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ABSTRACT:

Urban density is an important factor for several fields, e.g. urban design, planning and land management. Modern remote sensors
deliver ample information for the estimation of specific urban land classification classes (2D indicators), and the height of urban land
classification objects (3D indicators) within an Area of Interest (AOI). In this research, two of these indicators, Building Coverage
Ratio (BCR) and Floor Area Ratio (FAR) are numerically and automatically derived from high-resolution airborne RGB orthophotos
and LiDAR data. In the pre-processing step the low resolution elevation data are fused with the high resolution optical data through a
mean-shift based discontinuity preserving smoothing algorithm. The outcome is an improved normalized digital surface model
(nNDSM) is an upsampled elevation data with considerable improvement regarding region filling and “straightness” of elevation
discontinuities. In a following step, a Multilayer Feedforward Neural Network (MFNN) is used to classify all pixels of the AOI to
building or non-building categories. For the total surface of the block and the buildings we consider the number of their pixels and
the surface of the unit pixel. Comparisons of the automatically derived BCR and FAR indicators with manually derived ones shows

the applicability and effectiveness of the methodology proposed.

1. INTRODUCTION

Urban density is an important factor for several fields, e.g.
urban design, planning and land management. Moreover,
building density affects the dispersion of atmospheric pollutants
(Theodoridis and Moussiopoulos, 2000), the access of sunlight
and solar radiation (Lam, 2000; Miguet and Groleau, 2002;
Oke,1988; Yu et al., 2009a), the interior temperatures of
buildings (Mills, 1997), the surface thermal conditions
(Streutker, 2003). Kubota et al. (2008) investigated the
relationship between the building density of a residential
neighborhood and the average wind speed at pedestrian level.
They found that by increasing the building’s coverage ratio, the
wind speed decreases.

The most commonly used indices for quantifying the building
density at land lot scale are the Building Coverage Ratio (BCR)
and Floor Area Ratio (FAR). The BCR is defined as the ratio of
the building coverage area (i.e. the area of building footprint) to
the size of land lot (Eq. (1))

BCR=S/S, equation (1)

where S is the building coverage area, and S, is the area of land
lot. Once the association between building footprints and land
lots is determined, the BCR for each land lot can be computed
using Eqg. (1). The BCR measures the building density in two-
dimension (2D) space.

The FAR is defined as the ratio of gross building floor area to
the size of land lot (Eq. (2))

FAR=(3i (H;/C) Sj)/ S equation (2)

where Hi is the height of the ith building, C is the average
height of each floor and Si is the ith building coverage area. As
the value of FAR is determined not only by the planimetric
shape of the building, but also by the vertical distribution of the
floors in different height, it depicts the three-dimensional (3D)
building density. Higher FARs tend to indicate more urban
(dense) construction.

The traditional method to calculate the BCR and FAR
indicators is to manually survey the area to obtain the heights
and shapes of all buildings. In the last years, the Light Detection
and Ranging (LiDAR) technology has efficiently replace
traditional topographic methods to extract information of urban
buildings. The surface elevation samples from airborne LIDAR
are much more accurate, reliable and denser than those from the
traditional photogrammetric techniques (Paolo Gamba and
Houshmand, 2000, 2002; Priestnall et al., 2000; Stilla et al.,
2003). The capability of airborne LiDAR in gathering highly
accurate and densely sampled surface elevation measurements
over urban areas allows for an accurate delineation of the
footprints of buildings (Ma, 2005; Yu et al., 2009b; Zhang et
al., 2006) and reconstruction of the 3D building shapes (Forlani
et al.,, 2006; Gamba and Houshmand, 2002; Rottensteiner,
2003). For the determination of BCR and FAR indicators the
LIDAR data have been effectively combined and used with
other data. Yu et al. (2010) proposed an automated derivation
of urban building density information using LIDAR data and
aerial color infrared imagery and an object-based method.

The objective of this work is to propose an automated
methodology to estimate urban density indicators, namely BCR
and FAR using LIDAR data and high resolution aerial
orthophotos.

This paper is organized into 5 sections. Section 2 describes the
Data used. Section 3 presents the methodology for the data
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preprocessing. In Section 4 the BCR and FAR indicators are
calculated and, finally, in section 5 the conclusion is drawn.

2. DATA DESCRIPTION

Our original dataset considers an Area of Interest (AOI) in the
Kallithea suburb of Athens, Greece. It includes LiDAR data and
aerial orthophotos in the RGB color space (Fig. 1) LiDAR data
was acquired by the Geolntelligence SA over the above area
and is in the form of a Digital Surface Model (DSM),
containing relative height information of man-made and natural
objects rising above the ground at a spatial resolution of 1m and
vertical (elevation) resolution of 20 cm. The acquisition date is
2003. A Digital Terrain Model (DTM) acquired by the
Geolntelligence SA at a spatial resolution of 2m is also
available. In addition, orthophotos from color (channels Red,
Green, Blue) aerial imagery acquired by the National Cadaster
and Mapping Agency of Greece from the same urban region
were available. The spatial resolution of orthophotos is 20 cm
i.e. five and ten times higher resolution than DSM and DTM
respectively. The acquisition date of the orthophotos is 2007.
Both, the various resolution and different acquisition dates
brings an extra challenge to the processing of our dataset
towards the BCR and FAR estimation.

3. PREPROCESSING METHODOLOGY

The proposed preprocessing methodology consists of the
following steps

Stepl Generation of nNDSM

Initially a Nearest Neighbor interpolation was performed to
increase the spatial resolution of DTM to that of the DSM (1m).
Then, a normalized DSM (nDSM) was computed as the
difference between DSM and DTM (Haala and Brenner, 1999).
Thus the net building heights rather than the absolute elevations
was obtained and it is shown in Fig. 2.

Step2 Mean shift improvement of nDSM

To upsample the nDSM, we employed a preprocessing
technique described in Gyftakis et al, (2014) Based on the
implicit assumption that the optical data can provide the
necessary information about the significant edges of the scene,
we fuse the elevation information with a high resolution ortho-
photo color image of the same region. The aim is to use the high
detail content of the color image as a guide for improving the
quality of the elevation image. Nevertheless, the optical data
also contain a great amount of unnecessary noisy edges caused
by uneven painting of the terraces or objects such as solar
panels. So, our problem is twofold: (a) to improve the
significant elevation edges and (b) to reduce height variations,
caused by noise, in areas with flat color content while ignoring
small color variations in areas of small elevation variations

The proposed methodology is autonomous and adaptive. It can
be described as a two-step approach. First, an initial upsampling
using the typical nearest neighbor interpolation technique is
performed on the low resolution elevation data (nDSM) to
increase its size to the size of the color image.

Next, in order to improve the quality of the result and eliminate
the staircase effects of nearest neighbor upsampling near
elevation discontinuities, we perform a restricted mean shift-
based smoothing that selectively preserves the discontinuities

on the elevation data.

To achieve this, we modify the mean shift algorithm that was
proposed by Comaniciu, and Meer (Comaniciu, and Meer,2002)
Our variant of the algorithm operates, at each pixel, jointly on
the optical and elevation data seeking the most prominent color
and elevation values in its neighborhood. This process is
iterative and once it has converged, the final values are assigned
to the pixel.

The edge enhancement of the elevation data is due to the
interdependency of the color and the elevation values during
iterative process. At each pixel the algorithm performs a
selective kernel based averaging of the elevation values in its
neighborhood that is controlled by its color similarity to that of
its neighbors. For example, if either the color or the elevation
values of a neighbor differ considerably from the corresponding
values of a pixel then this neighbor will not contribute in the
computation of the elevation mean update of the pixel.

The contribution of a neighbor to the update depends on the
form of the kernels used for the averaging and their spread
(called the bandwidths). We have chosen all kernels to be of
Gaussian form.

The bandwidths of the kernels control the degree of variability
that a neighboring value is allowed to have in order to
contribute to the sum. They are adapted to the local statistical
characteristics of the neighborhood of each pixel. They are
computed once, at the beginning of the iterative smoothing
process, based on the original data. At each pixel their values
are the root mean square deviation of the corresponding feature
values of the pixel and those of its neighbors.

The only user provided value is the spatial bandwidth which
nevertheless corresponds to actual distance value. This value
defines the size of the spatial neighborhood of each pixel.

It should be noted that, at each pixel, the computation of the
update value depends only on the initial range (color and
elevation) and the value computed in the previous iteration for
that pixel (i.e. it does not depend on the updated values of the
neighboring pixels). For this reason, the update computation
can be done in parallel i.e. simultaneously for all pixels. It
should also be noted that, by the construction of the mean-shift
the size of the update step is adaptive thus increasing the
efficiency of the algorithm by avoiding oscillatory phenomena
or slow convergence.

Unavoidably, however, as the iterations progress, data coupling
will also cause over-smoothing of important edges. To control it
we have introduced an additional constraining factor. It also has
a Gaussian form and its argument depends on the color
difference between a pixel and those of its neighbors in the
initial image. It allows neighboring pixels with small (spurious)
color variations in the original data to merge while it prevents
merging when the initial color variations are larger than certain
threshold. That way it counterbalances the gradual smoothing of
the data values caused by the iterative process. The threshold
defines the bandwidth (spread) of the kernel and depends on the
direction, thus making this factor anisotropic. For each
direction, formed by the center pixel and one of its neighbors,
the bandwidth is the root mean square over the whole image of
the color difference between pixels in the same direction.

The result of the processing is an elevation image with much
straighter height discontinuities. At the same time, it has gained
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significantly in detail and sharpness with the different elevation
surfaces becoming much better discriminated.

Although the color images contained a lot of clutter and the
elevation data were also noisy and of low spatial resolution, our
algorithm was robust because it was able to automatically adapt
its parameters to the local data values. It should be noted that
edges due to shadows in the color image do not appear in the
resulting elevation image if they do not correspond to
significant elevation variations (Fig. 3)

Step 3 Thresholding

An appropriate base building height (H,) is selected as the
threshold value to segment the mean-shifted nDSM and to
extract the buildings. If the base building height Hy is too high,
many true buildings will be missed. On the other hand, if the
selected base building height Hy is too low, some small non-
building objects like automobiles will be detected as buildings.
Different threshold values have been chosen to extract building
objects in previous studies, e.g., 3 m in Ma (2005), 3.5min Yu
et al (2010) and 4 min Yu et al., 2009a and Yu et al., 2009h.
After experimenting with different threshold values we chose 3
m as the threshold value for our case study.

Step 4 Automatic classification in Building- Non Buildings
According to our previous investigation (Bratsolis et al, 2013,
Gyftakis et al, 2014) automatic segmentation in Buildings-Non

Buildings could be efficiently performed when using Multilayer
Feedforward Neural Network (MFNN). The input layer of the
MFNN consists of four nodes: 3 nodes for the 3 channels (Red,
Green, and Blue) of the orthophoto and one node for values of
the Mean-Shifted and thresholded nDSM. All values were
normalized in the same range [0, 255]. The MFNN was trained
with the Levenberg-Marquardt algorithm (Haykin, 1994).
Following experimentation with several architectures we
eventually selected a network with two hidden layers of 50 and
10 neurons respectively. A training phase of less than 30 epochs
was enough for convergence of the classifier. The training
process was designed to avoid overtraining. Overtraining is a
well-known problem in neural network training and is due to a
high tuning of the ANNs on the examples of the training set,
usually resulting to poor generalization. To alleviate this
problem, the data set is split into a training set and a validation
set. While the training set is used to train the networks, the
validation set is used to evaluate the network's performance at
regular steps during the training phase. Training is stopped
when the performance on the validation set is maximized. The
training and validation sets included a total of 20958 pixels
(RGB and nDSM values — 14669 for training and 6289 for
validation) along with their correct classification and have been
extracted from a different region of Kallithea suburb by
specifying small polygons representing the two classes:
buildings and non-buildings. Following training, test results
have been obtained regarding the central urban block (including
patio pixels in the middle of the block).

The corresponding prototype building block mask to which the
results were compared is shown in Fig. 5 and the overall image
area from which we assess classification accuracy for is an
inflated (dilated by a few pixels) version of the minimum area
bounding rectangle around the central building block as shown

in Fig. 4.

In the classification results the buildings are shown as white
and non-buildings as black pixels (Fig 6). For the evaluation the
classification results were compared with the prototype mask of
Fig. 5 through statistical measures. Results proved very accurate
with Kappa coefficient 0.8060 and Overall Accuracy 90.83%.

4 BCR AND FAR ESTIMATION

The BCR and FAR indicators for the whole AOIl were
calculated based on the automatically segmented AOI in
Buildings —Non Buildings. The Eq (1) and Eq (2) were used,
assuming a value of C = 3m for the average height of each floor.
For the total surface of the block and the buildings we consider
the number of their pixels and the surface of the unit pixel. The
BCR and FAR values resulted are shown in Tablel, 1* column.
For the evaluation reasons, an experiment was contacted in a
smaller, test area. The test area was extracted from the AOI
using the binary mask of Fig. 4. For this test area, both, the
manually segmented (Fig 5) and the automatically segmented in
Buildings Non Buildings are available and used for the BCR
and FAR indicators numerical calculation.

As it is shown in Table 1, the values of BCR and FAR when
calculated based on the manually segmented test area (Table 1,
2" column) are very close to the ones derived when the
automatically segmented test area is considered (Table 1, 3"
column) This encourages as to use this automated method to
calculate the BCR and FAR in the whole area of Interest.

Building Automatically Manually Automatically

Density Segmented segmented test segmented
Index AOI area test area
BCR 0.54 0.60 0.59
FAR 2.71 3.35 3.23

Tablel. BCR and FAR indicators on AOI and test area.

5 CONCLUSION

The main contribution of this work is the development of an
accurate and automatic data processing method to estimate the
BCR and FAR urban density indicators. The approach is based
on a combination of a variant of the mean shift algorithm and a
neural network based classification.

The input data comprised of low resolution Lidar data and high
resolution optical (RGB) data. Our approach efficiently
combined the two data types resulting in an edge-preserving
smoothing of the elevation image. We showed this to be
especially beneficial for the separation of Buildings using a
Multilayer Feed Forward Neural classifier. Comparisons of the
BCR and FAR indicators with ground truth values on a test area
shows the efficiency of our methodology and encourages us for
the expansion of the methodology to other Building Density
indicators.
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Fig. 1 Orthophoto RGB image of the AOI. Fig. 4 Test area binary mask.

Fig. 5 Test area with Buildings manually identified

Fig.6 AOI automatic segmentation

Fig. 3 The Mean-Shift preprocessed nDSM
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