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ABSTRACT:

Preparation is key to utilizing Earth Observatiansl process-based models to support post-wildfitigation. Post-fire flooding
and erosion can pose a serious threat to life,gstp@nd municipal water supplies. Increased fuand sediment delivery due to
the loss of surface cover and fire-induced chaigesil properties are of great concern. Remeafiggilans and treatments must be
developed and implemented before the first majomss in order to be effective. One of the primaoyrces of information for
making remediation decisions is a soil burn seyaeriap derived from Earth Observation data (typjchlndsat) that reflects fire
induced changes in vegetation and soil properi&spe, soils, land cover and climate are also imapd parameters that need to be
considered. Spatially-explicit process-based modah account for these parameters, but they arently under-utilized relative
to simpler, lumped models because they are diffitubet up and require spatially-explicit inputig(tal elevation models, soils,
and land cover). Our goal is to make process-basmtels more accessible by preparing spatial inpefisre a fire, so that datasets
can be rapidly combined with soil burn severity magnd formatted for model use. We are building afine database
(http://geodjango.mtri.org/geowepp /) for the costital United States that will allow users to uplsail burn severity maps. The
soil burn severity map is combined with land cosed soil datasets to generate the spatial modetsnpeeded for hydrological
modeling of burn scars. Datasets will be creadeslipport hydrological models, post-fire debrisvflmodels and a dry ravel model.
Our overall vision for this project is that advadd®@!IS surface erosion and mass failure predictofstwill be readily available for
post-fire analysis using spatial information frarsingle online site.

1. INTRODUCTION The hazards of flooding due to increased runoff dedris-
filled flows are of special concern near the witdlaurban
Being prepared with the necessary tools and inféomafor  interface, cultural sites, municipal water sour@es] sensitive
dealing with an emergency situation is importara. flilfil @ wildlife habitats (Robichaud and Brown, 2000; Mooéd
need for rapid assessment of burned watershedsenmiéiding  Martin, 2001, Cannoet al., 2010). Planning the mitigation of
an interactive database to support post-fire reatiedi. Forest these threats is undertaken by interdisciplinarynBd Area
and rangeland wildfires not only cause emergentyaons  Emergency Response (BAER) Teams who work diligetuly
while the fire is active, but they can also causergencies in  estimate erosion and flood risk. BAER teams mugtrdgne if
the year or two following a wildfire. Once the dangf an  treatments to minimize erosion and runoff are ndedad
active wildfire has passed, land managers mustlisapissess  prioritize their spatial application in order toopect watersheds
the threat from runoff and erosion, now heightedad to the  and downstream values at risk including life aneperty
loss of vegetation and litter layers from the fofésor and fire  (Parsonset al., 2010). One of the first BAER team tasks is to
induced changes in soil properties. Forests aﬂel;higilued as  quickly assess the burn scar by mapping out thasasé high,
protectors of watersheds and reservoirs becauseatiepy and  moderate, and low severity in order to prioritizeatment
surface cover protect forest soils from erosion biRloaud,  areas. Slope, climate, and location are also irapbfactors in
2000; Moody and Martin, 2001). After a wildfire pdBe  determining risk (Renardt al., 1997; Pietraszek, 2006). A
flooding and erosion can threaten lives, propery avater  severe wildfire can have such a dramatic impaoivatersheds
supplies. Flooding after the Buffalo Creek Fire Golorado  that remediation work is often initiated even befaine fire is
resulted in the deaths of two people and sediment this fire  fully contained.
reduced Denver's municipal reservoir capacity bygtdy a
third (Agnew et al., 1997). Similar losses of fed/or damage The complexities and uncertainties of erosion sees
to property were reported from floods near Color&wings  following wildfires and the high cost of mitigatiofup to
following the 2012 Waldo Canyon Fire and in Bould&O  $5,000 per ha) require managers to make toughidesisshen
following the 2010 Four Mile Canyon Fire. Similaroplems  jt comes to addressing post-fire effects. It is matommon for
are faced downstream of many other fires throughibet  several million dollars to be spent on postfiretigaition
western U.S., Canada, and Australia. following a wildfire. Earth observations of burnvseity are an
integral component in remediation planning (Parsensl.,
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2010), but there are also many modeling tools Hoilassist

land managers (Elliogt al., 2006, 2010 and 2013; Renschler,

2003). Spatially explicit and physically based mrisdare
currently being under-utilized as they require igpuhat
depend upon the spatial distribution of burn seyeri
topography, vegetation and soil. In order to inseeahe
adoption of these models we are building an ontiatabase
that will provide spatial data and input parametefée
database includes spatial tools to rapidly updapeiti layers
with user supplied post-fire earth observationswrh severity.

Our overall objective is to provide datasets aralstéo support
post-fire remediation. We are building an onliretatbase to
provide end-users (BAER team specialists, land gersaand
researchers) with the basic tools and spatial datded to
incorporate remotely sensed earth observations pnogzess-
based erosion models. End users may select aibatére or
they can upload a new burn severity map into thiatdmse.
Once uploaded, the burn severity map is combineth wi
vegetation and soils datasets and then deliverduktaser pre-
formatted for modeling. We are initially planning support
WEPP based models, a dry ravel model, and a satpirical
debris flow models. Improving the accessibility dbth
modeling capabilities and the required data setklead to
better assessment tools for forest managers, obsgarand
BAER teams.

1.1 Post-fire Erosion Processes

Wildfire reduces or totally removes the vegetaticanopy
protecting forest soil; this increases the exposfréhe solil
surface to raindrop impact and wind. Normally foresils are
covered with duff (fresh and decomposing leaf ditend
organic debris) (Elliot, 2013). The amount of grducover
after burning is a primary control on post-fire €om rates
(Benavides-Solorio and MacDonald, 2005) and is ssetial
input to post-fire erosion models. Wildfire redudks ground
cover, exposing soils to raindrop impact and winds®n.
Raindrop impact can destroy soil aggregation anthotie
sediment. When combined with shallow overland flahis
shallow runoff can transport fine soil particlesdaash to
macropores decreasing infiltration rates, and esirgy runoff
and erosion. The loss of surface cover also inegedl erosion
and on steep slopes can aggravate mass failuraurfece
woody material and below ground root networks nogkr
stabilize steep slopes (Reid, 2010). The loss restosegetation
will lead to decreased evapotranspiration, incréas®l water
content, and decreased root strength, increasiagrigk of
runoff, flooding and landslides when soils are ssted (Reid,
2010). The hot gases generated by burning duffocetesce
around soil particles, making soils hydrophobicréasing the
risk of high runoff and surface erosion (DeBanoQ@0 The
heat of the fire can also destroy soil structurekimy soil
particles more easily detached or erodible.

Upland erosion frequently exceeds the ability ofvdstream
channels to transport the sediment delivered froumndxd
hillslopes, so river valleys and high elevationerssirs are
frequent sites of considerable deposition. Much tbe
deposited sediment is routed downstream in ye#isviog the
fire when stream flows are high (Elliot, 2013).

Dry ravel is the movement of soil material due tavity alone
and it can be a substantial source of hill slopesien in dry
steep environments after wildfire (Wells, 1981). orially

vegetation holds soil in place by roots and stelus,after a
wildfire these materials are potentially free to vaodown
slopes into channels and streams. Dry ravel tiigioacurs in
dry environments experiencing crustal uplift, whiallows for
slopes to become greater than the angle of repb#eecsoil
aggregates.

Modeling tools are needed to help prioritize expens
remediation treatments, predict impacts of thetmneats in
order to justify their costs and to increase untdeding of fire
effects on watersheds. Several wildfire effectsdnse the risk
of soil erosion from surface water, wind, and nfadare.

1.2 Earth observations of burn severity

The sudden changes to a watershed brought aboatlasge
wildfire need to be quantified. Therefore, one Ioé first and
most important priorities of a BAER Team is the elepment
of a burn severity map that reflects fire induchdrmyes in both
vegetative cover and soil properties. Currentlys¢henaps are
known as Burned Area Reflectance Classification REBA
maps and they are typically generated by the U&haBiment
of Agriculture (USDA) Remote Sensing Application rer
using multi-spectral earth observation data (Parsanal.,
2010; RSAC, 2011). Many algorithms exist for magpburn
severity, but the most widely accepted algorithm tie
differenced Normalized Burn Ratio (NBR) algorithitef and
Benson, 2006) which has been shown to be well lzdee with
field measurements of burn severity (Bobbe et 2001;
Robichaudet al., 2007).

The NBR ratio is:

NBR = (Rur = Rswir) / (Ruir * Rswir) 1)

where  Ryr = satellite reflectance in the near-infrared
Rswir = satellite reflectance in the shortwave-infrared

Next the change in NBR between the pre- and post-fi
condition is calculated by:
dNBR = NBR)refire' NBRpostfire (2)
After the fire, reflectance in the NIR band decesasvhile
reflectance in the SWIR band increases. The chaimgBBR
highlight changes wrought by the fire (Eq. 2). Talgorithm
assumes the NBR in the unburned areas is unchangkthat
climatic and moisture conditions are similar forttbahe pre-
and post-fire images. The dNBR is strongly positioe fire-
stressed areas and strongly negative for regiopsriencing
enhanced re-growth due to the fire. Resulting dNiBRges are
classified into unburned, low, moderate, and highmIseverity
with varying threshold levels. When possible field
measurements of soil burn severity are collecteriter to
ascertain and verify threshold levels, as they eary with
vegetation (Elliotet al., 2006; Parsonet al., 2011), but this is
often not the case. Sometimes the burn severityimtme only
estimate of burn severity available. When the BAER&m has
time to adjust the BARC map based on soil condgtidrthen
becomes a soil burn severity map (Fig. 1). Ideallgoil burn
severity map is used to create spatial model inputs
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Figure 1. Soil burn severity map for the Frencte Hir
California, the pre-fire image was collected by dsat 8 on

July 26, 2014 and the post-fire image was collebtethe
Earth Observing-1 Advanced Land Imager on Augug094.

Landsat TM is typically the sensor of choice for B3
mapping, therefore Landsat 8 with its spectrallympatible

periods ranging from 25 to 100 years, for eithetiratividual
hillslope or a watershed made up of many hillslopesl
channels.

WEPP technology includes two versions, a hillslgpesion to
estimate the distribution of erosion on a hillslopnd a
watershed version that links hillslopes with chdsrend in-
stream structures to estimate sediment deliveryn fremall
watersheds (under about 5 square km). A Windovesfate is
available for both the watershed and hillslope ieers of
WEPP. Additionally, Forest Service scientists hdeseloped
user-friendly online interfaces for the hillslopersion to model
forest hillslopes, road segments, and hillslopesioff: 2006;
Elliot et al., 1999; Robichauet al., 2007a) following wildfire.
The two main hillslope tools available for posefanalysis are
Disturbed WEPP, which predicts average annual senfanoff
and erosion values, and the Erosion Risk Managerfieat
(ERMIT) that predicts the probability associatedthwithe
sediment delivery from a single runoff event (Elli@006,
Robichaudet al., 2007a). These two interfaces link land cover
to both vegetation properties and soil propersesusers need
only select the land cover and a soil texture, tredinterfaces
select the correct soil and land cover files fogigen run.
Disturbed WEPP has land cover for mature and ydaregts,
shrubs, good and poor grass communities, and laivhégh
severity fires. ERMIT has databases for unburnealy, |
moderate and high severity fires on forests andetamds.

The watershed version of WEPP is best run using 1Gt&.
Renschler (2003) developed the most commonly ud&dt@|
for ArcGIS 8., 9., 10.1, and 10.2 called “GeoWEPP
GeoWEPP uses the topographic analysis software, AFOP

OLI sensor is very important to the BAER community; (Garbrecht and Martz, 1999), to delineate watershadd
however other imaging platforms such as SPOT, ASTERcreate the slope files needed to run WEPP. Typictie same

MODIS, VIIRS and multi-spectral aerial imagery da@ used
as well. For large fires, resources are prioritized create
BARC maps as quickly as possible so that BAER teaams
begin assessing the burn area and, if needed, pégiitizing
treatments.

1.3 Process based and spatially explicit post-fire er@m
modeling

BAER teams currently employ a wide variety of madeOur
database is currently focused on providing supXVEPP
based models, but our data inputs have been usedher
hydrology models. Spatial model inputs are prodide

multiple raster formats for ease of use; futureadase
expansion efforts will include the creation of loog tables to
reformat inputs for use in other models. We are planning to
provide data support for a dry ravel model and dopirical

debris flow models.

1.3.1 The Water Erosion Prediction Project (WEPP)

The online database provides comprehensive supgoithe
Water Erosion Prediction Project (WEPP) Model. VWER a
physically-based soil erosion model developed by
interagency team of scientists (Laflen et al., 99Te surface
hydrology component of WEPP utilizes climate, togqdy,
soil, and vegetation parameters to predict plaotgr, residue
decomposition and soil water balance on a dailg tétep, and
infiltration, runoff, and erosion on a storm-by+sto basis.
WEPP then can provide runoff, erosion and sedirdefivery
by event, month, year, or average annual valuestifoe

arP

soil and vegetation files are used in the onlinstbed WEPP
interface, the Windows interfaces, and the GISstool

Because of difficulties experienced by users in etfiping
spatially distributed input files for GeoWEPP, arteragency
team of scientists have recently released an on(Bi8
watershed tool specifically developed for foresinditons
including wildfire (Frankenbergeat al., 2011). This interface
does not require any downloading or pre-processifig
topographic, soils, or land cover databases that wecessary
for running GeoWEPP. In its current form, howesaying the
outputs from a run, or combining multiple runs éofarge fire
can be awkward. It can only access soils that aré ¢f the

NRCS SSURGO soils database, and SSURGO coverage is

incomplete, particularly in remote forest watershed
1.3.2 Ravel RAT - The Ravel Risk Assessment Tool

Ravel Rat is a physical model that applies classierhanics
to model dry ravel on steep slopes after fire (#2Q4). This
model is being developed to predict ravel movermdnch will
help managers assess potential stream channehgpddim
hillslopes that are steeper than the angle of epd$ie model,
ased on classical mechanics and experimental \@ig®srs,
predicts the behavior and rates of dry ravel erosibhe short-
term (e.g., one day after the fire) dry ravel pescis computed
with theoretical calculations based on Newton's dawf
motion.
theoretical calculations and empirical charactéioraof post-
fire ravel field observations. Primary inputs indé a DEM,
burn severity map, soil and pre-fire vegetatiorperties.

Long-term processes are described with both
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1.3.3 Empirical Debris Flow modeling

USGS researchers have developed empirical postifieis
flow models (Cannoet al., 2010) to predict the probability of
debris flow occurrence and potential volume of delflow
fans. These models were developed from data nehsurl5
recent fires from 388 basins in the Western US bri3eflows
are one of the most dangerous consequences ddltainfsteep
terrain burned by wildfire (Cannod al., 2010, Benda and
Cundy, 1990). These events are uncommon as mesedu
watersheds will produce sediment laden flows ipoese to
heavy precipitation; however basins that are premelebris
flows warrant special attention due to the extrens& they
pose to life and property. Inputs for debris flonodsling
include a DEM to determine slope, a delineatiosudi-basins,
storm intensity and total rainfall, clay fractiondaliquid limit
of sub-basin soils, and a burn severity map. Stotensities
and total rainfall can be obtained from gridded NOdesigner
storms.

2. POST-FIRE EROSION DATABASE

Our online database is being designed so thanhibeaused by
both GeoWEPP and the online GIS WEPP tool. We pdan
support additional models by providing flexibility the format
of the model inputs generated by the database.réglans
include expanding the database capabilities taideldry ravel
and debris flow modeling support. For this and pfheposes,
we are developing an open source web-based applicat
programming interface (API), which will allow a rete
computer to automatically download our spatial gataucts.

Spatial coverage of the online database is expgn&iail, land
cover, and elevation data along with burn sevéoityhistorical
fires for 17 states in the Western US are comirimerand will
be available athttp://geodjango.mtri.org/geoweppOnce the
database is complete the site will be transferedhe US
Forest Service. Users can either upload a new tamih
severity map into the database or select a histofie. Once
the soil burn severity map is in the online databisan be
combined with land cover and soil datasets on denraorder
to generate the spatial model inputs needed forohygical
modeling of burn scars. Model inputs can be credied
represent the fire area both in its burned and el state.
Users download three spatial layers: soils, langecoand a
digital elevation model (DEM) that have been coistsged and
projected specifically for GeoWEPP or similar madglefforts
(Figs. 2,3,4). The soil data are based on the SSURG
STATSGO NRCS soil databases (Soil Survey Staff, 1201
USDA, 1991); the DEM is from the U.S. Geologicalr&y

(USGS) (Gesclet al., 2002; Gesch, 2007), and land cover is

derived from LANDFIRE existing vegetation type data
(Rollins, 2009; LANDFIRE, 2010).

Estimated runoff amounts, peak flows, upland erogiates,
and sediment delivery are used to improve decisiaking
activities related to post-fire risk assessment iafhbilitation
treatment selection (Fig. 5). The new website aathsbts
deliver all the spatial inputs and parameter fireeded for
spatial WEPP (Water Erosion Prediction Project) ef®dn
mere seconds; previously, assembling and formattirgtype
of data would have taken at least several hounstifdays. We
are actively expanding our database to includeldiaer 48

states and we are seeking other post-fire erosiodefa to
support..

2.1 Spatial data layers

Historical burn severity maps are from the MonitgriTrends
in Burn Severity project (MTBS). MTBS is a partri@ps
between the USGS and the USDA Forest Service Remote
Sensing Application Center to map burn severity dine
perimeters using the dNBR algorithm used to créaA&RC
maps for BAER Teams. These maps are not typicaiyséed
for post-fire soil conditions; therefore modellsteould use soil
burn severity maps if they are available. Fires uogog
between 1984 and 2010 in Western US States grtbaterl 000
acres (400 ha) are included in the database. Datdreely
available online (Monitoring Trends in Burn Seweri2009).

DEM data from the USGS Seamless Data Warehousessas/
the base layer. The National Elevation DataseB38as Digital
Elevation Model (DEM) data available for the entileS. with
even higher resolution (10 m) available for mosthef country
(Geschet al., 2002; Gesch, 2007). Soils and land cover data are
projected to align with the DEM.

Figure 2. Example 30m DEM downloaded after the Emefire
soil burn severity map was uploaded into the daaba

For land cover data we initially planned to use Metional
Land Cover Dataset, but on collaborative projectens fire
spread modeling was involved, the modellers recondmoe
that we use the Existing Vegetation Type (EVT) datan the
LANDFIRE project (LANDFIRE, 2010). Therefore we
reclassified the EVT cover types into Disturbed VPERNd
cover categories. When an uploaded burn severityimased,
it is combined with vegetation to create a burnead| cover
map on-demand. This map is then reclassified insoiaburn
severity map. This step is important as grassesshng lands
do not have enough fuel to create high-severityaittpon soils
and clay-textured soils seldom become water-repelle
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Figure 3. Example post-fire land cover map gendrbiethe
database for the French Fire.

The necessary soil input layers are being deriveth fboth

than 20 krf or 2,000 ha). Larger fires incur a larger waiteim
however, compared to previous methods (manual pagpa in
a GIS), our approach is faster by several ordersagitude.

Soils

[ en2na [ ] 465,112,300
Soil Map [ 465,113,000
Value [ 465,113,100
[ 465,088,000 [[77] 465,113,300
[ 465,089,000 [[] 465,114,000
[ 465,089,100 [_] 465,114,100
[ 465,089,300 [[] 465,115,000
[ 465,094,000 [] 465,115,100
[] 465,094,100 ] 465,115,300
[T 465,094,300 [T7] 465,116,000
[ 465,095,000 [ 465,116,100
[ 465,095,100 "] 465,116,300
[ 465,095,300 [[] 465,117,000
[7] 465,096,000 [_] 465,117,100
(I 465,096,100 [T 465,117,300
[ 465,097,000 ] 465,121,000
[ 465,098,000 [ 465,121,100
[ 465,098,100 [[] 465,121,300
[[] 465,099,000 [[7] 465,123,000
[ 465,099,100 [ 465,123,100
[T 465,099,300 [] 465,123,300
[ 465,100,000 ] 465,128,000
[] 465,100,100 ] 465,128,100
[T 465,100,300 [[] 465,128,300
[ 465,101,000 [T] 465,141,000
[ 465,101,100 [[] 465,142,000
[ 465,101,300 [[] 465,142,100
[ 465,111,000 [T 465,142,300
[ 465,111,100 [I7] 660,508,000
[ 465,111,300 ] 660,515,000
[ 465,112,000 ] 660,855,000
[ 465,112,100

Figure 4. A soils map generated by the databasetiep

SSURGO and STATSGO datasets. SSURGO data consists o Soil files modified by the burned French Fire laoover

the most detailed soil maps created by the NafResources
Conservation Service (NRCS), but does contain steie gaps
(Miller and White, 1998; Soil Survey Staff, 201To fill in
gaps we are using the STATSGO (STATe Soil GeOgrphi
database which has complete coverage and is aessataler
derived from soil surveys conducted by the U.S. &&pent of
Agriculture (USDA, 1991). The STATSGO database does
have as fine a resolution in cover as the SSURG&bdae but
this is not a great concern because in post firdetimyg, the
erosion potential of the soil is more a functionfied severity
than it is of other soil properties (Elliot, 2013Jhus, when
soils are impacted by fire, soil parameters arastdfl based on
either unburned (forest or grass), low or high sgvesoil
impacts.

2.2 Database

The spatial data we are developing is stored int&8s a
spatial database tool that extends the popular -eparce
database management system PostgreSQL,
enterprise-level spatial functionality and expedmenunity
support at no cost. Furthermore, the PostGIS eixtenis

stable, robust, and relatively simple to use. Mostthe

transformations of the DEM, soil, and land covetadats
necessary for use in spatial WEPP models are peefbr
directly in the database at the time the user makesquest
including spatial filtering, intersection and clipp,

reclassification and raster addition (Fig. 6). TRestGIS
database produces DEM subsets and burned and @cbsoil
and land cover layers as rasters on-demand (oorttex of 5-
10 seconds over a broadband connection) for sinedl {less

providing

layer. To facilitate modeling the corresponding VPESvil
parameter and linkage files are also provided keydhline
database.

Post-fire erosion 1st year
Mg/ha
Blo-o5
B 051-1
-2
[21-5
[ 154-10
[ 11-25
[ ]26-50
[ 151-75
[ 176-100
[ 110 - 200
[ 210 - 500
I 510 -930

5/2011993 37°16113:54" N _119°22'42.95" W elev 5641 ft eve al

Tour Guide

Figure 5. Post-fire hillslope erosion predictions the French
fire displayed in Google Earth.
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Figure 6. Example geo-processing workflow for thidsslayer.
Note that both the land cover and the soil properire needed
to develop the “burned soils” layer.

3. DISCUSSION AND CONCLUSION

The methodology used to rapidly combine soil bueresity
maps with land cover and soils data for post-fires®n

modeling has been clearly demonstrated with casbest from
two recent wildfires. The first wildfire is the 2D0Rock House
fire that burned 127,500 ha (315,000 acres) iniéficeand Jeff
Davis Counties, Texas. This wildfire impacted a kmational

historical site - Fort Davis, which is located in small

watershed called Hospital Canyon (217 ha; 536 acr&ven
though the area that needed to be modelled wasivedia
small, the time needed to reformat soil and vegetadata for
modeling in GeoWEPP meant that predictions could v
completed in a timely fashion for the National P&&rvice
BAER team. In 2012 when the High Park fire burng380 ha
(87,200 acres) in Larimer County, Colorado the ispail,

land cover and DEM layers were already preparedgaiath a
methodology for rapidly merging satellite-deriveari severity
maps with the soil and vegetation data. The ebtira scar for
the 2012 High Park fire was modelled in GeoWEPRSs than
three days allowing the predictions to be availalibe

operational use by the BAER team. These case stutbarly
demonstrate the efficacy of preparing both the soahd
datasets before they are needed.

Using our online tools and datasets we were ablsufzport
Forest Service BAER Teams on four fires that burimeg014
in California (the French, Happy Camp, Silverada d¢ing
fires). The French (5,600 ha; 13,800 acres) ahati@ido (390
ha; 968 acres) fires were relatively small; therefpredictions
of post-fire erosion and runoff could be generateGeoWEPP
within just a few hours of receiving the soil buggverity maps.
The larger King (39,500 ha; 97,700 acres) and Hapasmp
(54,200 ha; 134,000 acres) fires both requiredtortevo days
to complete a modeling scenario. The BAER Teamthan
King fire wanted several modeling scenarios inahgdi
predictions of average first year post-fire eros{gig. 7) and
post-fire erosion from a single storm event. Hawing datasets
available rapidly means there is more time for BAEEBms to
model the effects of proposed remediation treatme@in both
the King and Silverado fires multiple modeling rungre
carried out to estimate impacts of proposed rertiedia
treatments. Modeling work on the King fire was dis®
prioritize the spatial application of mulch treatrte

Assembling the data needed to run spatially expkedsion
models can be a daunting task even without timestcaimts,
therefore preparing the required input data ahégithe makes
sense. Work will be ongoing in the next two yeargxpand
the database to cover the lower 48 states and dditiomal
support for dry ravel (Fig. 8) and debris flow mbxg, once
completed the database will be transferred to @deral
partners. Our vision for this project is that adwesh GIS
surface erosion and mass failure prediction toadllsbe readily
available for post-fire analysis using spatial mfiation from a
single online site.

First year post-fire
erosion (Mg / ha yr)
Emo-1
.11-2
mm21-4
Em4.1-5
mms51-8
18.1-10
11-15
—116-20
21-30
31-40
[41-50
B 51-75
I 76 - 300
W 310 - 570
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Figure 7. Post-fire hillslope erosion predlctlonsifne Klng

fire displayed in Google Earth.
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Figure 8. Dry ravel predictions for the French Rjrsplayed in
Google Earth.
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