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ABSTRACT:

Yield Maps are a basic information source for site-specific farming. For sugar beet they are not available as in-situ measurements.
This gap of information can be filled with Earth Observation (EO) data in combination with a plant growth model (PROMET) to
improve farming and harvest management. The estimation of yield based on optical satellite imagery and crop growth modelling is
more challenging for sugar beet than for other crop types since the plants’ roots are harvested. These are not directly visible from
EO. In this study, the impact of multi-sensor data assimilation on the yield estimation for sugar beet is evaluated. Yield and plant
growth are modelled with PROMET. This multi-physics, raster-based model calculates photosynthesis and crop growth based on the
physiological processes in the plant, including the distribution of biomass into the different plant organs (roots, stem, leaves and
fruit) at different phenological stages.

The crop variable used in the assimilation is the green (photosynthetically active) leaf area, which is derived as spatially
heterogeneous input from optical satellite imagery with the radiative transfer model SLC (Soil-Leaf-Canopy). Leaf area index was
retrieved from RapidEye, Landsat 8 OLI and Landsat 7 ETM+ data. It could be shown that the used methods are very suitable to
derive plant parameters time-series with different sensors. The LAI retrievals from different sensors are quantitatively compared to
each other. Results for sugar beet yield estimation are shown for a test-site in Southern Germany. The validation of the yield
estimation for the years 2012 to 2014 shows that the approach reproduced the measured yield on field level with high accuracy.
Finally, it is demonstrated through comparison of different spatial resolutions that small-scale in-field variety is modelled with
adequate results at 20 m raster size, but the results could be improved by recalculating the assimilation at a finer spatial resolution

of 5m.

1. INTRODUCTION

Yield and biomass maps are basic information sources for smart
farming. These maps can be used for the daily assessment of
plant development and site-specific fertilization measures.
Sugar beet yield is usually not mapped during harvesting
[Schmittmann 2002], hence, spatially distributed yield
information is hard to obtain. Earth Observation (EO) data fill
this lack of information and support smart farming by delivering
up-to-date information on plant growth independent from in-
situ data [Migdall et al. 2013]. However, operational
agricultural application requires reliable information for any
date during the vegetation period, whatever the weather
conditions are. Thus, the combination of EO data with crop
growth modelling is necessary to monitor the vegetation
development continuously over the growing season [Bach &
Angermair 2013, Hank et al. 2015].

In this study, multi-sensor EO data from 2012 to 2014 is used to
derive plant parameters for sugar beet using an inversion of the
SLC (Soil-Leaf-Canopy) model [Verhoef & Bach 2003, 2007].
The resulting green LAI maps are then assimilated into the crop
growth model PROMET to model the plant development at
different phenological stages and estimate yield. This approach
is well-established and validated for winter wheat as shown in
several studies [Bach & Angermair 2013; Hank et al. 2015,
Migdall et al. 2013]. The same approach is now applied for
sugar beet. The estimation of sugar beet yield based on optical
satellite imagery is more challenging than for other crop types
since the plants’ roots are harvested, which are not directly

visible from EO. However, PROMET calculates crop growth
based on physiological processes, including the distribution of
biomass into the different plant organs for each grid cell [Hank
et al. 2015].

Three main issues are addressed by this paper: The first is to
evaluate the impact of different sensor properties, e.g. of the
spatial resolution, on plant parameter retrieval. Therefore, two
data pairs have been selected, that are comparable in terms of
acquisition time. The second question is, how accurate the yield
estimation for sugar beet may become over 3 consecutive years
using the multi-sensor approach (RapidEye, Landsat ETM+,
OLI). This was done using field mean values provided by the
farmer for validation. The third question is, how well small
scale in-field heterogeneity is traced by the yield modelling
approach. For this, yield was estimated at a 5 m and at a 20 m
raster grid. The results were compared to evaluate the effect of
spatial resolution on the results. As validation data, sampling
points in two fields with a size of 4 m? were harvested manually
to measure the spatial distribution of sugar beet yield.

2. DATA AND TEST SITE

Plant parameter retrieval and yield estimation for sugar beet
have been conducted for a test site in Southern Germany. The
test site is located near Straubing next to the river Danube, at
the centre of the so called G&uboden, a region in Lower
Bavaria, which covers one of the largest loess regions in
Southern Germany.
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From 2012 to 2014 the development of the Leaf-Area-Index
(LAI) during the vegetation period was monitored for several
sugar beet fields. After assimilation into the crop growth model
yield has been estimated. A multi-sensor approach has been
used for the crop monitoring, since the whole vegetation period
should be covered with satellite data to ensure an accurate yield
model result.

The freely available data of the Landsat missions is well-suited
for plant parameter retrieval. The spatial resolution of 30 m is
sufficient for many applications in agriculture and the spectral
range from Visible to SWIR (Short Wave Infrared), the latter of
which is sensitive to plant water content, is ideal for agricultural
analyses. Besides Landsat, also RapidEye data is used. The
spectral configuration containing the red edge band and the
spatial resolution of 5 meters make the sensors very suitable for
vegetation monitoring, but the missing SWIR reduces the
spectral information content. With the constellation of five
satellites and pointing capabilities RapidEye allows to cover the
region of interest every day. Accordingly, data can be acquired
as soon as there is no cloud cover. Since the presented yield
estimation methods are used in an operational mode, a multi-
sensor approach is preferred for a reasonable compromise
between data availability, data quality and economic interests
(mix of cost-free and commercial data). For the test site, the
availability of data has been varying in the different years. For
2012, only Landsat 7 ETM+ images have been used. Since
2013, also Landsat 8 OLI data is available. For 2014 the input
data used are from Landsat 7 ETM+, Landsat 8 OLI and
RapidEye. Table 1 shows a list of the used satellite data. For the
analysis of these data, atmospheric correction was carried out to
obtain surface spectral reflectance. Based on the calibrated data,
the photosynthetically active leaf area is retrieved by using the
SLC model (Section 3.2). The resulting maps are then
assimilated into the crop growth model PROMET (Section 3.2)
to model the plant development and resulting yield.

23 July 2012 Landsat 7 ETM+ 22 May 2014 | RapidEye
9 Sept. 2012 Landsat 7 ETM+ 3 June 2014 Landsat 8 OLI
25 Sept. 2012 | Landsat 7 ETM+ 10 June 2014 | Landsat 8 OLI
11 Oct. 2012 Landsat 7 ETM+ 11 June 2014 | RapidEye
16 June 2013 | Landsat 8 OLI 19 June 2014 | Landsat 8 OLI
2 July 2013 Landsat 8 OLI 19 July 2014 RapidEye
3 Aug.2013 Landsat 8 OLI 2 Aug.2014 RapidEye
28 Sept. 2013 | Landsat 7 ETM+ 6 Aug.2014 Landsat 8 OLI
14 Oct. 2013 Landsat 7 ETM+ 7 Sept.2014 Landsat 8 OLI
7 Nov. 2013 Landsat 7 ETM+ 9 Oct.2014 Landsat 8 OLI

Table 1: Satellite data used for Plant Parameter Retrieval

For validation of the yield estimation, in-situ data was provided
by the farmer and the Stidzucker AG. Field mean values were
available for the years 2012 to 2014. This data is used to
validate the yield estimation for several years on field level.
However, the assessment of the small-scale heterogeneity of
yield requires spatially distributed data on smaller units than
field level. For other crop types, which are harvested with a
combine harvester, yield maps are potentially available. Such
spatially distributed data have been used in previous studies to
validate the in-field heterogeneity of the model results for
winter wheat [Bach & Angermair 2013]. But root-crop
harvesters as used for sugar beet do not map the vyield
distribution since the distinction between the roots and other

plant components or soil is not possible during harvesting
[Schmittmann 2002]. Thus, the validation of the vyield
estimation for sugar beet is more difficult since less data is
available. A common way to estimate sugar beet yield before
harvesting is destructive sampling at preselected points. This
method was extended by defining several sampling points
within one field to catch the spatial distribution of yield. The
sampling points were defined with a size of 4m? from satellite-
based biomass analyses, where high- and low-yield zones could
be distinguished. The field sampling was conducted by
Stdzucker AG following their standard procedures and
provided for two fields in 2014 (see Figure 1). This data set was
used for the validation of the small-scale variability.

® Sampling Points

Figure 1: Sampling points for sugar beet yield (Background
image: Rapid Eye image of Jul 19t 2014, UTM33N, colour
combination: 656nm, 710nm, 804nm)

3. MODELS AND METHODS
3.1 Satellite Data Processing

To ensure the comparability of multi-temporal, multi-sensoral
data and also the transferability of results, all used methods are
based on physical processes and modelling. Hence, the raw
satellite data has to be pre-processed extensively: it has to be
geometrically fine-adjusted, radiometrically calibrated and
atmospherically corrected. For this, the radiative transfer model
MODTRAN, which was developed by the US Airforce, 2015 is
used. This physically-based model calculates the path of the
light from the sun through the atmosphere, the interactions with
the surface and the path back through the atmosphere to the
sensor. A model inversion delivers the surface spectral
reflectance (MODTRAN interrogation technique [Verhoef &
Bach 2007]). This way, the reflectance of each pixel can be
calculated. Reflectance is a property of the surface that is
independent of the atmospheric condition and allows for
comparison between different images and hence for the analysis
of time series.

The data processing and LAI retrieval was done for all three
years at 20 m resolution. In 2014, for which the sampling points
are available, it was also carried out at 5 m, which is the
resolution of the RapidEye Level 3A Product.

For studying the impact of multi-sensoral data on vyield
estimation it would be desirable to have two complete
coverages of each sensor type following the whole growing
cycle. This, of course, is not realistic (see Table. 1). RapidEye
and Landsat vary not only in their spectral configuration but
also in spatial resolution. In order to mimic these differences
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and to allow for a similar temporal LAI monitoring [Hank et al.
2013], an alternative approach was chosen. The “Landsat 20m”
based assimilation uses spatially degraded RapidEye scenes
from 22 May and 19 July to fill temporal gaps at the beginning
and peak of the LAI development. The “RapidEye 5m” based
assimilation is complemented with Landsat derived LAI values
during crop maturity (7 Sep and 9 Oct). Table 2 lists the data
used for the respective yield estimations.

. “Land  “Rapi
Date in DOY Sensor AZA[°] GSD -sat20  dEye
2014 [m] » »
m S5m
22 May 142 RE 2.95 6.5 X X
10 June 161 oLl Nadir 30 X
11 June 162 RE 9.75 6.5 X
19 June 170 oLl Nadir 30 X X
19 July 200 RE 6.42 6.5 X X
2 Aug. 214 RE 0.27 6.5 X
6 Aug. 218 oLl Nadir 30 X
7 Sept. 250 oLl Nadir 30 X X
9 Oct. 250 oLl Nadir 30 X X

Table 2: Satellite data used for 5m and 20m yield estimation;
light green indicates that these dates have been used for inter-
sensor comparison (RE= RapidEye, OLI = Landsat 8
Operational Land Imager, AZA= Acquisition Zenith Angle,
GSD = Ground Sampling Distance of original satellite image,
DOY=Day of Year)

3.2 The Radiative Transfer Model SLC

For the retrieval of the plant parameters, an inversion of the
SLC model, an extended version of the SAIL model family, is
applied [Verhoef & Bach 2003, 2007]. Based on a four-stream
concept, the radiative transfer between soil, canopy and single
leaves is modelled. The PROSPECT [Jacquemoud & Baret
1990] sub-model is used to describe the transmittance of green
and brown leaves [Migdall et al. 2009]. The input parameters
for the forward modelling of reflectance describe the structural
and physiological properties of the soil and the vegetation
canopy, among them Leaf-Area-Index (LAI) and the fraction of
brown leaves, characteristics of the leaves (e.g. chlorophyll
content and plant water content) as well as the sun-observer
geometry [Verhoef & Bach 2012].

Input parameters:

ation

Soil BRDF parameters (b, ¢, B0, h) ﬁﬂ
Dry soil reflectance spectrum
Soil moisture

Leaf chlorophyll

Leaf water

Leaf dry matter

Leaf mesophyll structure

e

Fluxes considered : LAI - leaf area index

. Leaf angle distribution
i waspopaann g0
3. Diffuse upward flux Fraction of mature material

Tt P i Dissociation factor: green / brown
4. Direct observed flux (radiance) Crown coverage

Figure 2: The SLC model and its input parameters [Verhoef &
Bach 2003, 2007]

Figure 2 on the right-hand side lists the required input
parameters. On the left-hand side it shows the four radiation
fluxes considered in the SLC model. The parametrization of the
SLC model takes the Spectral-Response-Function of the sensors
into account. Therefore, it can be adapted to any sensor
according to the sensor’s spectral and geometrical properties
[Migdall et al. 2009]. The sun-observer geometry is recorded
during the image acquisition and therefore is known. The soil
reflectance and its variation with moisture are described by a
soil BRDF (bi-directional reflectance distribution function) sub-
model, based on the soil model by Hapke, 1981. Some of the
leaf and canopy parameters are assumed to be constant for one
crop type or within one specific phenological stage and are
either obtained from literature or were determined using
hyperspectral and in-situ data. The remaining parameters, which
are highly variable (e.g. LAI, chlorophyll), can be retrieved by
model inversion using the RMS error between the simulated
and the measured spectra as criterion for the best fit [Migdall et
al. 2009].

3.3 The Crop Growth Model PROMET

While optical remote sensing data can retrieve accurate
information on the developed leaf area, it cannot see the
absolute biomass or its distribution into the different plant
compartments. It can definitely not directly observe the root
biomass, which in case of sugar beets makes up the actual yield.

Therefore, the green leaf area serves as spatially distributed
input for crop growth and yield modelling with PROMET
[Mauser & Bach 2009, Hank et al. 2015]. This multi-physics,
raster-based model calculates crop growth based on the
physiological processes in the plant, including the distribution
of biomass into the different plant organs (roots, stem, leaves
and fruit) at different phenological stages. The model calculates
the plant growth in hourly time-steps for the whole growing
period, using background data such as a Digital Terrain Model
and Soil Maps as well as up-to-date meteorological data. The
model generates in an ensemble mode different scenarios for
varying soil conditions [Hank et al. 2015].

Green LAI maps, retrieved with the SLC model, are used to find
the scenario that fits the current growth conditions best. For
this, the LAl maps are assimilated into the plant growth
simulation as raster data sets. Small-scale soil variations due to
e.g. different water holding capacity, which cannot be included
in the more generalized background data, will thus be
considered in the modelling [Migdall et al. 2009]. Since the
unknown spatial heterogeneity of soil conditions is considered a
major cause for in-field variations of plant development, the
assimilation of remotely sensed data into the model improves
the model outcomes significantly [Hank et al. 2015]. The
concept of assimilating multi-sensoral EO data into PROMET is
shown in Figure 3.
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Figure 3: Concept of using PROMET maodel ensembles for assi-
milating multi-sensoral remote sensing data, modified after
Hank et al. 2015

4. RESULTS

Based on the pre-processed data, the inversion of the SLC
model was applied to retrieve the green LAI. Then, the green
LAI was assimilated into the crop growth model at 5m and 20m
resolution to estimate yield. The following section shows the
results.

4.1 Impact of different Sensors on Plant Parameter
Retrieval

Figure 4 shows the results for the green LAI retrieval for all
available scenes in 2014 over the whole sugar beet growing
period. Two different effects can be observed in this figure. For
one, the LAI time series derived from different sensors is
consistent. There is no large deviation due to sensor
characteristics, only small differences of about 0.15 LAI occur
at Day of Year 218. Secondly, true temporal coverage of the
crop growing period is only possible through the combination
of multi-sensor data. From the four RapidEye acquisitions, just
two are at about the same time as the Landsat data. For these
data pairs, quantitative comparisons of atmospherically
corrected spectral signatures and retrieved LAI values are given.
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Figure 4: LAl retrieval for 2014 based on Landsat OLI/ETM+
and RapidEye data

Figure 5 shows the comparison of the average reflectance
measured for sugar beet with RapidEye and Landsat 8 OLI for
the DOY 214/218.
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Figure 5: Reflectance measured for Sugar Beet with Landsat 8
OLI and RapidEye

While the visible bands of Landsat and RapidEye correspond to
a large extent in their spectral response function (SRF), the NIR
bands differ substantially [Blackbridge 2012, NASA 2015].
This can also be recognized in the shift of central wavelength of
the NIR band in Figure 5. The challenge of the multi-sensor
approach is to take these different spectral configurations for the
plant parameter retrieval into account. The parametrization of
the SLC model uses the SRF of the sensors [Migdall et al.
2009]. Thus, the influence of the spectral configurations should
not lead to differences in the retrieved plant parameter. Whether
those requirements are fulfilled is analysed by comparing the
LAI derived from different sensors acquired during the same
timeframe as described above.

Figure 6 shows the LAI retrieved with RapidEye compared to
the LAI retrieved with Landsat 8 OLI for each 20m pixel. The
discrete steps visible in this scatter plot are caused by the
applied Look-Up-Table inversion. The steps of the tables can be
recognized and the non-linear stepping is visible (smaller steps
for lower LAI values where higher accuracies are targeted). The
absolute values of LAI retrieval show a high congruency, as the
gain with 0.97 is very close to 1. The RMSE between the two
sensor retrievals amounts to 0.6 m¥m2 The scattering of the
values increases with increasing LAI values. This is caused by a
saturation effect that occurs at very high LAI values and makes
a distinction between LAI 5 and 6 much more difficult than
between 2 and 3 [Bach et al. 2012].
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Figure 6: Comparison of LAI retrieval based on Landsat
OLI/ETM+ and RapidEye data for the two dates analysed (blue:
DOY 161, red: DOY 218)
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Table 3 compares the averages of the retrieved LAI. The
disagreement of the LAI is 0.4 and 0.1 for the two analysed
dates. There is no systematic offset observable, as the deviation
occurs in both directions.

DOY Plant Parameter oLl RE
Green LAI

161/162 [m2 /m?] 2.4 2.8
Green LAI

214/218 [m? /m?] 4.8 4.7

Table 3: Plant Parameter retrieved from OLI and RE

4.2 Multi-Sensor-based Yield Estimation for Sugar Beet
2012 - 2014

Sugar beet plant parameter retrieval was done for three
consecutive years. The next question to answer is how accurate
this multi-sensor approach is. In the years 2012 and 2013, only
Landsat ETM+/OLI| data was available, whereas in 2014 all
three sensors have been used.

Figure 7 shows the mean LAI development of all three observed
years. Sugar beet development has differed significantly in
those years. The peaks of the LAI development are in 2012 and
2014 much earlier and higher in absolute value than in 2013.
Furthermore, the increase of the LAI was slower in 2013. These
differences are mainly caused by the weather conditions. In
2013, seeding took place almost one month later then in 2014
due to snow cover, rain and wet soil conditions. Extreme
weather conditions were dominant during the whole year. A
phase with heavy rainfall in June was followed by drought in
July. Altogether, the growing season was four weeks shorter in
2013 than in 2014. In contrast, the conditions in 2014 were
ideal. The seeding took place very early and the weather
conditions were optimal for sugar beet growing during the
whole season.

The varying LAI development leads to a different amount of
accumulated biomass in the roots and thus to yield differences.
This results in a very high modelled yield in 2014, where the
LAl is constantly higher than in the other years. In contrast, the
modelled yield in 2013 is very low which is expected due to the
late start and slow LAl increase.
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Figure 7: Development of LAl in the years 2012 to 2014

These modelled results are validated with available in-situ data
as shown in figure 8. The different colours represent the three

years. The linear regression, which is very close to the 1-to-1-
line, proofs that the approach is very suitable for sugar beet
yield estimation. Both, the absolute values of vyield and
variations on field level are well reproduced by the model. Not
only the variation between different years but also the spatial
variations between fields in each year are well represented. A
gain value very close to one shows that there is no offset in the
modelling results, neither in very low nor in very high yield
ranges. This is also indicated by the low RMSE of 4.4 t/ha,
which is only 4.5% of the yield mean over all 3 years.
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Figure 8: Yield validation on field level

Concluding, it could be shown that with the multi-sensor
approach it is possible to retrieve plant parameters and to model
yield with a high accuracy on field level.

4.3 Validation of Modelled In-Field Heterogeneity

The validation of the multi-sensor yield modelling should not
be limited to field averages, but also consider the accuracy of
the modelling of the in-field heterogeneity of yield. Sampling
points within the sugar beet fields were harvested by hand to
assess the spatial distribution of the yield. This was done for
two fields in 2014 and the collected data was used for validation
of the modelled yield maps (see Figure 1). There is usually
some loss of yield during harvesting with a root-crop harvester.
This loss is calculated as 7% by comparing the mean of the
sampling points with effective yield of the fields. Accordingly,
the yield samples were multiplied with the factor 0.93 for
comparison with the model results.

The LAI retrieval and yield modelling was performed at 5 m
(“RapidEye like”) and at 20 m (“Landsat like™) resolution. The
average yield of the “Landsat-like 20m” and “RapidEye-like
Sm” yield results vary only slightly (see Table 4). This supports
the conclusion that the multi-sensoral approach is reliable and
produces comparable results.
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Field- Mean Yield Mean Yield
number “LS 20 m” [t/ha] “RE 5 m” [t/ha]

2808 119.3 122.6

2877 114.3 116.8

2920 108.6 110.6

2961 113.0 115.7

Table 4: Results of the yield estimation for the “Landsat like
20m* and the “RapidEye like Sm” estimation

On the other hand, this approach also allows to compare the
effect of sensor resolution in terms of spatial accuracy of yield.
Figure 9 shows the yield maps in 20 m and 5 m resolution for
one field in comparison with the sampling points for both fields.
While the same overall structures can be seen in both
resolutions, the additional detail in the 5m version is visible. In
the 5 m yield map even row structure becomes visible.

Figure 9: Results of yield modelling in 20 m (left) and 5 m
(right) resolution in comparison with sample points

Figure 10 shows the result of the validation for 20 m and Figure
11 for 5 m. The higher resolution could improve the coefficient
of determination (R?), which means that the spatial variance is
better reproduced. But also it could be shown that with only the
Landsat data small scale variability can be modelled with
adequate results.
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Figure 10: Yield validation sampling points -
yield modelled at 20m resolution
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Figure 11: Yield validation sampling points -
yield modelled in 5 m resolution

5. CONCLUSIONS

For precision farming applications, the management unit is not
the whole field. Management is rather conducted on smaller
units depending on the spatial distribution of site-characteristics
and the working width of the machinery (e.g. 24 m or 36 m).
With sugar beet, site-specific applications are not common yet
(in opposition to e.g. wheat), because site-specific information
about sugar beet growth and especially yield is hard to come by,
as the main biomass is under ground and there is no technology
for site-specific harvesting of sugar beets available on the
market yet. Therefore, information derived from EO data and
crop growth modelling is a new and exciting spatial data source
for new site-specific sugar beet applications.

Yield estimation based on SLC and PROMET was successfully
conducted for sugar beet during 3 consecutive years. It could be
shown that the accuracy of the yield estimation is very high on
field level. Additionally, the small-scale in-field variety is
modelled with adequate results at 20 m raster size, but even
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better results are achieved at a 5 m raster. The comparison of
the LAI retrieval based on RapidEye and OLI shows that the
SLC model and the data assimilation concept in PROMET is
very suitable for the multi-sensor approach, since it is physically
based and SLC takes the individual spectral configurations of
the different sensors into account.

The demonstration that satellite data of variable spectral and
spatial characteristics can be successfully used in crop yield
estimation is of special importance, since using only one sensor
often does not allow monitoring the LAI development very
well. Thus, the multi-sensor approach can improve the accuracy
of the yield estimation by increasing the number of assimilated
LAI maps.

The presented methods can be used in an operational mode to
support site-specific farming for sugar beet. The up-to date
plant monitoring based on satellite imagery can be used for the
daily assessment of the sugar beet crop. Thus, the occurrence of
plant diseases, pests and other challenges can be detected early
and the necessary measures can be conducted. Some
phenological stages are very important for the vegetation
development, e.g. the phase of row closure. This information
can be provided spatially distributed. Additionally, the crop
growth model delivers information on the root development,
which is not observable from above. Using this information, the
harvesting can be optimised in terms of logistics and time
planning [Angermair & Bach 2015].
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