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ABSTRACT: 

 

Tree crown cover (CC) provides means for the continuous land cover characterization of complex tropical landscapes with multiple 

land uses and variable degrees of degradation. It is also a key parameter in the international forest definitions that are basis for 

monitoring global forest cover changes. Recently, airborne laser scanning (ALS) has emerged as a practical method for accurate CC 

mapping, but ALS derived CC estimates have rarely been assessed with field data in the tropics. Here, our objective was to compare 

the various field and ALS based CC estimates across multiple land cover types in the Taita Hills, Kenya. The field data was 

measured from a total of 178 sample plots (0.1 ha) in 2013 and 2014. The most accurate field measurement method, line intersect 

sampling using Cajanus tube, was used in 37 plots. Other methods included CC estimate based on the tree inventory data (144 plots), 

crown relascope (43 plots) and hemispherical photography (30 plots). Three ALS data sets, including two scanners and flying 

heights, were acquired concurrently with the field data collection. According to the results, the first echo cover index (FCI) from 

ALS data had good agreement with the most accurate field based CC estimates (RMSD 7.1% and 2.7% depending on the area and 

scan). The agreement with other field based methods was considerably worse. Furthermore, we observed that ALS cover indices 

were robust between the different scans in the overlapping area. In conclusion, our results suggest that ALS provides a reliable 

method for continuous CC mapping across tropical land cover types although dense shrub layer and tree-like herbaceous plants can 

cause overestimation of CC. 
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1. INTRODUCTION 

Tropical landscapes show often great variation in tree crown 

cover (CC) depending on the land cover type and land use. 

Typically, the moist tropical forests have closed and multi-

layered canopies whereas drier vegetation types such as 

savannah woodlands have low CC. In the natural vegetation 

types, CC can be altered by degradation due to various 

disturbances. Furthermore, the managed land cover types, such 

as croplands and agroforestry systems, can have relatively high 

CC in the tropics (Zomer et al., 2009). 

 

CC is the single most important variable in the various 

definitions of forest, including the definitions of forest and 

other wooded land by Food and Agriculture Organization 

(FAO) of the United Nations (FAO, 2010). Cover of trees is 

also an elementary classifier in FAO Land Cover Classification 

System (LCCS) for natural and semi-natural vegetated areas (Di 

Gregorio, 2005). The monitoring of tropical forest area has 

gained increasing attention because it is needed for the 

implementation of climate change mitigation policies, such as 

United Nations collaborative initiative on Reducing Emissions 

from Deforestation and forest Degradation (REDD) in 

developing countries. 

 

CC is defined as the proportion of ground covered by the 

vertical projection of tree crowns in percentage (Jennings et al., 

1999; Korhonen et al., 2006; Gschwantner et al., 2009). Crown 

is defined by its outer perimeter and hence the small within 

crown gaps are considered to belong to the crown. 

 

CC can be estimated in the field using vertical sighting tubes 

(Korhonen et al., 2006). The accurate measurement of CC is 

very time consuming, and thus several methods have been 

developed to decrease the measurement time. However, the 

alternative methods are usually biased and not necessarily 

applicable for complete range of CC variation. One method is to 

estimate CC based on the tree inventory data 

 

Often CC estimate is needed for the sample plots with basic 

forest inventory data. If tree positions and crown diameters are 

available, it is possible to estimate CC based on these. However, 

the estimate of the crown area can be biased when assuming a 

circular shape. Hemispherical photography (HP) is commonly 

used method for estimating canopy gap fraction (GF) and leaf 

area index (LAI) (Jonckheere et al., 2004). If view zenith angle 

is restricted close to zenith, HP can provide a proxy of CC 

(1−GF). However, images observe within crown gaps and hence 

the CC is underestimated. The additional methods for CC 

estimation include crown relascope (Stenberg et al. 2008), 

which can be used for very rapid CC assessment in sparsely 

stocked areas. Hence, it could be a useful method for CC 

estimation in savannah woodlands and croplands in the tropics. 

 

Field measurements are viable only at sample plot scale and 

remote sensing is needed for mapping. Airborne laser scanning 

(ALS) has become a standard source of high-resolution remote 

sensing data for mapping forest attributes. The laser pulses are 

capable of detecting gaps in forest canopies, and hence offer 

three-dimensional information on canopy structure and sub-
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canopy topography. In addition to being very useful for 

assessing forest attributes, such as tree height and aboveground 

biomass, ALS data has been shown to provide accurate CC 

estimates even without field calibration data (Korhonen et al., 

2011). Several ALS cover indices have been proposed to 

estimate CC, GF and LAI from discrete return ALS data 

(Korhonen and Morsdorf, 2014). Basically, the indices differ in 

terms of considered return types (single, first-of-many, 

intermediate and last-of-many returns) and if they are strictly 

geometrical or take into account return intensity. In all the 

indices, a height threshold needs to be set to separate canopy 

and ground returns. 

 

So far, the agreement of the field and ALS based CC estimates 

has been rarely assessed in the tropics. In this paper, our 

objective was to compare field based CC estimates (vertical 

sighting tube, tree inventory, crown relascope and HP) and ALS 

based CC estimates across multiple land cover types in the Taita 

Hills, Kenya. 

 

2. MATERIAL AND METHODS 

2.1 Study area 

The Taita Hills are located in the northernmost part of the 

Eastern Arc Mountains of Kenya and Tanzania, and cover 

approximately 1000 km2 (Figure 1). The hills rise from the 

lowlands at 600900 m a.s.l. elevation to approximately 2200 m 

a.s.l. The hills are intensively cultivated and much of the 

forested land has been cleared for agriculture (Pellikka et al., 

2009). Some remaining fragments of the indigenous cloud 

forest are restricted to the highest altitudes. In addition to the 

indigenous forest patches, plantations of exotic tree species, 

including eucalyptus (mostly Eucalyptus saligna), pines (Pinus 

spp.), cypress (Cupressus lusitanica) and black wattle (Acacia 

mearnsii) were established in the hills between the 1950s and 

1970s. Mixed stands of indigenous and exotic species are also 

common (Pellikka et al., 2013). In the lower altitudes, the 

landscape is characterized by cultivated areas, open woodlands, 

shrublands and thickets with relatively low CC. Drought 

resistant tree species, such as Commiphora spp. Acacia spp. and 

Albizia amara are typical across the lowlands. Also fruit trees, 

such as mango (Mangifera indica) and cashew (Anacardium 

occidentale) are grown in the area.  

 

 

Figure 1. Location of the study area and sample plots, and 

extent of the three ALS data sets. 

2.2 Field estimates of CC 

We used CC estimates from a total of 177 sample plots (Figure 

1). All the data were collected in January−February 2013 and 

January−February 2014. The circular sample plots had a size of 

0.1 ha (radius = 17.84 m). The plot centres were positioned 

using a Trimble GeoXH GNSS receiver with an external 

antenna (Trimble Zephyr Model 2) mounted on a 2.6 m range 

pole. The positions were measured as long as we stayed in the 

plot. The differential correction was made using a GNSS base 

station located in the town of Wundanyi (Figure 1). The 

position of the base station was determined using Trimble RTX 

post-processing service (http://www.trimblertx.com). 

 

The field data was combined from the several field campaigns 

in different parts of the study area and hence sampling strategy 

and methods of estimating CC varied between the plots. In 2013 

measurements and in 2014 lowland measurements we selected 

sample plots randomly within 1 km2 clusters (ten plots in each 

cluster). In 2014, we sampled additional plots from forest areas 

in order to cover variation in aboveground biomass and tree 

species composition. This sampling was designed subjectively 

based on the canopy height model generated from 2013 ALS 

data and AisaEAGLE imaging spectroscopy data (Schäfer, 

2014; Heiskanen et al., in press). 

 

We used four methods for estimating CC in the field depending 

on the land cover type and tree density. The reference method, 

Cajanus tube with line intersect sampling (Korhonen et al., 

2006), was used in 37 sample plots. CC measurement by 

Cajanus tube is time consuming and hence the number of plots 

was relatively small. However, the measurements covered all 

the land cover types and CC range in the study area. Cajanus 

tube is a vertical sighting tube, which provides an unbiased CC 

estimate if sample size is sufficient (Korhonen et al., 2006). In 

each of the 37 sample plots, we established nine transects 

(length 15.8–35.7 m) with four meter distance starting from the 

plot center point. In each transect, we recorded the starting and 

ending points of the crowns and identified the exact position of 

the crown edge by the Cajanus tube. Trees smaller than 3 m in 

height were not included in CC. Finally, we computed the 

distance that was covered by crowns and divided it by the total 

length of transects to estimate CC. These estimates are called 

hereafter CCCajanus. 

 

In 144 plots, CC was estimated based on tree inventory. The 

method was used in the plots outside forests (croplands, 

agroforestry, woodlands and shrublands), where it was feasible 

to measure position for each tree within the sample plot. The 

position (direction and distance from the plot center) and the 

diameter at breast height (DBH) were measured for all the trees 

having DBH ≥ 10 cm by using a measurement tape and 

precision compass. Furthermore, crown diameter (CD) was 

measured by measurement tape in two perpendicular directions 

for all the trees in 2013 and for at least three trees in 2014 

(minimum, median and maximum DBH). The mean CD was 

predicted for the trees missing CD measurement using linear 

regression. Finally, CC was computed as a percentage of the 

plot area covered by the tree crowns (overlapping crowns were 

counted only once). These estimates are called hereafter CCtrees. 

 

Crown relascope was used in 43 sample plots in the lowlands, 

where tree densities are relatively low. Our crown relascope 

consisted of a 30 cm long and 3.2 cm wide plastic sheet and a 

string, the length of which was adjusted according to the crown 

basal area factor (CBAF) (Stenberg et al., 2008). Two CBAFs 
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were tested: 100 and 200. When CBAF is 100 (200), each 

tallied tree corresponds to 1% (2%) increase in CC. These 

estimates are called hereafter CCcr1 and CCcr2, respectively. 

 

Furthermore, CC was estimated by HP for 30 plots. The 

majority of these plots were located in indigenous forests, but 

some plots were established in plantations (pine, cypress, 

eucalyptus and black wattle). We used Nikon D5000 camera 

and Sigma 4.5 mm 1:2.8 DC HSM fisheye lens. The lens was 

mounted on a tripod and levelled to the height of 1.3 m. The 

number of camera positions per plot varied between five and 

eight. In the case of five positions, the images were taken from 

the center and 9 m to each cardinal direction. In the case of 

eight positions, the images were taken from 3 m and 9 m 

distance to each cardinal direction. In order to determine the 

exposure setting, we followed the histogram method of 

Beckschäfer et al. (2013). The image processing included the 

classification of images to the canopy and sky pixels using the 

blue band and automatic thresholding algorithm (Nobis and 

Hunziker, 2005). If the thresholding resulted in clear 

classification errors according to the visual assessment, we used 

either algorithm of Ridler and Calvard (1978) or determined 

threshold manually. After the classification, we computed CC 

for each image as a percentage of canopy pixels in the 0–15° 

zenith angle range and averaged all the measurements in the 

plot for the plot-wise CC. These estimates are called hereafter 

CCHP. 

 

2.3 ALS data 

We used three discrete return ALS data sets that covered 

different parts of the study area (Figure 1). The first scan 

(ALS1) was made 4−5 February 2013 and covered 10 km × 10 

km area in the highest parts of the hills. The second scan 

(ALS2) was made 17 January 2014 and covered 150 km2 in the 

lowlands. The third scan (ALS3) was made 4 February 2014 

and covered 330 km2, and partly overlapped with the first scan. 

In the first two scans, the sensor was Optech ALTM 3100 and 

in the third scan Leica ALS60. In the first scan, the flying 

height was relatively low and targeted pulse density relatively 

high in comparison to the 2014 scans. Further details are given 

in Table 1. The number of sample plots measured by each 

method and covered by the different ALS scans are summarized 

in Table 2. 

 

All the ALS data sets were pre-processed by the data vendors 

(Topscan Gmbh, Ramani Geosystems) and delivered as 

georeferenced point clouds in UTM/WGS84 coordinate system 

with ellipsoidal heights. Ground returns in ALS1 and ALS2 

data sets were filtered by the vendor using Terrascan software 

(Terrasolid Oy). Then, we used ground classified returns of 

ALS1 and ALS2 to produce digital elevation model (DEM) at 1 

m cell size. 

 

2.4 ALS based CC estimates 

We extracted ALS data for the sample plots using several radii 

depending on the field measurement method. First, we extracted 

returns using 17.84 m radius corresponding to the area of 0.1 ha 

sample plot. Furthermore, in the crown relascope plots, we 

extracted returns for radius depending on the mean CD in the 

sample plot. The maximum radius (r) within which a tree crown 

is still tallied was computed as: 

 

 

 

Parameter ALS1 ALS2 ALS3 

Date 4−5 Feb 

2013 

17 Jan 

2014 

4 Feb 

2014 

Sensor Optech 

ALTM 

3100 

Optech 

ALTM 

3100 

Leica 

ALS60 

Mean range (m) 760 1240 1460 

Pulse rate (kHz) 100 70 58 

Scan rate (Hz) 36 37 66 

Scan angle (°) ±16 ±18 ±16 

Pulse density 

(pulses m−2) 

9.6 2.9 3.0 

Return density 

(returns m−2) 

11.4 3.3 3.4 

Beam divergence at 

1/e2 (mrad) 

0.3 0.3 0.22 

Footprint diameter 

(cm) 

23 37 32 

Table 1. Survey and sensor specifications for 2013 and 2014 

scans. All sensors recorded a maximum of four 

returns per pulse. 

 

Method ALS1 ALS2 ALS3 Total 

Cajanus tube 23 14 17 37 

Tree inventory 83 61 66 144 

Crown relascope  43  43 

HP 30  21 30 

Table 2. The number of sample plots measured by the different 

method and covered by different ALS scans. 

 

 

                 
CBAF

50CD
r   (1) 

 

where CD = mean CD in the sample plot 

 CBAF = crown basal area factor (100 or 200) 

 

Finally, we extracted returns also for larger fixed radii of 25 m 

in the plots measured by HP because of the non-zero view 

zenith angle. 

 

When extracting ALS data for the sample plots, we also 

normalized return heights to the heights from the ground level 

by using DEM. Furthermore, as some plots were covered by 

several flight lines, we removed overlap between the adjacent 

flight lines based on minimum scan angle using lasoverage tool 

in LAStools software (rapidlasso GmbH). This was done in 

order to minimize bias in the ALS based CC estimates due to 

the scan angle (Korhonen et al., 2011). 

 

Then, we computed two ALS cover indices for the sample plots. 

First return cover index (FCI) (e.g., Solberg et al., 2006) has 

been found to be a good proxy of CC and relatively robust 

index between sensors and scans (Korhonen et al., 2011; 

Korhonen and Morsdorf, 2014). However, indices that 

incorporate intermediate and last returns, such as all return 

cover index (ACI) (e.g., Morsdorf et al., 2006) have been 

shown to provide better estimates of canopy GF, because they 

include information concerning both between crown and within 

crown canopy gaps (Korhonen et al., 2011). FCI and ACI were 

computed as: 
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where  Singlecanopy = single return from canopy 

 Firstcanopy = first return from canopy 

 Singleall = any single return 

 Firstall = any first return 

 Allcanopy = any return from canopy 

 All = any return (i.e. single, first, intermediate of last) 

 

In the computation of ALS cover indices, canopy refers to the 

returns above a given height threshold that separates canopy 

returns from the understory and ground returns. Here, we 

computed indices using height thresholds of 3, 4 and 5 m. 

 

2.5 Analysis 

The best agreement with the field and ALS based CC (i.e. radii 

and height thresholds) was searched for each field measurement 

method. The agreement between the CC estimates was assessed 

using root mean square difference (RMSD) and average 

difference (AD): 
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where  yi = field based CC estimate 

 ŷi = ALS based CC estimate 

 

3. RESULTS 

First, we compared CCCajanus and cover indices from ALS2 and 

ALS3 scans. ALS1 was not considered in this comparison as it 

was acquired in 2013 and there was one year difference with 

regard to the field measurements made in 2014. Furthermore, 

ALS covers approximately the same plots as ALS3 scan (Figure 

1). CCCajanus showed good agreement with FCI and AD were 

small (Figure 2a, Table 3). In the indigenous forest plots, 

CCCajanus was 100% or close to it, which describes the closed 

and multi-layered canopies in those forests. The optimal height 

threshold to separate canopy returns was different between the 

areas and scans. In the lowland areas (ALS2), 3 m height 

threshold provided the best agreement but in the hills 5 m was 

the best (ALS3). FCI provided better agreement with CCCajanus 

than ACI, which underestimated CCCajanus in the plots of high 

canopy density where multiple returns were produced (Figure 

2b, Table 3). 

 
Figure 2. (a) FCI and (b) ACI against CCCajanus. 

 

Scan Index HT RMSD AD 

ALS2 FCI 3 m 7.1% 1.3% 

ALS2 ACI 3 m 10.8% 5.2% 

ALS3 FCI 5 m 2.7% 0.1% 

ALS3 ACI 3 m 6.4% 4.6% 

Table 3. Summary of the comparison between CCCajanus, and 

ALS cover indices. HT = height threshold for 

separating canopy and ground returns. 

 

Next, we compared CCtrees and FCI from ALS1 and ALS2 

scans, which corresponded to the years when tree inventories 

were made (Figure 3). Only FCI was tested because it showed 

the best agreement with CCCajanus, which we considered the most 

accurate method for CC estimation. In general, CCtrees had good 

agreement with FCI until 20%. However, the values larger than 

20% were underestimated in CCtrees and AD were negative. The 

height threshold of 5 m was the best for ALS1 (hills) and 4 m 

for ALS2 (lowlands). 

 

Next, we compared crown relascope measurements and FCI 

from ALS2 because those measurements were available only 

from the lowland area. CCcr1 and CCcr2 rarely exceeded 20% 

although FCI values were greater than that (Figure 4). The 

agreement was somewhat better for CCcr2. The mean CD had a 

range of 3.514.0 m (mean 7.0 m). Furthermore, the radii for 

CCcr1 had a range of 17.570.2 m (mean 34.8 m) and CCcr2 

12.449.6 m (mean 24.6 m). The height threshold of 3 m was 

used as it gave the best agreement between CCCajanus and FCI in 

this area (Table 3). However, we noted that increasing the 

height threshold from 3 m to 5 m decreased RMSD and AD but 

small CC were typically underestimated by FCI.  
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Figure 3. FCI from (a) ALS1 (5 m height threshold) and (b) 

ALS2 (4 m height threshold) against CCtrees. 

 

 

 

Figure 4. FCI against (a) CCcr1 (CBAF = 100) and (b) CCcr2 

(CBAF = 200). Height threshold = 3 m. 

 

Figure. 5. Comparison of CCHP and (a) FCI from ALS1, (b) FCI 

from ALS3, (c) ACI from ALS1 and (d) ACI from 

ALS3. 

 

Next, we compared CCHP and ALS cover indices. In contrast to 

the other field based CC estimates, CCHP were more closely 

related to ACI than FCI (Figure 5). As CCHP measurements 

were made in the indigenous forests and exotic plantations, 

CCHP was in general high. There was lots of variation in the 

lower range of the values, probably due to insufficient number 

of photo positions to estimate CCHP accurately in those plots. 

The larger 25 m plot radius and 3 m height threshold provided 

the best agreement. 

 

Finally, we compared FCI and ACI in the overlapping plots of 

ALS1 and ALS3 scans using 3 m height threshold (Figure 6). 

Both indices showed good agreement across the complete range 

of FCI and ACI although FCI had somewhat smaller AD. 

Furthermore, in the plots with the greatest CC, ALS3 had larger 

values of ACI than ALS1. 

 

4. DISCUSSION 

Reliable CC maps would be useful for the land cover 

characterization of complex tropical landscapes. In this study, 

we compared several field and ALS based CC estimates across 

multiple tropical land cover types. 

 

FCI based on single and first returns had good agreement with 

CCCajanus, which is often used as a reference method in the 

methodological comparisons (Korhonen et al., 2006; Stenberg 

et al., 2008). Good agreement between CCCajanus and FCI is in 

line with the previous results from the boreal forests (Korhonen 

et al., 2011). As our data covered the complete range of CC and 

all the main land cover types and land uses, the results suggest 

that FCI provides a reliable mapping of CC for land cover 

characterization and forest area delineation also in the tropical 

areas.  
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Figure 6. Comparison of (a) FCI and (b) ACI based on ALS1 

and ALS3 data sets. Positive AD indicates that 

ALS1 shows on average smaller values. 

 

The other field based methods showed more considerable 

average differences when compared to FCI. CCtrees provided 

rather good agreement with FCI in relatively when CC < 20%. 

However, CCtrees was smaller than FCI in the higher values. In 

the field inventory trees were included if DBH ≥ 10 cm. 

Therefore, the shrubs that had DBH < 10 cm and height greater 

than height threshold were included in ALS based CC but not in 

the field estimates. Furthermore, tree-like herbaceous plants, 

such as bananas, were not mapped in the field. This explains 

large differences in CC in some of the plots where bananas were 

abundant (i.e. large FCI but very small CCtrees). Also, the best 

height threshold for CCtrees varied between the hills and the 

lowlands. The differing height-diameter relationship between 

the areas, and differences in the density of shrubs and small 

trees could affect the best height threshold. 

 

Crown relascope has potential for the fast estimation of CC in 

the areas of low stem density, such as tropical woodlands and 

croplands, but the agreement with FCI was weak. In some of the 

plots, FCI was considerably higher, which is due to dense shrub 

cover in some of the plots similar to CCtrees. Furthermore, 

because the radii to include trees were rather large because of 

large crowns (i.e. mean CD), it was difficult to see if crowns 

were overlapping in the denser plots. Therefore, larger CBAF 

could be considered in the future studies. It should also be 

noted that fixed and variable radius plots are not directly 

comparable, even if the radius is set separately for each plot 

based on the CD. 

  

We also demonstrated that CCHP has better agreement with ACI, 

which considers all returns types. The same has been observed 

with GF and LAI in the boreal forests (Korhonen et al., 2011) 

and in this study area (Heiskanen et al., in press). In the dense 

forests, CC can be estimated accurately using relatively few 

photo positions (images) but more images are needed if CC is 

close to 50% (Korhonen and Heikkinen, 2009). In our 

comparison, this was visible as greater scatter in the lower CCHP 

values. 

 

In general, ALS cover indices that include also intermediate and 

last returns, such as ACI, are more sensitive to changes in 

scanning parameters than those using only single and first 

returns, such as FCI (Korhonen and Morsdorf, 2014). Although 

FCI can also change between different scanners, it should be 

fairly reliable as long as the scan angle is < 15°. In this study, 

the differences between indices were small in the overlapping 

area although although ALS1 and ALS3 were acquired with 

different sensors and from different flying heights. Some 

differences were observed in ACI in the closed forest stands 

(Heiskanen et al., in press). 

 

In conclusion, the good agreement between FCI and CCCajanus 

highlights the potential of ALS for CC mapping in the tropical 

landscapes. ALS data provides CC estimates with unambiguous 

height definition. Hence, height based separation between trees 

and shrubs in the field should provide better correspondence 

between the field and ALS data than DBH based separation. 

Furthermore, it should be noted that tree-like herbaceous plants 

are included in ALS based indices and cause overestimation of 

CC when present.  
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