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ABSTRACT:  

 

Urban density is an important factor for several fields, e.g. urban design, planning and land management. Modern remote sensors 

deliver ample information for the estimation of specific urban land classification classes (2D indicators), and the height of urban land 

classification objects (3D indicators) within an Area of Interest (AOI). In this research, two of these indicators, Building Coverage 

Ratio (BCR) and Floor Area Ratio (FAR) are numerically and automatically derived from high-resolution airborne RGB orthophotos 

and LiDAR data. In the pre-processing step the low resolution elevation data are fused with the high resolution optical data through a 

mean-shift based discontinuity preserving smoothing algorithm. The outcome is an improved normalized digital surface model 

(nDSM) is an upsampled elevation data with considerable improvement regarding region filling and “straightness” of elevation 

discontinuities.  In a following step, a Multilayer Feedforward Neural Network (MFNN) is used to classify all pixels of the AOI to 

building or non-building categories. For the total surface of the block and the buildings we consider the number of their pixels and 

the surface of the unit pixel. Comparisons of the automatically derived BCR and FAR indicators with manually derived ones shows 

the applicability and effectiveness of the methodology proposed.   

 

 

 

1. INTRODUCTION 

 

Urban density is an important factor for several fields, e.g. 

urban design, planning and land management. Moreover, 

building density affects the dispersion of atmospheric pollutants 

(Theodoridis and Moussiopoulos, 2000), the access of sunlight 

and solar radiation (Lam, 2000; Miguet and Groleau, 2002; 

Oke,1988; Yu et al., 2009a), the interior temperatures of 

buildings (Mills, 1997), the surface thermal conditions 

(Streutker, 2003). Kubota et al. (2008) investigated the 

relationship between the building density of a residential 

neighborhood and the average wind speed at pedestrian level. 

They found that by increasing the building’s coverage ratio, the 

wind speed decreases.   

The most commonly used indices for quantifying the building 

density at land lot scale are the Building Coverage Ratio (BCR) 

and Floor Area Ratio (FAR).  The BCR is defined as the ratio of 

the building coverage area (i.e. the area of building footprint) to 

the size of land lot (Eq. (1)) 

 

BCR= S/ SL        equation (1) 

 

where S is the building coverage area, and SL is the area of land 

lot. Once the association between building footprints and land 

lots is determined, the BCR for each land lot can be computed 

using Eq. (1). The BCR measures the building density in two-

dimension (2D) space.  

 

The FAR is defined as the ratio of gross building floor area to 

the size of land lot (Eq. (2)) 

  

 

FAR= (∑i (Hi /C) Si)/ SL    equation (2)  

 

where Hi is the height of the ith building, C is the average 

height of each floor and Si is the ith building coverage area. As 

the value of FAR is determined not only by the planimetric 

shape of the building, but also by the vertical distribution of the 

floors in different height, it depicts the three-dimensional (3D) 

building density. Higher FARs tend to indicate more urban 

(dense) construction. 

 

The traditional method to calculate the BCR and FAR 

indicators is to manually survey the area to obtain the heights 

and shapes of all buildings. In the last years, the Light Detection 

and Ranging (LiDAR) technology has efficiently replace 

traditional topographic methods to extract information of urban 

buildings. The surface elevation samples from airborne LIDAR 

are much more accurate, reliable and denser than those from the 

traditional photogrammetric techniques (Paolo Gamba and 

Houshmand, 2000, 2002; Priestnall et al., 2000; Stilla et al., 

2003). The capability of airborne LiDAR in gathering highly 

accurate and densely sampled surface elevation measurements 

over urban areas allows for an accurate delineation of the 

footprints of buildings (Ma, 2005; Yu et al., 2009b; Zhang et 

al., 2006) and reconstruction of the 3D building shapes (Forlani 

et al., 2006; Gamba and Houshmand, 2002; Rottensteiner, 

2003). For the determination of BCR and FAR indicators the 

LIDAR data have been effectively combined and used with 

other data.  Yu et al. (2010) proposed an automated derivation 

of urban building density information using LiDAR data and 

aerial color infrared imagery and an object-based method. 

 

The objective of this work is to propose an automated 

methodology to estimate urban density indicators, namely BCR 

and FAR using LIDAR data and high resolution aerial 

orthophotos.  

This paper is organized into 5 sections. Section 2 describes the 

Data used. Section 3 presents the methodology for the data 
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preprocessing. In Section 4 the BCR and FAR indicators are 

calculated and, finally, in section 5 the conclusion is drawn. 

2. DATA DESCRIPTION  

Our original dataset considers an Area of Interest (AOI) in the 

Kallithea suburb of Athens, Greece. It includes LiDAR data and 

aerial orthophotos in the RGB color space (Fig. 1) LiDAR data 

was acquired by the GeoIntelligence SA over the above area 

and is in the form of a Digital Surface Model (DSM), 

containing relative height information of man-made and natural 

objects rising above the ground at a spatial resolution of 1m and 

vertical (elevation) resolution of 20 cm. The acquisition date is 

2003. A Digital Terrain Model (DTM) acquired by the 

GeoIntelligence SA at a spatial resolution of 2m is also 

available. In addition, orthophotos from color (channels Red, 

Green, Blue) aerial imagery acquired by the National Cadaster 

and Mapping Agency of Greece from the same urban region 

were available. The spatial resolution of orthophotos is 20 cm 

i.e. five and ten times higher resolution than DSM and DTM 

respectively. The acquisition date of the orthophotos is 2007. 

Both, the various resolution and different acquisition dates 

brings an extra challenge to the processing of our dataset 

towards the BCR and FAR estimation.  

 

 

3. PREPROCESSING METHODOLOGY 

The proposed preprocessing methodology consists of the 

following steps 

 

Step1 Generation of nDSM   

Initially a Nearest Neighbor interpolation was performed to 

increase the spatial resolution of DTM to that of the DSM (1m). 

Then, a normalized DSM (nDSM) was computed as the 

difference between DSM and DTM (Haala and Brenner, 1999). 

Thus the net building heights rather than the absolute elevations 

was obtained and it is shown in Fig. 2. 

 

Step2 Mean shift improvement of nDSM  

To upsample the nDSM, we employed a preprocessing 

technique described in Gyftakis et al, (2014) Based on the 

implicit assumption that the optical data can provide the 

necessary information about the significant edges of the scene, 

we fuse the elevation information with a high resolution ortho-

photo color image of the same region. The aim is to use the high 

detail content of the color image as a guide for improving the 

quality of the elevation image. Nevertheless, the optical data 

also contain a great amount of unnecessary noisy edges caused 

by uneven painting of the terraces or objects such as solar 

panels. So, our problem is twofold: (a) to improve the 

significant elevation edges and (b) to reduce height variations, 

caused by noise, in areas with flat color content while ignoring 

small color variations in areas of small elevation variations  

The proposed methodology is autonomous and adaptive. It can 

be described as a two-step approach. First, an initial upsampling 

using the typical nearest neighbor interpolation technique is 

performed on the low resolution elevation data (nDSM) to 

increase its size to the size of the color image.  

Next, in order to improve the quality of the result and eliminate 

the staircase effects of nearest neighbor upsampling near 

elevation discontinuities, we perform a restricted mean shift-

based smoothing that selectively preserves the discontinuities 

on the elevation data.  

To achieve this, we modify the mean shift algorithm that was 

proposed by Comaniciu, and Meer (Comaniciu, and Meer,2002) 

Our variant of the algorithm operates, at each pixel, jointly on 

the optical and elevation data seeking the most prominent color 

and elevation values in its neighborhood. This process is 

iterative and once it has converged, the final values are assigned 

to the pixel.  

The edge enhancement of the elevation data is due to the 

interdependency of the color and the elevation values during 

iterative process. At each pixel the algorithm performs a 

selective kernel based averaging of the elevation values in its 

neighborhood that is controlled by its color similarity to that of 

its neighbors. For example, if either the color or the elevation 

values of a neighbor differ considerably from the corresponding 

values of a pixel then this neighbor will not contribute in the 

computation of the elevation mean update of the pixel.  

The contribution of a neighbor to the update depends on the 

form of the kernels used for the averaging and their spread 

(called the bandwidths). We have chosen all kernels to be of 

Gaussian form.  

The bandwidths of the kernels control the degree of variability 

that a neighboring value is allowed to have in order to 

contribute to the sum. They are adapted to the local statistical 

characteristics of the neighborhood of each pixel. They are 

computed once, at the beginning of the iterative smoothing 

process, based on the original data. At each pixel their values 

are the root mean square deviation of the corresponding feature 

values of the pixel and those of its neighbors. 

The only user provided value is the spatial bandwidth which 

nevertheless corresponds to actual distance value. This value 

defines the size of the spatial neighborhood of each pixel. 

It should be noted that, at each pixel, the computation of the 

update value depends only on the initial range (color and 

elevation) and the value computed in the previous iteration for 

that pixel (i.e. it does not depend on the updated values of the 

neighboring pixels). For this reason, the update computation 

can be done in parallel i.e. simultaneously for all pixels. It 

should also be noted that, by the construction of the mean-shift 

the size of the update step is adaptive thus increasing the 

efficiency of the algorithm by avoiding oscillatory phenomena 

or slow convergence. 

Unavoidably, however, as the iterations progress, data coupling 

will also cause over-smoothing of important edges. To control it 

we have introduced an additional constraining factor. It also has 

a Gaussian form and its argument depends on the color 

difference between a pixel and those of its neighbors in the 

initial image. It allows neighboring pixels with small (spurious) 

color variations in the original data to merge while it prevents 

merging when the initial color variations are larger than certain 

threshold. That way it counterbalances the gradual smoothing of 

the data values caused by the iterative process. The threshold 

defines the bandwidth (spread) of the kernel and depends on the 

direction, thus making this factor anisotropic. For each 

direction, formed by the center pixel and one of its neighbors, 

the bandwidth is the root mean square over the whole image of 

the color difference between pixels in the same direction. 

The result of the processing is an elevation image with much 

straighter height discontinuities. At the same time, it has gained 
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significantly in detail and sharpness with the different elevation 

surfaces becoming much better discriminated.  

Although the color images contained a lot of clutter and the 

elevation data were also noisy and of low spatial resolution, our 

algorithm was robust because it was able to automatically adapt 

its parameters to the local data values. It should be noted that 

edges due to shadows in the color image do not appear in the 

resulting elevation image if they do not correspond to 

significant elevation variations (Fig. 3) 

Step 3 Thresholding  

An appropriate base building height (H0) is selected as the 

threshold value to segment the mean-shifted nDSM and to 

extract the buildings. If the base building height H0 is too high, 

many true buildings will be missed. On the other hand, if the 

selected base building height H0 is too low, some small non-

building objects like automobiles will be detected as buildings. 

Different threshold values have been chosen to extract building 

objects in previous studies, e.g., 3 m in Ma (2005), 3.5m in Yu 

et al (2010) and 4 m in Yu et al., 2009a and Yu et al., 2009b. 

After experimenting with different threshold values we chose 3 

m as the threshold value for our case study. 

 

Step 4 Automatic classification in Building- Non Buildings 

According to our previous investigation (Bratsolis et al, 2013, 

Gyftakis et al, 2014) automatic segmentation in Buildings-Non 

Buildings could be efficiently performed when using Multilayer 

Feedforward Neural Network (MFNN). The input layer of the 

MFNN consists of four nodes: 3 nodes for the 3 channels (Red, 

Green, and Blue) of the orthophoto and one node for values of 

the Mean-Shifted and thresholded nDSM.  All values were 

normalized in the same range [0, 255]. The MFNN was trained 

with the Levenberg-Marquardt algorithm (Haykin, 1994). 

Following experimentation with several architectures we 

eventually selected a network with two hidden layers of 50 and 

10 neurons respectively. A training phase of less than 30 epochs 

was enough for convergence of the classifier. The training 

process was designed to avoid overtraining. Overtraining is a 

well-known problem in neural network training and is due to a 

high tuning of the ANNs on the examples of the training set, 

usually resulting to poor generalization. To alleviate this 

problem, the data set is split into a training set and a validation 

set. While the training set is used to train the networks, the 

validation set is used to evaluate the network's performance at 

regular steps during the training phase. Training is stopped 

when the performance on the validation set is maximized. The 

training and validation sets included a total of 20958 pixels 

(RGB and nDSM values – 14669 for training and 6289 for 

validation) along with their correct classification and have been 

extracted from a different region of Kallithea suburb by 

specifying small polygons representing the two classes: 

buildings and non-buildings. Following training, test results 

have been obtained regarding the central urban block (including 

patio pixels in the middle of the block). 

The corresponding prototype building block mask to which the 

results were compared is shown in Fig. 5 and the overall image 

area from which we assess classification accuracy for is an 

inflated (dilated by a few pixels) version of the minimum area 

bounding rectangle around the central building block as shown 

in Fig. 4.  

 In the classification results the buildings are shown as white 

and non-buildings as black pixels (Fig 6). For the evaluation the 

classification results were compared with the prototype mask of 

Fig. 5 through statistical measures. Results proved very accurate 

with Kappa coefficient 0.8060 and Overall Accuracy 90.83%. 

 

4 BCR AND FAR ESTIMATION 

The BCR and FAR indicators for the whole AOI were 

calculated based on the automatically segmented AOI in 

Buildings –Non Buildings. The Eq (1) and Eq (2) were used, 

assuming a value of C = 3m for the average height of each floor.  

For the total surface of the block and the buildings we consider 

the number of their pixels and the surface of the unit pixel.  The 

BCR and FAR values resulted are shown in Table1, 1st column. 

For the evaluation reasons, an experiment was contacted in a 

smaller,   test area. The test area was extracted from the AOI 

using the binary mask of Fig. 4. For this test area, both, the 

manually segmented (Fig 5) and the automatically segmented in 

Buildings Non Buildings are available and used for the BCR 

and FAR indicators numerical calculation. 

As it is shown in Table 1, the values of BCR and FAR when 

calculated based on the manually segmented test area (Table 1, 

2nd column) are very close to the ones derived when the 

automatically segmented test area is considered (Table 1, 3rd 

column) This encourages as to use this automated method to 

calculate the BCR and FAR in the whole area of Interest. 

 

Building 

Density 

Index 

Automatically 

Segmented 

AOI  

Manually 

segmented test 

area  

Automatically 

segmented 

test area 

BCR 0.54 0.60 0.59 

FAR 2.71 3.35 3.23 

 

Table1. BCR and FAR indicators on AOI and test area.    

 

5 CONCLUSION 

The main contribution of this work is the development of an 

accurate and automatic data processing method to estimate the 

BCR and FAR urban density indicators. The approach is based 

on a combination of a variant of the mean shift algorithm and a 

neural network based classification.  

The input data comprised of low resolution Lidar data and high 

resolution optical (RGB) data. Our approach efficiently 

combined the two data types resulting in an edge-preserving 

smoothing of the elevation image. We showed this to be 

especially beneficial for the separation of Buildings using a 

Multilayer Feed Forward Neural classifier. Comparisons of the 

BCR and FAR indicators with ground truth values on a test area 

shows the efficiency of our methodology and encourages us for 

the expansion of the methodology to other Building Density 

indicators. 
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Fig. 1 Orthophoto RGB image of the AOI. 

 

Fig. 2 The nDSM elevation data of the AOI. 

 

 

Fig. 3 The Mean-Shift preprocessed nDSM 

 

Fig. 4 Test area binary  mask.  

 

 

Fig. 5 Test area with Buildings manually identified    

 

Fig.6 AOI automatic segmentation   
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