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ABSTRACT:

Tree crown cover (CC) provides means for the continuous land cover characterization of complex tropical landscapes with multiple
land uses and variable degrees of degradation. It is also a key parameter in the international forest definitions that are basis for
monitoring global forest cover changes. Recently, airborne laser scanning (ALS) has emerged as a practical method for accurate CC
mapping, but ALS derived CC estimates have rarely been assessed with field data in the tropics. Here, our objective was to compare
the various field and ALS based CC estimates across multiple land cover types in the Taita Hills, Kenya. The field data was
measured from a total of 178 sample plots (0.1 ha) in 2013 and 2014. The most accurate field measurement method, line intersect
sampling using Cajanus tube, was used in 37 plots. Other methods included CC estimate based on the tree inventory data (144 plots),
crown relascope (43 plots) and hemispherical photography (30 plots). Three ALS data sets, including two scanners and flying
heights, were acquired concurrently with the field data collection. According to the results, the first echo cover index (FCI) from
ALS data had good agreement with the most accurate field based CC estimates (RMSD 7.1% and 2.7% depending on the area and
scan). The agreement with other field based methods was considerably worse. Furthermore, we observed that ALS cover indices
were robust between the different scans in the overlapping area. In conclusion, our results suggest that ALS provides a reliable
method for continuous CC mapping across tropical land cover types although dense shrub layer and tree-like herbaceous plants can

cause overestimation of CC.

1. INTRODUCTION

Tropical landscapes show often great variation in tree crown
cover (CC) depending on the land cover type and land use.
Typically, the moist tropical forests have closed and multi-
layered canopies whereas drier vegetation types such as
savannah woodlands have low CC. In the natural vegetation
types, CC can be altered by degradation due to various
disturbances. Furthermore, the managed land cover types, such
as croplands and agroforestry systems, can have relatively high
CC in the tropics (Zomer et al., 2009).

CC is the single most important variable in the various
definitions of forest, including the definitions of forest and
other wooded land by Food and Agriculture Organization
(FAO) of the United Nations (FAO, 2010). Cover of trees is
also an elementary classifier in FAO Land Cover Classification
System (LCCS) for natural and semi-natural vegetated areas (Di
Gregorio, 2005). The monitoring of tropical forest area has
gained increasing attention because it is needed for the
implementation of climate change mitigation policies, such as
United Nations collaborative initiative on Reducing Emissions
from Deforestation and forest Degradation (REDD) in
developing countries.

CC is defined as the proportion of ground covered by the
vertical projection of tree crowns in percentage (Jennings et al.,
1999; Korhonen et al., 2006; Gschwantner et al., 2009). Crown
is defined by its outer perimeter and hence the small within
crown gaps are considered to belong to the crown.
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CC can be estimated in the field using vertical sighting tubes
(Korhonen et al., 2006). The accurate measurement of CC is
very time consuming, and thus several methods have been
developed to decrease the measurement time. However, the
alternative methods are usually biased and not necessarily
applicable for complete range of CC variation. One method is to
estimate CC based on the tree inventory data

Often CC estimate is needed for the sample plots with basic
forest inventory data. If tree positions and crown diameters are
available, it is possible to estimate CC based on these. However,
the estimate of the crown area can be biased when assuming a
circular shape. Hemispherical photography (HP) is commonly
used method for estimating canopy gap fraction (GF) and leaf
area index (LAI) (Jonckheere et al., 2004). If view zenith angle
is restricted close to zenith, HP can provide a proxy of CC
(1-GF). However, images observe within crown gaps and hence
the CC is underestimated. The additional methods for CC
estimation include crown relascope (Stenberg et al. 2008),
which can be used for very rapid CC assessment in sparsely
stocked areas. Hence, it could be a useful method for CC
estimation in savannah woodlands and croplands in the tropics.

Field measurements are viable only at sample plot scale and
remote sensing is needed for mapping. Airborne laser scanning
(ALS) has become a standard source of high-resolution remote
sensing data for mapping forest attributes. The laser pulses are
capable of detecting gaps in forest canopies, and hence offer
three-dimensional information on canopy structure and sub-
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canopy topography. In addition to being very useful for
assessing forest attributes, such as tree height and aboveground
biomass, ALS data has been shown to provide accurate CC
estimates even without field calibration data (Korhonen et al.,
2011). Several ALS cover indices have been proposed to
estimate CC, GF and LAl from discrete return ALS data
(Korhonen and Morsdorf, 2014). Basically, the indices differ in
terms of considered return types (single, first-of-many,
intermediate and last-of-many returns) and if they are strictly
geometrical or take into account return intensity. In all the
indices, a height threshold needs to be set to separate canopy
and ground returns.

So far, the agreement of the field and ALS based CC estimates
has been rarely assessed in the tropics. In this paper, our
objective was to compare field based CC estimates (vertical
sighting tube, tree inventory, crown relascope and HP) and ALS
based CC estimates across multiple land cover types in the Taita
Hills, Kenya.

2. MATERIAL AND METHODS
2.1 Study area

The Taita Hills are located in the northernmost part of the
Eastern Arc Mountains of Kenya and Tanzania, and cover
approximately 1000 km? (Figure 1). The hills rise from the
lowlands at 600-900 m a.s.l. elevation to approximately 2200 m
a.s.l. The hills are intensively cultivated and much of the
forested land has been cleared for agriculture (Pellikka et al.,
2009). Some remaining fragments of the indigenous cloud
forest are restricted to the highest altitudes. In addition to the
indigenous forest patches, plantations of exotic tree species,
including eucalyptus (mostly Eucalyptus saligna), pines (Pinus
spp.), cypress (Cupressus lusitanica) and black wattle (Acacia
mearnsii) were established in the hills between the 1950s and
1970s. Mixed stands of indigenous and exotic species are also
common (Pellikka et al., 2013). In the lower altitudes, the
landscape is characterized by cultivated areas, open woodlands,
shrublands and thickets with relatively low CC. Drought
resistant tree species, such as Commiphora spp. Acacia spp. and
Albizia amara are typical across the lowlands. Also fruit trees,
such as mango (Mangifera indica) and cashew (Anacardium
occidentale) are grown in the area.
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Figure 1. Location of the study area and sample plots, and
extent of the three ALS data sets.

2.2 Field estimates of CC

We used CC estimates from a total of 177 sample plots (Figure
1). All the data were collected in January—February 2013 and
January—February 2014. The circular sample plots had a size of
0.1 ha (radius = 17.84 m). The plot centres were positioned
using a Trimble GeoXH GNSS receiver with an external
antenna (Trimble Zephyr Model 2) mounted on a 2.6 m range
pole. The positions were measured as long as we stayed in the
plot. The differential correction was made using a GNSS base
station located in the town of Wundanyi (Figure 1). The
position of the base station was determined using Trimble RTX
post-processing service (http://www.trimblertx.com).

The field data was combined from the several field campaigns
in different parts of the study area and hence sampling strategy
and methods of estimating CC varied between the plots. In 2013
measurements and in 2014 lowland measurements we selected
sample plots randomly within 1 km? clusters (ten plots in each
cluster). In 2014, we sampled additional plots from forest areas
in order to cover variation in aboveground biomass and tree
species composition. This sampling was designed subjectively
based on the canopy height model generated from 2013 ALS
data and AisaEAGLE imaging spectroscopy data (Schafer,
2014; Heiskanen et al., in press).

We used four methods for estimating CC in the field depending
on the land cover type and tree density. The reference method,
Cajanus tube with line intersect sampling (Korhonen et al.,
2006), was used in 37 sample plots. CC measurement by
Cajanus tube is time consuming and hence the number of plots
was relatively small. However, the measurements covered all
the land cover types and CC range in the study area. Cajanus
tube is a vertical sighting tube, which provides an unbiased CC
estimate if sample size is sufficient (Korhonen et al., 2006). In
each of the 37 sample plots, we established nine transects
(length 15.8-35.7 m) with four meter distance starting from the
plot center point. In each transect, we recorded the starting and
ending points of the crowns and identified the exact position of
the crown edge by the Cajanus tube. Trees smaller than 3 m in
height were not included in CC. Finally, we computed the
distance that was covered by crowns and divided it by the total
length of transects to estimate CC. These estimates are called
hereafter CCcajanus.

In 144 plots, CC was estimated based on tree inventory. The
method was used in the plots outside forests (croplands,
agroforestry, woodlands and shrublands), where it was feasible
to measure position for each tree within the sample plot. The
position (direction and distance from the plot center) and the
diameter at breast height (DBH) were measured for all the trees
having DBH > 10 cm by using a measurement tape and
precision compass. Furthermore, crown diameter (CD) was
measured by measurement tape in two perpendicular directions
for all the trees in 2013 and for at least three trees in 2014
(minimum, median and maximum DBH). The mean CD was
predicted for the trees missing CD measurement using linear
regression. Finally, CC was computed as a percentage of the
plot area covered by the tree crowns (overlapping crowns were
counted only once). These estimates are called hereafter CCirees.

Crown relascope was used in 43 sample plots in the lowlands,
where tree densities are relatively low. Our crown relascope
consisted of a 30 cm long and 3.2 cm wide plastic sheet and a
string, the length of which was adjusted according to the crown
basal area factor (CBAF) (Stenberg et al., 2008). Two CBAFs
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were tested: 100 and 200. When CBAF is 100 (200), each
tallied tree corresponds to 1% (2%) increase in CC. These
estimates are called hereafter CCcr1 and CCer2, respectively.

Furthermore, CC was estimated by HP for 30 plots. The
majority of these plots were located in indigenous forests, but
some plots were established in plantations (pine, cypress,
eucalyptus and black wattle). We used Nikon D5000 camera
and Sigma 4.5 mm 1:2.8 DC HSM fisheye lens. The lens was
mounted on a tripod and levelled to the height of 1.3 m. The
number of camera positions per plot varied between five and
eight. In the case of five positions, the images were taken from
the center and 9 m to each cardinal direction. In the case of
eight positions, the images were taken from 3 m and 9 m
distance to each cardinal direction. In order to determine the
exposure setting, we followed the histogram method of
Beckschéfer et al. (2013). The image processing included the
classification of images to the canopy and sky pixels using the
blue band and automatic thresholding algorithm (Nobis and
Hunziker, 2005). If the thresholding resulted in clear
classification errors according to the visual assessment, we used
either algorithm of Ridler and Calvard (1978) or determined
threshold manually. After the classification, we computed CC
for each image as a percentage of canopy pixels in the 0-15°
zenith angle range and averaged all the measurements in the
plot for the plot-wise CC. These estimates are called hereafter
CChp.

2.3 ALS data

We used three discrete return ALS data sets that covered
different parts of the study area (Figure 1). The first scan
(ALS1) was made 4—5 February 2013 and covered 10 km x 10
km area in the highest parts of the hills. The second scan
(ALS2) was made 17 January 2014 and covered 150 km? in the
lowlands. The third scan (ALS3) was made 4 February 2014
and covered 330 km?, and partly overlapped with the first scan.
In the first two scans, the sensor was Optech ALTM 3100 and
in the third scan Leica ALS60. In the first scan, the flying
height was relatively low and targeted pulse density relatively
high in comparison to the 2014 scans. Further details are given
in Table 1. The number of sample plots measured by each
method and covered by the different ALS scans are summarized
in Table 2.

All the ALS data sets were pre-processed by the data vendors
(Topscan Gmbh, Ramani Geosystems) and delivered as
georeferenced point clouds in UTM/WGS84 coordinate system
with ellipsoidal heights. Ground returns in ALS1 and ALS2
data sets were filtered by the vendor using Terrascan software
(Terrasolid Oy). Then, we used ground classified returns of
ALS1 and ALS2 to produce digital elevation model (DEM) at 1
m cell size.

2.4 ALS based CC estimates

We extracted ALS data for the sample plots using several radii
depending on the field measurement method. First, we extracted
returns using 17.84 m radius corresponding to the area of 0.1 ha
sample plot. Furthermore, in the crown relascope plots, we
extracted returns for radius depending on the mean CD in the
sample plot. The maximum radius (r) within which a tree crown
is still tallied was computed as:

Parameter ALS1 ALS2 ALS3

Date 4-5 Feb 17 Jan 4 Feb
2013 2014 2014

Sensor Optech Optech Leica

ALTM ALTM ALS60

3100 3100

Mean range (m) 760 1240 1460

Pulse rate (kHz) 100 70 58

Scan rate (Hz) 36 37 66

Scan angle (°) +16 +18 +16

Pulse density 9.6 29 3.0

(pulses m™2)

Return density 11.4 3.3 34

(returns m2)

Beam divergence at 0.3 0.3 0.22

1/e? (mrad)

Footprint diameter 23 37 32

(cm)

Table 1. Survey and sensor specifications for 2013 and 2014
scans. All sensors recorded a maximum of four
returns per pulse.

Method ALS1 | ALS2 | ALS3 | Total
Cajanus tube 23 14 17 37
Tree inventory 83 61 66 144
Crown relascope 43 43
HP 30 21 30

Table 2. The number of sample plots measured by the different
method and covered by different ALS scans.

50CD

JCBAF

CD =mean CD in the sample plot
CBAF = crown basal area factor (100 or 200)

r=

o))

where

Finally, we extracted returns also for larger fixed radii of 25 m
in the plots measured by HP because of the non-zero view
zenith angle.

When extracting ALS data for the sample plots, we also
normalized return heights to the heights from the ground level
by using DEM. Furthermore, as some plots were covered by
several flight lines, we removed overlap between the adjacent
flight lines based on minimum scan angle using lasoverage tool
in LAStools software (rapidlasso GmbH). This was done in
order to minimize bias in the ALS based CC estimates due to
the scan angle (Korhonen et al., 2011).

Then, we computed two ALS cover indices for the sample plots.
First return cover index (FCI) (e.g., Solberg et al., 2006) has
been found to be a good proxy of CC and relatively robust
index between sensors and scans (Korhonen et al., 2011;
Korhonen and Morsdorf, 2014). However, indices that
incorporate intermediate and last returns, such as all return
cover index (ACI) (e.g., Morsdorf et al., 2006) have been
shown to provide better estimates of canopy GF, because they
include information concerning both between crown and within
crown canopy gaps (Korhonen et al., 2011). FCI and ACI were
computed as:
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where  Singlecanopy = single return from canopy
Firstcanopy = first return from canopy
Singlean = any single return

Firstan = any first return

Allcanopy = any return from canopy

All = any return (i.e. single, first, intermediate of last)

In the computation of ALS cover indices, canopy refers to the
returns above a given height threshold that separates canopy
returns from the understory and ground returns. Here, we
computed indices using height thresholds of 3, 4 and 5 m.

2.5 Analysis

The best agreement with the field and ALS based CC (i.e. radii
and height thresholds) was searched for each field measurement
method. The agreement between the CC estimates was assessed
using root mean square difference (RMSD) and average
difference (AD):

(4)

AD=iL (5)

where i = field based CC estimate

i = ALS based CC estimate

3. RESULTS

First, we compared CCcajanus and cover indices from ALS2 and
ALS3 scans. ALS1 was not considered in this comparison as it
was acquired in 2013 and there was one year difference with
regard to the field measurements made in 2014. Furthermore,
ALS covers approximately the same plots as ALS3 scan (Figure
1). CCcajanus Showed good agreement with FCI and AD were
small (Figure 2a, Table 3). In the indigenous forest plots,
CCeoajanus Was 100% or close to it, which describes the closed
and multi-layered canopies in those forests. The optimal height
threshold to separate canopy returns was different between the
areas and scans. In the lowland areas (ALS2), 3 m height
threshold provided the best agreement but in the hills 5 m was
the best (ALS3). FCI provided better agreement with CCcajanus
than ACI, which underestimated CCcajanus in the plots of high
canopy density where multiple returns were produced (Figure
2b, Table 3).
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Figure 2. (a) FCI and (b) ACI against CCcajanus.

Scan Index HT RMSD AD
ALS2 FCI 3m 7.1% 1.3%
ALS2 ACI 3m 10.8% 5.2%
ALS3 FCI 5m 2.7% 0.1%
ALS3 ACI 3m 6.4% 4.6%

Table 3. Summary of the comparison between CCcajanus, and
ALS cover indices. HT = height threshold for
separating canopy and ground returns.

Next, we compared CCirees and FCI from ALS1 and ALS2
scans, which corresponded to the years when tree inventories
were made (Figure 3). Only FCI was tested because it showed
the best agreement with CCcajanus, Which we considered the most
accurate method for CC estimation. In general, CCrees had good
agreement with FCI until 20%. However, the values larger than
20% were underestimated in CCurees and AD were negative. The
height threshold of 5 m was the best for ALS1 (hills) and 4 m
for ALS2 (lowlands).

Next, we compared crown relascope measurements and FCI
from ALS2 because those measurements were available only
from the lowland area. CCcr1 and CCer2 rarely exceeded 20%
although FCI values were greater than that (Figure 4). The
agreement was somewhat better for CCcr. The mean CD had a
range of 3.5-14.0 m (mean 7.0 m). Furthermore, the radii for
CCcr1 had a range of 17.5-70.2 m (mean 34.8 m) and CCcr2
12.4-49.6 m (mean 24.6 m). The height threshold of 3 m was
used as it gave the best agreement between CCcajanus and FCI in
this area (Table 3). However, we noted that increasing the
height threshold from 3 m to 5 m decreased RMSD and AD but
small CC were typically underestimated by FCI.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-423-1

o
S 4
| (@
o ]
w
£ o
5 ©
£ o
(o] g N o®
O B o 2o,
o =] 8 [s]
o N RMSD 8.3%
o o AD -3.7%
T I T T T T
0 20 40 60 80 100
FCI (%)
o
8 .
| (b)
o ]
w
E.:; % n o [s]
3 o0
g 9 © o g
O o4
Q 1, < Fog
o ° RMSD 7.6%
o o AD -0.3%

| T | | | |
0 20 40 60 80 100

FCI (%)
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Next, we compared CCrp and ALS cover indices. In contrast to
the other field based CC estimates, CCxp were more closely
related to ACI than FCI (Figure 5). As CCup measurements
were made in the indigenous forests and exotic plantations,
CCwxp was in general high. There was lots of variation in the
lower range of the values, probably due to insufficient number
of photo positions to estimate CCrp accurately in those plots.
The larger 25 m plot radius and 3 m height threshold provided
the best agreement.

Finally, we compared FCI and ACI in the overlapping plots of
ALS1 and ALS3 scans using 3 m height threshold (Figure 6).
Both indices showed good agreement across the complete range
of FCI and ACI although FCI had somewhat smaller AD.
Furthermore, in the plots with the greatest CC, ALS3 had larger
values of ACI than ALS1.

4. DISCUSSION

Reliable CC maps would be useful for the land cover
characterization of complex tropical landscapes. In this study,
we compared several field and ALS based CC estimates across
multiple tropical land cover types.

FCI based on single and first returns had good agreement with
CCecajanus, Which is often used as a reference method in the
methodological comparisons (Korhonen et al., 2006; Stenberg
et al., 2008). Good agreement between CCcajanus and FCI is in
line with the previous results from the boreal forests (Korhonen
et al., 2011). As our data covered the complete range of CC and
all the main land cover types and land uses, the results suggest
that FCI provides a reliable mapping of CC for land cover
characterization and forest area delineation also in the tropical
areas.
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Figure 6. Comparison of (a) FCI and (b) ACI based on ALS1
and ALS3 data sets. Positive AD indicates that
ALS1 shows on average smaller values.

The other field based methods showed more considerable
average differences when compared to FCI. CCirees provided
rather good agreement with FCI in relatively when CC < 20%.
However, CCirees Was smaller than FCI in the higher values. In
the field inventory trees were included if DBH > 10 cm.
Therefore, the shrubs that had DBH < 10 cm and height greater
than height threshold were included in ALS based CC but not in
the field estimates. Furthermore, tree-like herbaceous plants,
such as bananas, were not mapped in the field. This explains
large differences in CC in some of the plots where bananas were
abundant (i.e. large FCI but very small CCurees). Also, the best
height threshold for CCurees varied between the hills and the
lowlands. The differing height-diameter relationship between
the areas, and differences in the density of shrubs and small
trees could affect the best height threshold.

Crown relascope has potential for the fast estimation of CC in
the areas of low stem density, such as tropical woodlands and
croplands, but the agreement with FCI was weak. In some of the
plots, FCI was considerably higher, which is due to dense shrub
cover in some of the plots similar to CCires. Furthermore,
because the radii to include trees were rather large because of
large crowns (i.e. mean CD), it was difficult to see if crowns
were overlapping in the denser plots. Therefore, larger CBAF
could be considered in the future studies. It should also be
noted that fixed and variable radius plots are not directly
comparable, even if the radius is set separately for each plot
based on the CD.

We also demonstrated that CChp has better agreement with ACI,
which considers all returns types. The same has been observed
with GF and LAl in the boreal forests (Korhonen et al., 2011)
and in this study area (Heiskanen et al., in press). In the dense

forests, CC can be estimated accurately using relatively few
photo positions (images) but more images are needed if CC is
close to 50% (Korhonen and Heikkinen, 2009). In our
comparison, this was visible as greater scatter in the lower CChp
values.

In general, ALS cover indices that include also intermediate and
last returns, such as ACI, are more sensitive to changes in
scanning parameters than those using only single and first
returns, such as FCI (Korhonen and Morsdorf, 2014). Although
FCI can also change between different scanners, it should be
fairly reliable as long as the scan angle is < 15°. In this study,
the differences between indices were small in the overlapping
area although although ALS1 and ALS3 were acquired with
different sensors and from different flying heights. Some
differences were observed in ACI in the closed forest stands
(Heiskanen et al., in press).

In conclusion, the good agreement between FCI and CCcajanus
highlights the potential of ALS for CC mapping in the tropical
landscapes. ALS data provides CC estimates with unambiguous
height definition. Hence, height based separation between trees
and shrubs in the field should provide better correspondence
between the field and ALS data than DBH based separation.
Furthermore, it should be noted that tree-like herbaceous plants
are included in ALS based indices and cause overestimation of
CC when present.
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