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ABSTRACT:

An airborne campaign was performed during August, 2014 in an agricultural area in the Duero basin (Spain) in order to appraise the
synergy between very different sources of Earth Observation imagery, and very different instruments for soil moisture retrieval.
During the flight, an intensive field campaign comprising soil, plant and spectral measurements was carried out. An innovative
sensor based on the Global Navigation Satellite Systems Reflectometry (GNSS-R) was on board the manned vehicle, the Light
Airborne Reflectometer for GNSS-R Observations (LARGO) engineered by the Universitat Politécnica de Catalunya. While the
synergy between thermal, optical and passive microwave spectra observations is well known for vegetation parameters and soil
moisture retrievals, the experiment aimed to evaluate the synergy of GNSS-R reflectivity with a time-collocated Landsat 8 imagery
for soil moisture retrieval under semiarid climatic conditions. LARGO estimates, field measurements, and optical, NIR, SWIR and
thermal bands from Landsat 8 were compared. Results showed that the joint use of GNSS-R reflectivity with vegetation and water
indices together with thermal maps from Landsat 8 thoroughly improved the soil moisture estimation.

1. INTRODUCTION

The potential of the Global Navigation Satellite Systems
Reflectometry (GNSS-R) to monitor vegetation and soil
variables has been addressed in recent experiments, all based on
the attenuation and scattering that vegetation cover produces
into the GNSS signal before it impinges on the ground and after
it is reflected to the receiver. Recent studies have shown that
GNSS-R signal has high sensitivity to the terrain dielectric
constant under ground-based and airborne conditions (Egido et
al., 2012; Kavak et al., 1998; Larson et al., 2010; Rodriguez-
Alvarez et al., 2011). However, due to the novelty of this
technique, the performance of airborne reflectometers for
vegetation/soil ~ applications remains unexplored, being
challenging for planning new dedicated GNSS-R space-borne
missions. A new insight on the synergy between GNSS-R
reflectivity and available optical, infrared and thermal data is
presented. In this line, a new approach merging the reflectivity
map retrieved from the Light Airborne Reflectometer for GNSS
Observations (LARGO) instrument (Alonso-Arroyo et al.,
2014), and thermal and optical maps from Landsat 8 is
presented. The synergy between low-resolution microwave and
high-resolution optical from remote sensing data is likely to
help to achieve a multi-resolution soil moisture retrieval
approach (Merlin et al., 2005; Piles et al., 2014). The current
research following this line is mainly devoted to downscaling or
merging data from microwave radiometers or scatterometers at
L band and broad spatial resolution (e.g., data from the Soil
Moisture and Ocean Salinity mission, SMOS) with
optical/infrared imagery from multispectral sensors (e.g. the
Moderate Resolution Imaging Spectroradiometer, MODIS).
Many disaggregation methods using visible and near infrared
(VNIR) data as inputs have been applied to improve the
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retrieval of soil moisture, but little research has been done
combining the short-wave infrared (SWIR)-based indices
(Sanchez-Ruiz et al., 2014) and the red, green and blue (RGB)-
based (Sanchez et al., 2014) into the L-band space. The aim of
this work is to show the convergence of optical and thermal data
with the GNSS-R reflectivity to improve the conventional soil
moisture retrieval from GNSS-R sources. Moreover, the optical
and thermal datasets at high resolution (30 m) provided a spatial
framework to adjust the resolution of the retrieved soil
moisture. A total of two RGB-based indices and five NIR and
SWIR-based indices were tested as a proxy of the vegetation
and soil status, together with the land temperature, all of them
from Landsat 8. Besides, the LARGO observations were
converted into reflectivity maps preserving the Landsat 8 spatial
resolution.

2. AIRBORNE GNSS-R OBSERVATIONS AND FIELD
CAMPAIGN

The airborne campaign was carried out during the first week of
August 2014 to test the feasibility of the LARGO reflectivity for
estimating soil moisture at high spatial resolution. The
experiment took place in an agricultural area near the Guarefia
River, tributary of the Duero River in the centre of the Iberian
Peninsula (5.36°W; 41.30°N). The main land use was vineyard
(100 ha), but some areas of pasture, fallow, irrigated crops and
forest were also present (Figure 1).

The flight height was between 500 and 700 m, and lasted from 8
AM to 10:30 AM. During the flight, field measurements of soil
moisture (5 cm) and surface temperature were taken at 102
ground points, together with data from 17 permanent soil
moisture stations at the area. Thus, a total of 119 observations
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were collected (Figure 2). As it is usual under Mediterranean
conditions in summer, the in situ observed soil moisture was
very low, ranging from up to 3% in the vineyard and up to 14%
in the wetter areas, the pasture field near the river.
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Figure 1. Location of the study area and land use map.
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Figure 2. Sampling layout.

The LARGO instrument used in this field campaign is an
improved version of a previous LARGO used before in
(Alonso-Arroyo et al., 2014), as it had a calibration switching
matrix added. The LARGO instrument is a dual-channel
instrument that estimates in real-time the coherent reflectivity
from transmitted RHCP (Right Hand Circular Polarization)
GNSS signals and received LHCP (Left Hand Circular
Polarization) reflected GNSS signals. This reflectivity is
estimated by dividing the waveform peaks (after noise floor
subtraction) of the reflected and direct signals, which are
calculated independently. It includes a GPS receiver to geo-
locate the platform, to compute the position of the specular
reflection points, and to aid the correlators to apply correlations
only against the satellites under observation and not all
satellites. The computation of the specular reflection point/area
to generate the reflectivity is done by a geometrical approach.
For each of the reflectivity measurements, the position of the
corresponding satellite on the sky is observed by means of its
azimuth and elevation. As GNSS satellites are more than 20.000
km far away from the Earth, it is possible to apply the paraxial
approximation, condition under which the direct GNSS signal
and the reflected one arrive to the Earth as a plane
electromagnetic wave with the same incidence/elevation angle.
So, by knowing the height of the platform (GPS data) and the
satellite position it is straightforward to geo-locate the reflection
points. The GNSS-R data resolution depends on the platform

height, and it is assumed for land observations, that the main
reflected power comes from the first Fresnel zone (Masters et
al., 2004) under specular reflection. In flat surface conditions,
the incidence angle of the GNSS-R data, which is an important
parameter for the reflectivity estimation, is the complementary
angle of the GNSS satellite elevation angle.

3. DATA AND TREATMENT
3.1 LARGO dataset

A preliminary reflectivity map has been obtained (Figure 3)
where several reflectivity regions can be identified. On the
upper-left part, there is a region where reflectivity ranges from -
10 to -12 dB. Nevertheless, on most part of the field reflectivity
ranges from -14 to -18 dB and there are some specific regions
where reflectivity falls below -20 dB. This occurs due to the dry
conditions during the experiment. When the field campaign was
done the soil moisture lower than 5% for nearly the whole field
site despite one region where soil moisture ranged between 10-
15%.
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Figure 3. Preliminary reflectivity map from LARGO.

3.2 Landsat 8 dataset

In this approach, a Landsat 8 scene (202-031 path-row) of 12
August, 2014 was selected for testing its opportunity to be
included with LARGO. Landsat 8 carries two instruments: The
Operational Land Imager (OLI) sensor including 8 multispectral
bands at 30 m, and the Thermal Infrared Sensor (TIRS)
providing two thermal bands at 100 m, resampled to the same
30 m of the multispectral bands. TIRS acquires data in two
spectral channels covering 10.60-11.19 pm and 11.50- 12.51um
(bands 10 and 11). Besides, bands blue (450 nm-510 nm), green
(530 nm-590 nm), red (640 nm-670 nm), NIR (850 nm-880
nm), SWIR 1 (1570 nm-1650 nm), and SWIR 2 (2100 nm-2290
nm) from OLI were selected.

The images were provided in Level 1T, geometrically and
terrain corrected. Ground reflectance was retrieved using
atmospheric correction with ATCOR in PCI Geomatica 2013
applying the file metadata (Figure 4, left). Regarding the TIRS,
the results of the vicarious calibrations of TIRS bands suggest
that Band 11 data should not be used where absolute calibration
is required (Barsi et al., 2014) due to a out-of-field stray light in
the telescope. Thus, only band 10 data was selected for
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converting from spectral radiance to brightness temperature and
further LST (Figure 4, right).
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Figure 4. Left, Landsat 8 RGB composite. Right, Landsat 8
temperature.

In a similar approach to this work, Sanchez-Ruiz et al. (2014)
showed the feasibility of SWIR indices to disaggregate passive
L-band observations owing the absorption effects in this band.
Thus, taking advantage of the SWIR bands of Landsat 8, the so-
called Normalized Difference Water Indices (Gao, 1996) were
calculated in the SWIR space:

NDWI1-NIR=(pnir-pswire)/ (pPNIR+PswiIRL) (1)
NDWI2-NIR=(pnir-pswirz2)/(pNIRTPswIR2) (2)

where pnir, pswirt and pswirz refers to the reflectivity of bands
NIR, SWIR 1 and SWIR 2 of Landsat 8 respectively. A high
value of NDWI 1 and NDWI 2 is a consequence of a higher
reflectance in the NIR band, than in the SWIR-1 and SWIR-2
bands, regions of water absorption. Thus, this indicates
sufficient quantities of water in the canopy for photosynthetic
activity, and thus green and healthy vegetation. The normalized
ratios respect to the red band were also calculated (egs. 3 and
4).

NDWI1-red=(pred-pswire)/(pred-+pswir1) 3
NDWI2-red=(pred-pswirz)/(pred-+pswirz) 4)

Whereas the NDWI-NIR indices are related to the vegetation
water content, these NDWI-red indices are related to the soil
water content, since the absorption of water content of the soil
in the red band is negligible, whereas the SWIR band exhibited
absorption. Thus, it is expected that the wetter the soil, the
higher the absorption in bands SWIR and a smaller reflectance.
Accordingly, a positive value of NDWI-red indicates wet soil
and, conversely, negatives values denote dry soils.

NDWI indices based in the SWIR region may be considered
water indices, depicting either the vegetation or soil water
status. Indices based in the NIR spectra relate to the vegetation
health and vigour, combined with the RGB region.

Indices in the RGB region were also tested, as they have been
widely used to monitor vegetation status. Ratio of the
reflectance of green and red bands was tested, which is sensitive
to the ratio between chlorophyll and anthocyanin (Kanemasu,
1974). Its normalized version is known as the Green-Red
Vegetation Index (GRVI) (Tucker, 1979):

GRVI :(pgreen'pred)/(pgreen+pred) (5)

where pgreen and pred are the reflectance of visible green and red,
respectively. The response of GRVI to various ground covers
may be simple to interpret because for densely vegetated covers
the reflectance of the vegetation cover in the green band is
higher than in the red one, reaching high values.

Finally, the portion of green reflectance of the whole RGB
space is computed as the Greenness index (eq. 6). Low index
indicates barely vegetated covers. Also the NDVI was obtained
and tested from the red and NIR bands (eq. 7)

Greenness:pgreen/ (pgreen+pred+pblue) (6)
NDV I=(pNir-pred)/ (PNIR+Pred) Q)

3.3 Statistical analysis

3.4.1. Correlations: The values from the imagery based on the
locations of the ground measurements were extracted and
compared to the in situ soil moisture values at these particular
locations. The preliminary analysis of the relationship gave an
idea of the best indices correlated with soil moisture and surface
temperature, as well as with LARGO.

3.4.2. Multiple regression: The relationship between soil
moisture, NDVI and LST was expressed through a regression
formula. In this multiple regression, LARGO reflectivity was
also included, following the approach of Piles et al. (2011;
2014) who included the brightness temperature from the L-
Band radiometer of SMOS. Hence, the synergies of Landsat-
derived LST and indices, LARGO reflectivity and in situ soil
moisture are expressed through a linear linking model as
follows:

Y =ao+aiX1+az Xz +az Xs 8)

where the dependent variable Y represents soil moisture, and
the independent variables Xi, Xz, and Xs are the LST, the
LARGO reflectivity and the corresponding index, respectively.
a0, a1, a2, and asz are the coefficients of the regression. A system
of linear equations with an equation per location of in situ
measurement was set up, by extracting their value of each
variable from each image. Thus, a system of linear equations
was set up for the pixels of the in situ sample. The system was
solved to obtain the regression coefficients. Metrics of the
regression (multiple correlation) were used to evaluate the
performance of the linking model and how well the set of
variables can predict soil moisture.

4. RESULTS AND DISCUSSION
4.1 Correlation between datasets

The results of the relationships between variables in terms of
the Pearson correlation coefficient (Table 1) showed a clear
pattern between several indices and soil moisture. GVRI,
NDWI2-red and NDWI2-NIR showed a high correlation with
soil moisture. Hence, the SWIR 2 band resulted better for
describing soil moisture contents than the SWIR 1.

Regarding the correlation between indices and temperature,
only NDWI1-NIR and NDWI2-NIR showed suitable
correlation. The reflectivity seemed to be barely influenced by
the vegetation cover since there was no correlation with the
vegetation (1)iadices.  Only  with  GVRI  (R=-0.43) and
NDWI2_NIR (R=0.48) showed noteworthy correlations (not
shown in a table owing the poor results). However, a promising
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result of correlation between LARGO and soil moisture was
found (R=0.37), suggesting a certain potential of the LARGO
reflectivity to explain the former. The hypothesis was that the
fusion of each index with the LARGO reflectivity and the
temperature improved the soil moisture estimation with respect
to the one taking each variable separately.

R In situ
sm T

GVRI -0.69 0.07*
Greenness 0.07* 0.29
NDVI -0.26 -0.27
NDWI1-red 0.37 0.02*
NDWI2-red 0.59 -0.06*
NDWI1-NIR 0.06 -0.56
NDWI2-NIR 0.57 -0.48
LARGO 0.37 -0.28

Table 1. Correlation coefficients (Pearson) between variables.
*not significant correlations. In bold, best correlations found.

4.2 Multiple regression

The indices that seemed to better characterize both soil moisture
and temperature were GVRI, NDWI2-red, NDWI1-NIR and
NDWI2-NIR. Thus, these indices were included in each
multiple regression, together with thermal and reflectivity data,
and were adjusted to the soil moisture observations (Table 2). A
good fit was found for all of them, with a coefficient of
correlation R >0.60 in all cases except for NDWI1-NIR, which
seemed inadequate for the soil moisture estimation.

Multiple R In situ sm
LARGO
GVRI 0.70
NDWI2-red 0.64
NDWI1-NIR 0.37
NDWI2-NIR 0.61

Table 2. Statistical results of the linking model for the two
LARGO datasets and the chosen indices. *not significant
correlations.

The dry conditions of the field campaign difficult the soil
moisture retrieval using this technology. In this line, Valencia et
al. (2010) find very low correlation between reflectivity and soil
moisture under very dry conditions. However, the results of the
present approach can be considered very satisfactory, even
though future campaigns under other environmental conditions
should be tested. Moreover, the methodology, which is a
current strategy of downscaling soil moisture products, has the
advantage to perform at any spatial resolution, from several
meters (Sanchez et al., 2014) to kilometres (Piles et al., 2011).
This versatility allowed to explore the optimal spatial resolution
to transform the at-point scale GNSS-R observations into
reflectivity maps and further soil moisture maps.

5. CONCLUSIONS

The objective of this work was to test the capability of an
airborne source of GNSS-R data for estimating and
characterizing both vegetation cover and soil moisture status.
Owing the expected development of new GNSS-R-based
missions, the potential interactions between soil moisture
estimates and observations at high resolution from airborne or

satellite sensors allow for synergistic approaches that can be
later transferred to sensors on-board satellite platforms.
Regarding the vegetation, and considering the particular
climatic and vegetation conditions of the experiment, the
reflectivity from the airborne LARGO at Landsat resolution did
not show sensitivity to the main vegetation covers in the area.
However, a certain relationship to soil moisture was detected.
This relationship was strongly reinforced if the reflectivity was
merged with the surface temperature and some vegetation/water
indices, all of them from the Landsat 8 bands. Indeed,
encouraging correlations were found (R>0.60) when applying a
multiple regression model that linked the soil moisture to the
temperature, the index (GVRI, NDWI2-red or NDWI2-NIR)
and the reflectivity altogether. These correlations were much
higher than taking each variable separately. These results
suggested that some flexibility to retrieve soil moisture at any
spatial resolution can be expected from the combination of
conventional sensors with the upcoming GNSS-R sources. The
results demonstrate the potential of using conventional
vegetation/water indices and thermal bands from current
satellite missions in combination with GNSS-R observations.
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