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ABSTRACT: 

 

Livestock plays a central economic role in Niger, but it is highly vulnerable due to the high inter-annual variability of rain and hence 

pasture production. This study aims to develop an approach for mapping pasture biomass production to support activities of the 

Niger Ministry of Livestock for effective pasture management. Our approach utilises the observed spatiotemporal variability of 

biomass production to build a predictive model based on ground and remote sensing data for the period 1998–2012. Measured 

biomass (63 sites) at the end of the growing season was used for the model parameterisation. The seasonal cumulative Fraction of 

Absorbed Photosynthetically Active Radiation (CFAPAR), calculated from 10-day image composites of SPOT-VEGETATION 

FAPAR, was computed as a phenology-tuned proxy of biomass production. A linear regression model was tested aggregating field 

data at different levels (global, department, agro-ecological zone, and intersection of agro-ecological and department units) and 

subjected to a cross validation (cv) by leaving one full year out. An increased complexity (i.e. spatial detail) of the model increased 

the estimation performances indicating the potential relevance of additional and spatially heterogeneous agro-ecological 

characteristics for the relationship between herbaceous biomass at the end of the season and CFAPAR. The model using the 

department aggregation yielded the best trade-off between model complexity and predictive power (R2 = 0.55, R2
cv = 0.48). The 

proposed approach can be used to timely produce maps of estimated biomass at the end of the growing season before ground point 

measurements are made available. 
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1. INTRODUCTION 

Livestock represents an important economic sector in Niger, 

contributing 11% to the GDP in 2013 (INS-Niger, 2014) and 

involving 89% of agricultural households, of which 11% 

depend exclusively on livestock production (Republic of Niger, 

2007). Pastoral production systems are mainly located in the 

Sahelian part of the country which is very vulnerable due to the 

high inter-annual rainfall variability (e.g., Nicholson, 2013 and 

references therein; Tarhule et al, 2014) and hence pasture 

production. Besides the temporal variability, the region is also 

characterised by a high spatial rainfall variability, increasing the 

need for a better management of the transhumance movements. 

 

One important element to enhance efficient and sustainable 

pasture management as well as food security in the pastoral 

zone is the availability of a biomass production map at the end 

of the growing season. This map, together with the estimated 

livestock number by administrative region, can be used to 

calculate a forage balance identifying areas potentially exposed 

to forage deficit or surplus, leading to potential livestock 

mortality or fire risk, respectively.  

 

Different remote sensing (RS) based approaches to estimate 

aboveground biomass in semi-arid areas have been developed 

during the last decades using optical and radar data as well as 

modelling and combined multi-sensor approaches (for a review 

see Eisfelder et al., 2012). The majority of studies utilized low- 

and medium resolution optical or radar data and an empirical 

relationship between field biomass measurements and a RS 

indicator (Eisfelder et al, 2012). The first studies of herbaceous 

biomass estimation in Niger date back to the late 1980’s and 

utilized linear regressions between maximum standing biomass 

and NDVI-based metrics  (maximum and time-integrated 

NDVI) derived from NOAA AVHRR imagery (Maidagi et al., 

1987; Wylie et al., 1988, 1991, 1995). A similar method is 

currently applied by the Ministry of Livestock in Niger (MoL) 

using NDVI data from SPOT-VEGETATION (VGT), and since 

2014 from METOP-AVHRR. In such an approach, a linear 

regression model between a NDVI-based metrics and the 

ground measurements of the season just ended is tuned and 

used to produce a map of pasture biomass. In a recent study, 

Nutini et al. (2014) applied a radiation use efficiency model 

using cumulated dry matter productivity (DMP) derived from 

SPOT-VGT (Smets et al., 2010) over a fix period of time and 

corrected with the evaporative fraction (EF, derived from 

MODIS thermal measurements) to estimate rangeland biomass 

in Niger. 

 

The aim of this study is to explore the relationship between 

FAPAR observations and pasture production, ultimately aiming 

to support existing activities of pasture management in Niger. 

Therefore, we developed a RS based approach taking into 

account pasture phenology to estimate pasture biomass at the 

end of the growing season. In contrast to the presently used 

methodology of the MoL, the proposed approach can also be 

applied in a predictive mode without requiring field 

measurements for the current year.  
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2. STUDY AREA, DATA AND METHODS 

2.1 Study area 

Niger is a landlocked country in West Africa, characterised by a 

hot arid desert climate in most of its parts and a hot arid steppe 

climate in the south (according to the Köppen-Geiger climate 

classification; Kottek et al., 2006). Mean annual temperature is 

around 30°C throughout the country, with lowest mean monthly 

temperatures occurring in winter (e.g., January: 17–27°C for 

different places within Niger) and highest ones occurring in 

summer (e.g., June: 32–38°C) for the last climate normal 1981–

2010 (Kalnay et al. 1996; NOAA, 2014). Mean annual 

precipitation sums (Fig. 1) mainly follow a north-south gradient 

with mean annual precipitation <100 mm in the north and 600–

700 mm in the outermost south (based on ten-daily cumulative 

rainfall estimates from TAMSAT data from the TARCAT v2.0 

dataset for the period 1983–2012; Maidment et al, 2014; 

Tarnavsky et al., 2014). Most of the precipitation occurs during 

the rainy season (Jun–Sep) and is related to the West African 

monsoon (Nicholson, 2013). 

 

 

Figure 1. Biomass sample sites and mean annual precipitation 

1983–2012 calculated from ten-daily TAMSAT data (Maidment 

et al, 2014; Tarnavsky et al., 2014) 

 

In this study we focus on the pastoral zone (approximate outline 

in Fig. 2 provided by the MoL), which is roughly represented 

by the livelihoods zone 3 “transhumant and nomad pastoralism” 

(FEWS NET, 2011) (Fig. 2). The pasture sample sites used in 

this study are mainly located between the 100 mm and 300 mm 

isohyets (Fig. 1) and represent the Sahelian acacia savannah 

ecoregion within the biome of tropical and subtropical 

grasslands, savannahs and shrublands (Olsen et al., 2001).  

  

 

Figure 2. Livelihoods zones (FEWS NET, 2011), pastoral zone 

(MoL) and sample sites. Classes of interest for this study: 3 = 

transhumant & nomad pastoralism (* with camels), 4 = agro-

pastoral belt. Note: sites in the agro-pastoral belt considered in 

this study,  as they were classified as fully pastoral by the MoL  

2.2 Data 

2.2.1 Biomass data: The MoL provided the dataset of 

measured pasture aboveground biomass (Bm) at the end of the 

growing season covering 103 sites, spanning the period 1988–

2013 and containing in total 1062 records of dry matter 

production [kg ha-1]. The actual date of sampling is variable but 

generally occurs between mid-September and end of October. 

The fresh and dry portions of the leaf tissues are considered to 

represent the total aboveground biomass production for the 

concluded season. Each sampling site corresponds to a transect 

designed to represent an area of 3 km x 3 km.  Herbaceous 

biomass values were obtained by applying a double-sampling 

approach combining visual estimates and weighted biomass. 

For a more detailed description of the sampling approach see 

e.g., Maidagi et al. (1987) and Wylie et al. (1995). After 

discarding sampling sites located in agricultural areas and those 

having less than four measurements in the target period, the Bm 

dataset was statistically analysed and screened for outliers. 

Finally, 63 sites were retained for the parametrisation of the 

model (in total 647 records). 

 

2.2.2 RS data: This study utilized a time series of 10-day 

maximum value Fraction of Absorbed Photosynthetically 

Active Radiation (FAPAR) composites of the JRC-MARS 

archive (Joint Research Centre of the European Commission, 

Monitoring Agricultural Resources Unit) from April 1998 to 

December 2012.  In this product, FAPAR is retrieved from 

calibrated, cloud-screened and atmospherically corrected 

(Rahman et al., 1994) SPOT-VGT imagery at a 1/112° (about 1 

km) spatial resolution using the CYCLight algorithm (Weiss et 

al., 2010). 

 

2.3 Methods 

2.3.1 RS proxy for biomass production: Seasonal 

cumulative FAPAR (CFAPAR) was used as a phenology-tuned 

proxy for biomass production. CFAPAR is defined as the 

integral of FAPAR during the growing season subtracted by the 

area under the baseline (Fig. 3), as proposed by Meroni et al. 

(2014a). The time interval for integration is dynamically 

adjusted for every site and every year based on the start and end 

of the season (SOS, EOS). The required phenology parameters 

(SOS, EOS; maximum value of FAPAR, maxv) were calculated 

using the model-fit approach of Meroni et al. (2014b). In 

general, the value of CFAPAR depends on the shape of the 

FAPAR seasonal trajectory, the integration limits and the 

baseline value. 

 

 

Figure 3. Visualisation of the CFAPAR calculation  

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-432-1



 

2.3.2 Linear regression model: We built a linear regression 

model between all available Bm of the selected 63 sites for the 

period 1998–2012 and the corresponding CFAPAR values. In 

addition to the calibration of the model using the whole set of 

available measurements (referred to as “global”), different 

aggregation schemes were tested for calibrating the model. All 

model specifications were subjected to a cross validation (cv) 

by leaving one full year out to evaluate their robustness and 

predictive power. 

 

The calibration at the department level (referred to as 

“department”) represents a first attempt to take into account 

local effects in the regression. For instance, such unobserved 

local effects may refer to different background reflectance 

affecting FAPAR estimates or different species composition 

modifying the relationship between biomass and CFAPAR. 

Limiting the spatial domain at which the model is calibrated is 

expected to reduce the influence of the spatial variance and 

reduce the estimation error in the temporal domain.  

 

However, the administrative department is an arbitrary unit with 

respect to spatial affinity in a biophysical sense. For a better 

parameterization of the relationship between Bm and CFAPAR, 

we tested an agro-ecological stratification derived from an 

ISODATA unsupervised classification of the FAPAR imagery. 

Mean FAPAR images of every dekad (i.e., 10 days) in the year 

(n=36) calculated for the period 1999–2012 were used as input 

for the classification. All non-vegetated areas, defined as pixels 

with an overall variability of the entire FAPAR time series (as 

measured by the 95th-5th percentile difference) less than the  

FAPAR uncertainty (assumed to be 0.1 as in Meroni et al, 

2014b), were masked out. The resulting ISODATA 

classification yielded eight classes from which six were covered 

by sample sites (class 1 to 6). The remaining two classes were 

primarily located in the uttermost south of Niger and do not 

represent the typical pastoral zone. Based on the classification 

results, we built a regression model calibrated at the agro-

ecological class level (referred to as “agroeco”).  

 

In order to further refine the model complexity we also 

considered a model parametrization performed at a finer unit 

resolution resulting from the intersection of departments and 

agro-ecological classes (referred to as “agroecodep”).  

 

In summary, a set of different aggregation schemes was tested, 

ranging from the more detailed of the agroecodep (28 

calibration units), to the department (11 units), to the agroeco (6 

units) and finally to the less detailed one (global, one single 

unit). The selection of the best performing of these can only be 

empirical in cross validation and will depend on the trade-off 

between increased accuracy related to increased model 

parametrization and decreased robustness and predictive power 

due to reduced sample size when increasing the number of 

calibration units. 

 

2.3.3 Map of estimated biomass: The estimated biomass 

(Be) at the end of the growing season for a certain year was 

calculated via the following equation: 

  

 Be = a * CFAPAR + b    (1) 

 

where  Be = estimated biomass 

 a, b = gain and offset of the regression model 

CFAPAR = cumulated FAPAR during the growing 

season 

For the global model, the same gain and offset (derived from the 

regression model) were applied for all pixels. For the 

department, agroeco and agroecodep pooling, class specific 

gains and offsets were applied for each pixel within a certain 

department, agroeco or agroecodep class.  

 

Departments with no or a negligible share at the pastoral zone 

were masked out in the estimated biomass maps.    

 

 

3. RESULTS AND DISCUSSION 

Pasture biomass shows a high spatial and temporal variability 

among the sample sites during the period 1998–2012. Mean 

measured biomass of individual sites varies from 350 kg ha-1 to 

1770 kg ha-1 (mean of all sites: 740 kg ha-1). The coefficient of 

variation (CV) of biomass ranges from 34% to 122% for 

individual sites, indicating a high inter-annual variability.  

 

The spatial pattern of mean CFAPAR and CV of CFAPAR (Fig. 

4) predominantly reveals a north-south gradient with low mean 

CFAPAR and high CV values in the north (at the border to the 

non-vegetated area of the Sahara) and high mean CFAPAR and 

low CV values in the south. This gradient mainly reflects the 

annual precipitation gradient (Fig. 1).  

 

 

Figure 4. Mean CFAPAR (top) and CV of CFAPAR (bottom) 

for the period 1998–2012. White areas reflect non-vegetated 

areas (for a definition see 2.3.2) 

 

3.1 Regression model 

A first overview of the strength of relationship between 

measured biomass and CFAPAR can be obtained by inspecting 

its coefficient of determination (R2) at each single site. As 

shown in Fig. 5, a relevant R2 variability does exist (R2 values 

range from 0.21 to 0.98) without any clear spatial pattern. This 

variability might be caused by data quality issues or/and other 

processes (such as grazing) that affect the measured biomass 

and are not accounted for in the model. 
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Figure 5. Location of selected sites (names of respective 

departments indicated) and R2 of the site specific regression 

between Bm and CFAPAR  

 

The spatial distribution of agro-ecological classes derived from 

the ISODATA classification are presented in Fig. 6. The 

emerging spatial pattern expresses a north to south gradient of 

well-defined bands of class 1, 2 and 3 at the southern border of 

the Sahara. South of this zone, the spatial pattern is more 

complex, especially in the south-west of Niger characterized by 

a quite small-scale heterogeneity pattern compared to other 

parts of the country. This class heterogeneity can be attributed 

to different land uses (presence of agriculture for instance) and 

variability of morphological features (i.e., rivers, depressions) 

resulting in different growth conditions for plants.  

 

 
Figure 6. ISODATA classification result. Unclassified refer to 

non-vegetated area (see 2.3.2) 

 

The different aggregation levels of the linear regression model 

show an increase in R2 with increasing complexity of the model 

(Table 1, Fig. 7). While the R2 of the global level (two 

coefficients to be tuned) is the lowest with 0.33, the R2 of the 

agroecodep level (56 coefficients) is the highest with 0.61. The 

other two aggregation levels lay in between whereby the 

department level can explain a higher percentage of measured 

biomass variance than the agroeco level.  

 

This ranking does not change if the R2
cv is considered. 

However, the R2 increase from the department to the 

agroecodep level appears to be due to over-fitting when 

considering the negligible increase of the R2
cv. Furthermore, the 

trade-off between increased model parameterization (from 22 to 

56 coefficients to be tuned) and increased performance (1% in 

R2
cv) suggests to discard the operational use of the agroecodep 

level aggregation and to opt for the department level.  

 

 

 

 

 

Aggregation level R2 R2
cv # coefficients 

Global 0.33 0.31 2 

Agroeco 0.42 0.38 2 * # classes = 12 

Department 0.55 0.48 2 * # departments = 22 

Agroecodep 0.61 0.49 2 * # classes = 56 

Table 1. R2 and cross-validated R2 for different aggregation 

levels and number of coefficients to be tuned 

 

An increase of the model spatial detail improves – at least to a 

certain extent – the performance of the model. Therefore, we 

acknowledge that some spatial heterogeneity that we are not 

able to model explicitly does exist. This could be due to 

spatially variable grazing pressure, species composition and soil 

spectral properties that may influence the relationship between 

measured herbaceous biomass at the end of the season and 

CFAPAR. 

 

The better performance of the department model compared to 

the agroeco model may indicate that the spatial proximity, 

ensured by department aggregation and that might be related to 

similar grazing pressure, soil properties, etc., is more important 

for the empirical calibration of the relationship compared to an 

ecological zoning based on average biophysical variables 

derived from RS data. 

 

 

Figure 7. Scatterplot of Bm and Be for different aggregation 

levels of the regression model. a)  global, b) agroeco, c) 

department, d) agroecodep 

 

3.2 Estimated biomass map 

Fig. 8 shows examples of estimated biomass maps derived from 

the regression model with the department aggregation for the 

years 2004 and 2012. The year 2004 was characterized by the 

lowest mean of measured biomass among the sample sites (350 

kg ha-1), and the year 2012 by the highest mean of measured 

biomass (1230 kg ha-1). The estimated biomass maps of 2004 

and 2012 illustrate the high spatial and inter-annual variability 

of biomass in the study area and the need for a flexible and 

production adapted pasture management.  
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Figure 8. Estimated biomass in 2004 (top) and 2012 (bottom) 

based on linear regression model with department aggregation 

 

4. CONCLUSIONS 

In this study we developed a predictive phenology-tuned model 

for the estimation of pasture biomass in Niger.  The cumulative 

value of FAPAR during the growing season, CFAPAR, was 

derived from 10-day SPOT-VGT FAPAR data using a model-fit 

phenology retrieval method and was used as a proxy for 

biomass production. The linear model relating CFAPAR to 

pasture biomass production was parametrized with ground data 

of measured herbaceous biomass at the end of the growing 

season. Calibration of model coefficients was performed at 

different aggregation levels.  

 

An increased complexity of the model increased the estimation 

performance indicating the potential relevance of additional and 

spatially heterogeneous agro-ecological parameters for the 

relationship between herbaceous biomass at the end of the 

season and CFAPAR. Concerning the trade-off between 

increased accuracy related to increased model parametrization 

and decreased predictive power, the department level performed 

best among the tested aggregation levels. 

 

The presented approach can be used to timely produce maps of 

estimated biomass at the end of the growing season before 

ground point measurements are made available. Such maps 

could be useful both for planning more in-depth field missions 

(e.g., to areas showing exceptionally high or low production) 

and taking timely decisions on fire prevention and aid 

allocation. 

 

Our results highlight the importance of local unobserved effects 

(which might relate to grazing, optical soil properties, etc.) on 

the model performance. Therefore, future work should assess 

the significance of such potential influencing parameters and 

include the most important ones in the model. In the case of 

grazing, there is a need for repeated biomass measurements 

during the season to gather information about the grazing 

intensity and timing to evaluate the effect on the relationship 

between CFAPAR and pasture biomass production.   
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