was computed. All points with nH below -1m and 

above > 40m are removed. For the Vienna data set the highest 

buildings are approx. 100m, but also no erroneously high points 

were found in the data. Thus only the lower threshold was 

applied for Vienna. 

 

The value nH defines the attribute nDSM, i.e. normalized 

surface model (object height). The nDSM represents, as written 

above, the height of points above the terrain. In the 

classification it is used to distinguish all the point above the 

terrain such as buildings and vegetation from the ground points. 

 

To distinguish buildings and vegetation points the Echo Ratio 

(Höfle et al., 2009; Rutzinger et al., 2008) is used. The echo 

ratio (ER) is a measure for local transparency and roughness 

and is calculated in the 3D point cloud. The ER is derived for 

each laser point and is defined as follows: 

 

Echo Ratio ER[%] = n3D / n2D * 100.0 (1) 

n3D = Number of points within distance measured in 3D 

(sphere). 

n2D = Number of points within distance measured in 2D 

(unbounded vertical cylinder). 

 

In building and ground, the ER value reach a high number 

(approximately 100%), but for vegetation and permeable object 
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ER < 100%. ER is created by using OpalsEchoRatio module, 

with search radius is 1m, slope-adaptive mode. For the further 

analyses the slope-adaptive ER is aggregated in 1m cells using 

the mean value within each cell. 

 

The attribute Sigma0 is the plane fitting accuracy (std.dev. of 

residuals) for the orthogonal regression plane in the 3D 

neighborhood (ten nearest neighbors) of each point. It is 

measured in meter. Not only the roofs, but also the points on a 

vertical wall are in flat neighborhoods. Echo Ratio and Sigma0 

both represent the dispersion measures. Concerning their value 

they are inverse to each other (vegetation: low ER, high 

Sigma0). What is more, Sigma0 is only considering a spherical 

neighborhood and looks for smooth surfaces, which may also be 

oriented vertically. The ER, on the other hand, considers 

(approximately) the measurement direction of the laser rays 

(vertical cylinder). Those two attributes play an importance role 

in discriminate trees and buildings. Using OpalsGrid module 

with moving least square interpolation the Sigma0 image with 

the grid size of 1m was created. 

 

The Echo Width (EW) represents the range distribution of all 

individual scatterers contributing to one echo. The width 

information of the echo pulse provides information on the 

surface roughness, the slope of the target (especially for large 

footprints), or the depth of a volumetric target. Therefore, the 

echo width is narrow in open terrain areas and increases for 

echoes backscattered from rough surfaces (e.g. canopy, bushes, 

and grasses). Terrain points are typically characterized by small 

echo width and off-terrain points by higher ones. The echo 

width also increases with increasing width of the emitted pulse. 

It is measured in nano seconds. OpalsCell module is used to 

create the EW image with the final gird size of 1m. 

 

The local density of echoes can be used for detecting water 

surfaces. As demonstrated by (Vetter et al., 2009) water areas 

typically feature areas void of detected echoes or very sparse 

returns. It is measured in points per square meter. Density was 

also computed for 1m cells. 

  

The attributes used for classification are thus: nDSM, Echo 

Ratio, Sigma0, Echo Width, and Density. 

 

3.3 Object classification 

First each pixel is classified using the decision tree shown in 

Fig. 1 including the threshold values.  After the first 2 classes, 

water and building (candidates) are extracted, mathematical 

morphology is applied to refine the building results. The pixels 

not classified are then tested for fulfilling the vegetation criteria. 

If they are not in vegetation, they are considered to be ground.   

 

Water is first identified, based on the low point density. As 

mentioned above, water has very low backscatter, and often no 

detected echo.  

 

Building objects are distinguished from other objects by height 

(above 3m) and surface roughness. ER is used to distinguish 

buildings from tree objects. However, with various shapes of 

building roof and some buildings being covered by high trees, 

only ER is not sufficient and would include vegetation in the 

building class. Thus, EW is used to detect only hard surfaces. 

Buildings are contiguous objects and have typically a minimum 

size. This is considered by analysing all the pixels classified as 

buildings so far with mathematical morphology. A closing 

operation is applied first to fill up all small holes inside the 

buildings, and then opening is performed to remove few pixel 

detections (“noise”) from the building set. This also makes the 

outlines of buildings smoother.  

 

 

Figure 1. Decision tree for the classification. 

 

ER, Sigma0 and EW are then used to classify trees. The building 

mask is applied to classify only pixels not classified before. Also 

this result is refined with image morphological operations. 

Finally, all pixels not classified so far are considered ground.  

 

3.4 Echo Width normalisation 

An initial assumption was that the thresholds for the decision 

tree derived for one data set can also be used for the other data 

set. The rational was that:  

 Density is a physical measure (points per square 

meter) and the overall shot density was similar (8 vs. 

10 points per square meter). 

 Height above ground (nDSM) is a measure 

independent of the measurement device and also 

independent of the sampling distance. 

 Echo Ratio is by definition a relative measure and 

should therefore adapt itself to the data distribution.  

 Sigma0 is the local plane fitting accuracy. For data 

sets of similar measurement accuracy (same sensor 

model used for both areas) and similar 

neighbourhoods, both number of neighbours and 

spatial extent, it should deliver comparable values.  

 Echo width obviously depends on the width of the 

emitted pulse (same sensor model used for both data 

sets), but may also depend on the footprint diameter 

(which was different in the two data sets investigated) 

or other effects.  

 

Due to the doubts of echo width transferability, a method to 

normalize echo width is suggested. Weak, low amplitude echoes 

typically lead to a poor determination of echo width. Thus only 

stronger echoes (larger amplitude) are used for deriving the 

echo width normalization parameters.  
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Assuming that each data set contains some bright, flat surfaces 

(orthogonal to the incident Lidar signal), a minimum echo 

width, EWmin, was chosen based on single echoes (i.e. extended 

targets) of high amplitude and narrow width. A maximum echo 

width, EWmax, was chosen based on the assumption that in each 

data set tree crowns can be found. Those cause large echo 

width. Thus, strong, first-of-many echoes with a large width 

were chosen for a maximum echo width. One way to find 

specific values of EWmin and EWmax is to use quantiles of the 

distribution of echo width and amplitude. Using quantiles is 

suggested because of their robust stochastic properties.  

 

The normalized value of EW for the two datasets can then be 

computed using:  

minmax

min

EWEW

EWEW
NorEW




  

(2) 

 

It is noted that this can lead to negative normalized EW, which 

may be left as they are or set to zero. Also values larger than 1 

can appear, e.g. for very wide echoes not considered in the 

normalization due to low amplitude.  

A different method to normalize EW value is proposed by (Lin, 

2015) which used concept of Fuzzy Small membership. 

4. RESULT AND DISCUSSION 

4.1 Classification results 

The thresholds for the classification were set manually, based 

on exploratory analysis of the data sets and on expectation of 

the objects. This was done for both data sets independently.  

 

The main properties of ER, EW, Sigma0, nDSM, and Density 

values for both Eisenstadt and Vienna are summed up in Table 

1. From that properties and combining with empirical selection, 

the threshold for each parameter was set in the Table 2. 

  
 ER [%] EW [ns] Sigma0 [m] nDSM [m] Density 

[pt/m2 ] 

Eisenstadt 4.2-100 0-29 0-19 -1.52 – 39  0-72.4 

Vienna 2.5-100 .,003-66 0-3474 -1 – 884 0-63 

Table 1. The range of ER, EW, Sigma0, nDSM, Density for 

Eisenstadt and Vienna. 

 
 Building Tree Water 

ER EW nDSM ER EW Sig.0 Density 

Eisenstadt >55 <4.7 >3 <60 >4.5 >1 <2 

Vienna >55 <9.8 >2 <60 >9.6 >1 <2 

Table 2. The threshold values using for decision tree 

classification of buildings, trees and water body region for 

Eisenstadt and Vienna. 

 

The results were evaluated quantitatively and qualitatively. 

Based on the point density characteristic of water region it 

produces a good result. All the water bodies in the interested 

area are classified. However, some small parts of the study area 

where the laser signal could not reach the ground because of 

occlusion by high buildings, are misclassified. This could 

possibly be improved with the overlap of another strip. 

 

While buildings in general can be classified well, very complex 

roof shapes and walls cause difficulties. It was observed that 

selecting threshold conservatively the shape of the building is 

maintained, while its size is reduced slightly. 

The tree class includes high trees but also lower vegetation 

(bushes, etc.), also at heights below 3m. Especially for the latter 

category EW proofed helpful in distinguishing between 

vegetation and building edges and also in identifying single 

trees. For very tall trees, Sigma0 and ER allow reliable 

detection.  

 

 
Figure 2. Urban full-waveform classification in Eisenstadt. 

 

 
Figure 3. Urban full-waveform classification in Vienna. 

 

Ground includes all objects such as: roads, grass land, car park, 

fields… A further split into artificial and natural ground was 

explored but finally not performed. Both Sigma0 and Amplitude 

were considered candidates for this separation. Natural ground 

tends to have higher Amplitude than artificial ground. However, 

while valid locally, no global thresholds could be found in the 

data sets studied.  
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The final classification results were then assessed based on 

Correctness and Completeness (Heipke et al., 1997). Some 

buildings, trees and water bodies are digitized manually as 

reference data. Comparing the results of the automated 

extraction to reference data, an entity classified as an object that 

also corresponds to an object in the reference is classified as a 

True Positive (TP). A False Negative (FN) is an entity 

corresponding to an object in the reference that is classified as 

background, and a False Positive (FP) is an entity classified as 

an object that does not correspond to an object in the reference. 

A True Negative (TN) is an entity belonging to the background 

both in the classification and in the reference data. 

 

 
Figure 4. (a) Ground truth data; (b) classified result; (c) 

accuracy assessment 

 

The Completeness and Correction for building, tree, and water 

class are given in Table 3. It is also illustrated for one building 

in Figure 4. The two main classes of building and tree feature 

values above 93%.  

 

 Comp Corr Quality 

Building 97.3% 96.0% 93.7% 

Tree 97.8% 93.9% 92.0% 

Water 89.0% 90.7% 81.6% 

Table 3. Accuracy assessments of Building, Tree and Water 

classes in Eisenstadt region. 

 

4.2 Echo width normalisation  

After estimate the threshold values, a comparison of the used 

thresholds for both regions is carried out to find which 

parameters keep stable through different dataset and which 

required to be normalised. As can be seen in the table 2, the 

threshold of ER, nDSM, Sigma0 and Density can be applied for 

both Eisenstadt and Vienna. In other words, those values can be 

transferable between different regions. However, the EW 

threshold is notably different. Thus, the normalization 

suggested in Sec. 3.4 was applied to evaluate its usability.  

 

The Figure 5 and Figure 8 show the distribution of EW for the 

two regions. The ranges of EW are unexpected wide, from 

4.003ns to 66.877ns for Vienna, and 0 to 29.000ns for 

Eisenstadt, given the emitted pulse width of approx. 4ns. 

However, more than 96% of EW values fall in a more narrow 

range, from approx. 7ns to 18ns for Vienna, and from approx. 

3ns to 10ns for Eisenstadt. This demonstrates the reason for 

normalization.  

 

As suggested in Sec. 3.4, the minimum EW, EWmin , value is the 

5% quantile of single, strong echoes. Strong echoes are those 

that have amplitude more than 1% of the highest amplitude 

found in the data set. Thus, only 5% of all “strong” echoes have 

a shorter EW than this EWmin. (See Figures 6 and 9). The 

maximum EW is chosen as the 99% quantile of EW from the 

strongest third of the first-of-many echoes with the highest 

amplitude (Figures 7 and 10). The thresholds for normalizing 

EW for Eisenstadt and Vienna are summed up in Table 4: 

 

 EW 

Min Max Mean Std 

Eisenstadt 4.4000 9.1000 4.632 0.295 

Vienna 8.9480 16.7190 9.538 0.404 

Table 4. The EW thresholds for Eisenstadt and Vienna 

 

Applying the normalization, the threshold for normalized EW in 

Eisenstadt and Vienna are presented in Table 5 While the 

normalization brings those values closer together (buildings 

have normalized EW below 6% and 11% respectively, and trees 

have normalized EW above 3% and 9% respectively), they are 

not as close together as for the other thresholds (Table 2).  

 
 Building Tree 

EW EW 

Eisenstadt <0.064 >0.027 

Vienna <0.106 >0.085 

Table  5. Normalized EW thresholds for Eisenstadt and Vienna. 

 

 Comp Corr Quality 

Building 97.3% 96.9% 94.4% 

Tree 93.5% 93.3% 87.6% 

Table 6. Accuracy assessments of Building, Tree classes in 

Eisenstadt region after Echo Width normalisation. 

 

Another way of evaluating the normalization is to apply the 

thresholds on normalized echo width from one dataset for 

classifying the other data set. The Eisenstadt values applied to 

Vienna led to a result of lower quality, but the Vienna 

thresholds applied to Eisenstadt did produce qualitatively a very 

similar classification. The completeness and correctness 

measures are shown in Table 6 . The loss in completeness and 

correctness does not change for the building class and is below 

5% for the tree class.  

 

5. CONCLUSION 

 

This study used full-waveform LiDAR data to classify urban 

areas, i.e. Eisenstadt and Vienna. Four classes were built: Water 

bodies, Buildings, Trees and Ground. The computations were 

executed in OPALS, ArcGIS and FugroViewer. Overall, a high 

accuracy (>93%) could be achieved. 

  

Full-waveform LiDAR with its additional attributes is an 

advanced data to classify urban area. The echo width proofed 

valuable in classifying vegetation and buildings reliably. The 

other attributes used were Echo Ratio, Sigma0, nDSM, and 

Density.  

 

Applying the classification thresholds, i.e. those with 

normalized Echo Width, derived for the Vienna dataset to the 

Eisenstadt dataset demonstrated that thresholds are, indeed, 

transferable between missions, resulting in a minor loss of 

accuracy (5%) in comparison to the classification tailored for 

the Eisenstadt mission. 
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Figure 5. Histogram of echo width value in Eisenstadt region 

 

Figure 6. Eisenstadt dataset: Scatterplot of Echo Width versus 

Amplitude for single echoes. Echoes with more than 1% of the 

highest Amplitude are placed above the red horizontal line. The 

vertical line shows the minimum echo width EWmin which is 5% 

quantile of the single echoes above the Amplitude threshold. 

 

 
Figure 7. Eisenstadt dataset, Scatterplot of Echo Width versus 

Amplitude for the first-of-many echoes. The red horizontal line 

separates the weak (66.6%) from the strong echoes (“highest 

third”). The vertical line shows the maximum echo width EWmax 

which is the EW at the 99% quantile of the strong echoes. 

 

Figure 8. Histogram of echo width value in Vienna region 

 

Figure 9. Vienna dataset: Scatterplot of Echo Width versus 

Amplitude for single echoes. Echoes with more than 1% of the 

highest Amplitude are placed above the red horizontal line. The 

vertical line shows the minimum echo width EWmin which is 5% 

quantile of the single echoes above the Amplitude threshold. 

   

 
Figure 10. Vienna dataset: Scatterplot of Echo Width versus 

Amplitude for the first-of-many echoes. The red horizontal line 

separates the weak (66.6%) from the strong echoes (“highest 

third”). The vertical line shows the maximum echo width EWmax 

which is the EW at the 99% quantile of the strong echoes. 
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For the two different study areas the threshold applied for Echo 

Ratio, Sigma0, and nDSM were the same. Echo Width was 

shown to depend on the flight mission parameters. The cause 

was not studied, but the footprint size may have influence. It is 

noted that using the differential cross section, instead of echo 

width would not necessarily change this. The differential cross 

section is obtained by deconvolving (Jutzi and Stilla, 2006; 

Roncat et al., 2011) the received signal with the emitted pulse 

shape (more precisely the system waveform).  

 

A simple model for normalizing echo width was suggested. 

Improvements of this model, e.g., choice of minimum and 

maximum echo width for normalization, could be investigated, 

e.g. histogram matching.  
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