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ABSTRACT: 
 
An airborne campaign was performed during August, 2014 in an agricultural area in the Duero basin (Spain) in order to appraise the 
synergy between very different sources of Earth Observation imagery, and very different instruments for soil moisture retrieval. 
During the flight, an intensive field campaign comprising soil, plant and spectral measurements was carried out. An innovative 
sensor based on the Global Navigation Satellite Systems Reflectometry (GNSS-R) was on board the manned vehicle, the Light 
Airborne Reflectometer for GNSS-R Observations (LARGO) engineered by the Universitat Politècnica de Catalunya. While the 
synergy between thermal, optical and passive microwave spectra observations is well known for vegetation parameters and soil 
moisture retrievals, the experiment aimed to evaluate the synergy of GNSS-R reflectivity with a time-collocated Landsat 8 imagery 
for soil moisture retrieval under semiarid climatic conditions. LARGO estimates, field measurements, and optical, NIR, SWIR and 
thermal bands from Landsat 8 were compared. Results showed that the joint use of GNSS-R reflectivity with vegetation and water 
indices together with thermal maps from Landsat 8 thoroughly improved the soil moisture estimation.  
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1. INTRODUCTION 

The potential of the Global Navigation Satellite Systems 
Reflectometry (GNSS-R) to monitor vegetation and soil 
variables has been addressed in recent experiments, all based on 
the attenuation and scattering that vegetation cover produces 
into the GNSS signal before it impinges on the ground and after 
it is reflected to the receiver. Recent studies have shown that 
GNSS-R signal has high sensitivity to the terrain dielectric 
constant under ground-based and airborne conditions (Egido et 
al., 2012; Kavak et al., 1998; Larson et al., 2010; Rodriguez-
Alvarez et al., 2011). However, due to the novelty of this 
technique, the performance of airborne reflectometers for 
vegetation/soil applications remains unexplored, being 
challenging for planning new dedicated GNSS-R space-borne 
missions. A new insight on the synergy between GNSS-R 
reflectivity and available optical, infrared and thermal data is 
presented. In this line, a new approach merging the reflectivity 
map retrieved from the Light Airborne Reflectometer for GNSS 
Observations (LARGO) instrument (Alonso-Arroyo et al., 
2014), and thermal and optical maps from Landsat 8 is 
presented. The synergy between low-resolution microwave and 
high-resolution optical from remote sensing data is likely to 
help to achieve a multi-resolution soil moisture retrieval 
approach (Merlin et al., 2005; Piles et al., 2014). The current 
research following this line is mainly devoted to downscaling or 
merging data from microwave radiometers or scatterometers at 
L band and broad spatial resolution (e.g., data from the Soil 
Moisture and Ocean Salinity mission, SMOS) with 
optical/infrared imagery from multispectral sensors (e.g. the 
Moderate Resolution Imaging Spectroradiometer, MODIS). 
Many disaggregation methods using visible and near infrared 
(VNIR) data as inputs have been applied to improve the 

retrieval of soil moisture, but little research has been done 
combining the short-wave infrared (SWIR)-based indices 
(Sánchez-Ruiz et al., 2014) and the red, green and blue (RGB)-
based (Sánchez et al., 2014) into the L-band space. The aim of 
this work is to show the convergence of optical and thermal data 
with the GNSS-R reflectivity to improve the conventional soil 
moisture retrieval from GNSS-R sources. Moreover, the optical 
and thermal datasets at high resolution (30 m) provided a spatial 
framework to adjust the resolution of the retrieved soil 
moisture. A total of two RGB-based indices and five NIR and 
SWIR-based indices were tested as a proxy of the vegetation 
and soil status, together with the land temperature, all of them 
from Landsat 8. Besides, the LARGO observations were 
converted into reflectivity maps preserving the Landsat 8 spatial 
resolution. 
 

2. AIRBORNE GNSS-R OBSERVATIONS AND FIELD 
CAMPAIGN 

The airborne campaign was carried out during the first week of 
August 2014 to test the feasibility of the LARGO reflectivity for 
estimating soil moisture at high spatial resolution. The 
experiment took place in an agricultural area near the Guareña 
River, tributary of the Duero River in the centre of the Iberian 
Peninsula (5.36ºW; 41.30ºN). The main land use was vineyard 
(100 ha), but some areas of pasture, fallow, irrigated crops and 
forest were also present (Figure 1). 
 
The flight height was between 500 and 700 m, and lasted from 8 
AM to 10:30 AM. During the flight, field measurements of soil 
moisture (5 cm) and surface temperature were taken at 102 
ground points, together with data from 17 permanent soil 
moisture stations at the area. Thus, a total of 119 observations 
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were collected (Figure 2). As it is usual under Mediterranean 
conditions in summer, the in situ observed soil moisture was 
very low, ranging from up to 3% in the vineyard and up to 14% 
in the wetter areas, the pasture field near the river.  

 

 

Figure 1. Location of the study area and land use map. 

 
Figure 2. Sampling layout. 

 
The LARGO instrument used in this field campaign is an 
improved version of a previous LARGO used before in 
(Alonso-Arroyo et al., 2014), as it had a calibration switching 
matrix added. The LARGO instrument is a dual-channel 
instrument that estimates in real-time the coherent reflectivity 
from transmitted RHCP (Right Hand Circular Polarization) 
GNSS signals and received LHCP (Left Hand Circular 
Polarization) reflected GNSS signals. This reflectivity is 
estimated by dividing the waveform peaks (after noise floor 
subtraction) of the reflected and direct signals, which are 
calculated independently. It includes a GPS receiver to geo-
locate the platform, to compute the position of the specular 
reflection points, and to aid the correlators to apply correlations 
only against the satellites under observation and not all 
satellites. The computation of the specular reflection point/area 
to generate the reflectivity is done by a geometrical approach. 
For each of the reflectivity measurements, the position of the 
corresponding satellite on the sky is observed by means of its 
azimuth and elevation. As GNSS satellites are more than 20.000 
km far away from the Earth, it is possible to apply the paraxial 
approximation, condition under which the direct GNSS signal 
and the reflected one arrive to the Earth as a plane 
electromagnetic wave with the same incidence/elevation angle. 
So, by knowing the height of the platform (GPS data) and the 
satellite position it is straightforward to geo-locate the reflection 
points. The GNSS-R data resolution depends on the platform 

height, and it is assumed for land observations, that the main 
reflected power comes from the first Fresnel zone (Masters et 
al., 2004) under specular reflection. In flat surface conditions, 
the incidence angle of the GNSS-R data, which is an important 
parameter for the reflectivity estimation, is the complementary 
angle of the GNSS satellite elevation angle.  
 

3. DATA AND TREATMENT 

3.1 LARGO dataset 

A preliminary reflectivity map has been obtained (Figure 3) 
where several reflectivity regions can be identified. On the 
upper-left part, there is a region where reflectivity ranges from -
10 to -12 dB. Nevertheless, on most part of the field reflectivity 
ranges from -14 to -18 dB and there are some specific regions 
where reflectivity falls below -20 dB. This occurs due to the dry 
conditions during the experiment. When the field campaign was 
done the soil moisture lower than 5% for nearly the whole field 
site despite one region where soil moisture ranged between 10-
15%. 
 

 
Figure 3. Preliminary reflectivity map from LARGO. 

 
3.2 Landsat 8 dataset 

In this approach, a Landsat 8 scene (202-031 path-row) of 12 
August, 2014 was selected for testing its opportunity to be 
included with LARGO. Landsat 8 carries two instruments: The 
Operational Land Imager (OLI) sensor including 8 multispectral 
bands at 30 m, and the Thermal Infrared Sensor (TIRS) 
providing two thermal bands at 100 m, resampled to the same 
30 m of the multispectral bands. TIRS acquires data in two 
spectral channels covering 10.60-11.19 µm and 11.50- 12.51µm 
(bands 10 and 11). Besides, bands blue (450 nm-510 nm), green 
(530 nm-590 nm), red (640 nm-670 nm), NIR (850 nm-880 
nm), SWIR 1 (1570 nm-1650 nm), and SWIR 2 (2100 nm-2290 
nm) from OLI were selected. 
 
The images were provided in Level 1T, geometrically and 
terrain corrected. Ground reflectance was retrieved using 
atmospheric correction with ATCOR in PCI Geomatica 2013 
applying the file metadata (Figure 4, left). Regarding the TIRS, 
the results of the vicarious calibrations of TIRS bands suggest 
that Band 11 data should not be used where absolute calibration 
is required (Barsi et al., 2014) due to a out-of-field stray light in 
the telescope. Thus, only band 10 data was selected for 
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converting from spectral radiance to brightness temperature and 
further LST (Figure 4, right). 
 

 
Figure 4. Left, Landsat 8 RGB composite. Right, Landsat 8 

temperature.  

 
In a similar approach to this work, Sánchez-Ruiz et al. (2014) 
showed the feasibility of SWIR indices to disaggregate passive 
L-band observations owing the absorption effects in this band. 
Thus, taking advantage of the SWIR bands of Landsat 8, the so-
called Normalized Difference Water Indices (Gao, 1996) were 
calculated in the SWIR space: 
 
NDWI1-NIR=(ρNIR-ρSWIR1)/(ρNIR+ρSWIR1)  (1)   
NDWI2-NIR=(ρNIR-ρSWIR2)/(ρNIR+ρSWIR2)  (2) 
 
where ρNIR, ρSWIR1 and ρSWIR2 refers to the reflectivity of bands 
NIR, SWIR 1 and SWIR 2 of Landsat 8 respectively. A high 
value of NDWI 1 and NDWI 2 is a consequence of a higher 
reflectance in the NIR band, than in the SWIR-1 and SWIR-2 
bands, regions of water absorption. Thus, this indicates 
sufficient quantities of water in the canopy for photosynthetic 
activity, and thus green and healthy vegetation. The normalized 
ratios respect to the red band were also calculated (eqs. 3 and 
4).  
 
NDWI1-red=(ρred-ρSWIR1)/(ρred+ρSWIR1)   (3)   
NDWI2-red=(ρred-ρSWIR2)/(ρred+ρSWIR2)   (4) 
 
Whereas the NDWI-NIR indices are related to the vegetation 
water content, these NDWI-red indices are related to the soil 
water content, since the absorption of water content of the soil 
in the red band is negligible, whereas the SWIR band exhibited 
absorption. Thus, it is expected that the wetter the soil, the 
higher the absorption in bands SWIR and a smaller reflectance. 
Accordingly, a positive value of NDWI-red indicates wet soil 
and, conversely, negatives values denote dry soils. 
 
NDWI indices based in the SWIR region may be considered 
water indices, depicting either the vegetation or soil water 
status. Indices based in the NIR spectra relate to the vegetation 
health and vigour, combined with the RGB region.  
 
Indices in the RGB region were also tested, as they have been 
widely used to monitor vegetation status. Ratio of the 
reflectance of green and red bands was tested, which is sensitive 
to the ratio between chlorophyll and anthocyanin (Kanemasu, 
1974). Its normalized version is known as the Green-Red 
Vegetation Index (GRVI) (Tucker, 1979): 
 
GRVI=(ρgreen-ρred)/(ρgreen+ρred)   (5)  (1)(1 
 

where ρgreen and ρred are the reflectance of visible green and red, 
respectively. The response of GRVI to various ground covers 
may be simple to interpret because for densely vegetated covers 
the reflectance of the vegetation cover in the green band is 
higher than in the red one, reaching high values. 
 
Finally, the portion of green reflectance of the whole RGB 
space is computed as the Greenness index (eq. 6). Low index 
indicates barely vegetated covers. Also the NDVI was obtained 
and tested from the red and NIR bands (eq. 7) 
 
Greenness=ρgreen/(ρgreen+ρred+ρblue)   (6) 
NDVI=(ρNIR-ρred)/(ρNIR+ρred)    (7) 
 
3.3 Statistical analysis 

3.4.1. Correlations: The values from the imagery based on the 
locations of the ground measurements were extracted and 
compared to the in situ soil moisture values at these particular 
locations. The preliminary analysis of the relationship gave an 
idea of the best indices correlated with soil moisture and surface 
temperature, as well as with LARGO.  
 
3.4.2. Multiple regression: The relationship between soil 
moisture, NDVI and LST was expressed through a regression 
formula. In this multiple regression, LARGO reflectivity was 
also included, following the approach of Piles et al. (2011; 
2014) who included the brightness temperature from the L-
Band radiometer of SMOS. Hence, the synergies of Landsat-
derived LST and indices, LARGO reflectivity and in situ soil 
moisture are expressed through a linear linking model as 
follows:   
 
Y = a0 + a1X1 + a2 X2 + a3 X3    (8) 
 
where the dependent variable Y represents soil moisture, and 
the independent variables X1, X2, and X3 are the LST, the 
LARGO reflectivity and the corresponding index, respectively. 
a0, a1, a2, and a3 are the coefficients of the regression. A system 
of linear equations with an equation per location of in situ 
measurement was set up, by extracting their value of each 
variable from each image.  Thus, a system of linear equations 
was set up for the pixels of the in situ sample. The system was 
solved to obtain the regression coefficients. Metrics of the 
regression (multiple correlation) were used to evaluate the 
performance of the linking model and how well the set of 
variables can predict soil moisture. 
 

4. RESULTS AND DISCUSSION 

4.1 Correlation between datasets 

The results of the relationships between variables in terms of 
the Pearson correlation coefficient (Table 1) showed a clear 
pattern between several indices and soil moisture. GVRI, 
NDWI2-red and NDWI2-NIR showed a high correlation with 
soil moisture. Hence, the SWIR 2 band resulted better for 
describing soil moisture contents than the SWIR 1.  
 
Regarding the correlation between indices and temperature, 
only NDWI1-NIR and NDWI2-NIR showed suitable 
correlation. The reflectivity seemed to be barely influenced by 
the vegetation cover since there was no correlation with the 
vegetation indices. Only with GVRI (R=-0.43) and 
NDWI2_NIR (R=0.48) showed noteworthy correlations (not 
shown in a table owing the poor results). However, a promising 
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result of correlation between LARGO and soil moisture was 
found (R=0.37), suggesting a certain potential of the LARGO 
reflectivity to explain the former. The hypothesis was that the 
fusion of each index with the LARGO reflectivity and the 
temperature improved the soil moisture estimation with respect 
to the one taking each variable separately. 
 

R In situ  
sm T 

GVRI -0.69 0.07* 
Greenness 0.07* 0.29 
NDVI -0.26 -0.27 
NDWI1-red 
NDWI2-red 

0.37 
0.59 

0.02* 
-0.06* 

NDWI1-NIR 
NDWI2-NIR 
LARGO  

0.06 
0.57 
0.37 

-0.56 
-0.48 
-0.28 

Table 1. Correlation coefficients (Pearson) between variables. 
*not significant correlations. In bold, best correlations found. 

 
 
4.2 Multiple regression  

The indices that seemed to better characterize both soil moisture 
and temperature were GVRI, NDWI2-red, NDWI1-NIR and 
NDWI2-NIR. Thus, these indices were included in each 
multiple regression, together with thermal and reflectivity data, 
and were adjusted to the soil moisture observations (Table 2). A 
good fit was found for all of them, with a coefficient of 
correlation R >0.60 in all cases except for NDWI1-NIR, which 
seemed inadequate for the soil moisture estimation.  
 

Multiple R In situ sm   
LARGO  

GVRI 0.70 
NDWI2-red 0.64 
NDWI1-NIR 
NDWI2-NIR 

0.37 
0.61 

Table 2. Statistical results of the linking model for the two 
LARGO datasets and the chosen indices. *not significant 

correlations. 

 
The dry conditions of the field campaign difficult the soil 
moisture retrieval using this technology. In this line, Valencia et 
al. (2010) find very low correlation between reflectivity and soil 
moisture under very dry conditions. However, the results of the 
present approach can be considered very satisfactory, even 
though future campaigns under other environmental conditions 
should be tested. Moreover, the methodology, which is a 
current strategy of downscaling soil moisture products, has the 
advantage to perform at any spatial resolution, from several 
meters (Sánchez et al., 2014) to kilometres (Piles et al., 2011). 
This versatility allowed to explore the optimal spatial resolution 
to transform the at-point scale GNSS-R observations into 
reflectivity maps and further soil moisture maps.  
 

5. CONCLUSIONS 

The objective of this work was to test the capability of an 
airborne source of GNSS-R data for estimating and 
characterizing both vegetation cover and soil moisture status. 
Owing the expected development of new GNSS-R-based 
missions, the potential interactions between soil moisture 
estimates and observations at high resolution from airborne or 

satellite sensors allow for synergistic approaches that can be 
later transferred to sensors on-board satellite platforms. 
Regarding the vegetation, and considering the particular 
climatic and vegetation conditions of the experiment, the 
reflectivity from the airborne LARGO at Landsat resolution did 
not show sensitivity to the main vegetation covers in the area. 
However, a certain relationship to soil moisture was detected. 
This relationship was strongly reinforced if the reflectivity was 
merged with the surface temperature and some vegetation/water 
indices, all of them from the Landsat 8 bands. Indeed, 
encouraging correlations were found (R>0.60) when applying a 
multiple regression model that linked the soil moisture to the 
temperature, the index (GVRI, NDWI2-red or NDWI2-NIR) 
and the reflectivity altogether. These correlations were much 
higher than taking each variable separately. These results 
suggested that some flexibility to retrieve soil moisture at any 
spatial resolution can be expected from the combination of 
conventional sensors with the upcoming GNSS-R sources. The 
results demonstrate the potential of using conventional 
vegetation/water indices and thermal bands from current 
satellite missions in combination with GNSS-R observations. 
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