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ABSTRACT:

In the seasonal tropics, vegetation shows large reflectance variation because of phenology, which complicates land cover change
monitoring. ldeally, multi-temporal images for change monitoring should be from the same season, but availability of cloud-free
images is limited in wet season in comparison to dry season. Our aim was to investigate how land cover classification accuracy
depends on the season in southern Burkina Faso by analyzing 14 Landsat 8 OLI images from April 2013 to April 2014. Because all
the images were acquired within one year, we assumed that most of the observed variation between the images was due to phenology.
All the images were cloud masked and atmospherically corrected. Field data was collected from 160 field plots located within a 10 km
x 10 km study area between December 2013 and February 2014. The plots were classified to closed forest, open forest and cropland,
and used as training and validation data. Random forest classifier was employed for classifications. According to the results, there is a
tendency for higher classification accuracy towards the dry season. The highest classification accuracy was provided by an image
from December, which corresponds to the dry season and minimum NDVI period. In contrast, an image from October, which
corresponds to the wet season and maximum NDVI period provided the lowest accuracy. Furthermore, the multi-temporal
classification based on dry and wet season images had higher accuracy than single image classifications, but the improvement was
small because seasonal changes affect similarly to the different land cover classes.

1. INTRODUCTION cloud cover of the images in order to avoid gaps in the
classification map and need for processing several images.
Land cover influences the energy balance, carbon budget and

hydrological cycle, and land cover classification is the basis for With the opening free access to the Landsat archive, we now

many environmental applications (Zhu and Woodcock, 2014).
Remote sensing data with its ability of frequent revisit, large
coverage and relatively low cost has become a reliable data
source for land cover classification.

In most parts of the world, land surface reflectance shows intra-
annual variation due to phenology, which complicates land cover
classification. If the land cover classification is based on a single
image, one has to select it among all the images acquired in one
year. This decision is usually made based on the assumption
that images from a particular season are most appropriate for
separating land cover types under interest. Furthermore, if land
cover classifications based on single images are used for land
cover monitoring, the images from the same season are preferred
in order to avoid detecting false changes in land cover due to
phenology (Clark and Pellikka, 2009). Often, images close to the
peak of the growing season or time of maximum vegetation
“greenness” have been preferred (Kim et al., 2011; Zhu and Liu,
2014). However, in practice image selection is also affected by
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have more than 30 years of Earth observations, which makes
Landsat a valuable source of data for long term land cover
monitoring (Wulder et al., 2012). From the free Landsat archive,
it is feasible to acquire multiple images for particular year, which
enable us to study how season affects to the classification
accuracy and get advice on image selection. In the seasonal
tropics, the cloud-free images are usually available from the dry
season but not necessarily every year from the late wet season,
when maximum “greenness” occurs. Therefore, it would be
important to know how accurately land cover can be classified
using dry season images in comparison to commonly preferred
maximum “greenness” images.

Furthermore, most studies still use single images although many
studies have indicated that multi-temporal images can increase
accuracy of land cover classification (Guerschman et al., 2003;
Zhu and Liu, 2014). This is because different land cover and
vegetation types may show different  phenological
characteristics, which then can be used for separating them.
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However, it is unclear how classification accuracy depends on
the seasons when multi-temporal images were acquired.

Our objective was to investigate how the classification accuracy
depends on the season of the selected image in our study area in
southern Burkina Faso. We used images from one year and
assumed that there were no land cover changes during that
period. Hence, all the variation in the classification results
should be due to phenology. Furthermore, we also aimed to find
out whether the combination of images improves the
classification accuracy, and how the accuracy is related to the
seasons of the images used.

In order to accomplish our objectives, we designed three
classification scenarios: (1) using each single date Landsat image
separately; (2) using each single date Landsat image together
with the image providing the highest classification accuracy; (3)
using all the Landsat images from one year.

2. MATERIAL AND METHODS
2.1 Study area and field data

The study area is located in the southern Burkina Faso
(11°44'55"N 1°56'34"W). The annual mean temperature for
1950-2000 was 27.5°C and annual mean precipitation was 826
mm (Hijmans et al., 2005). The most of the precipitation falls
between May and September. The driest months are December,
January and February. According to the WWF Global
Ecoregions map, the site belongs to the West Sudanian Savanna
(Olson et al., 2001). The land cover is characterized by forest,
savannah woodland and croplands (e.g., sorghum, millet, maize,
cotton). Topographically, the study area is relatively flat with
the mean elevation of 350 m. In the summer time (wet season),
satellite images are likely to have clouds, and in the winter time
(dry season), wild fires are common in the area.

Field data was collected from 160 field plots located within a 10
km x 10 km study area between December 2013 and February
2014 following the Land Degradation Surveillance Framework
(LDSF) (UNEP, 2012). According to the tree crown cover (CC)
and information on land use (cultivated or not), we divided field
data into three land cover categories, including closed forest (CC
> 40%), open forest (CC < 40% and not cultivated) and
cropland (cultivated).

2.2 Remote sensing data

We downloaded all the available Landsat 8 Operational Land
Imager (OLI) images between April 2013 and April 2014
(Path/Row: 195/52) from the USGS Earth Resources
Observation and Science (EROS) Centre archive. Considering
the cloud contamination, we selected 14 images for further
analysis. These 14 images covered all the seasons and
phenological variation in the study area. In order to reduce the
atmospheric effects on the images, the raw DN values were
converted to the surface reflectance with the fast line-of-sight
atmospheric analysis of hypercubes (FLAASH) module in

ENVI software (ITT, 2009). In addition, we used only bands 2—
7 (i.e. six bands in blue to short wave infrared range) for
classification. The cloud and cloud shadows in the 14 images
were masked with Fmask-method (Zhu and Woodcock, 2012).
After the pre-processing, we calculated the percentage of cloud-
free area for each image and our study area (Table 1).

Date Percentage cloud-free
18-Apr-13 80.9%
20-May-13 96.3%
21-Jun-13 75.3%
23-Jul-13 96.6%
11-Oct-13 100%
27-Oct-13 100%
12-Nov-13 100%
28-Nov-13 100%
14-Dec-13 99.7%
30-Dec-13 100%
15-Jan-14 100%
16-Feb-14 100%
20-Mar-14 100%
05-Apr-14 84.9%

Table 1. Summary of the 14 Landsat OLI images used.
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Figure 1. Examples of (a) wet and (b) dry season images.

Figure 1 shows examples of images from the wet and dry
seasons with the field plots. In the wet season image (21-Jun-
13), most missing values are related to the clouds and cloud
shadows. In the dry season image (11-Oct-13), there are few
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clouds but some burn scars can be observed as dark patches.
Because some of the field plots were covered by clouds, we
kept only plots which were cloud free in all 14 images. This was
done in order to have consistent data set for all dates.
Furthermore, we excluded all the plots that were severely
affected by fire according to the visual interpretation of each
image. Finally, we used 78 plots for the classification.

2.3 Methods

Random forest classifier was employed for classification tests.
This algorithm is increasingly being applied in remote sensing
and ecology (Horning, 2010; Cutler et al., 2007).

Random forest is an ensemble decision tree-based classifier. It
begins with generating a large number of decision trees. It uses
bootstrap samples with replacement to grow a large collection of
classification trees. Each tree is trained using two-thirds of
randomly selected training samples and the remaining one-third
of the samples, so called out of bag (OOB) samples, are reserved
to estimate prediction error (Breiman, 2001). In each node of the
tree, the split variable is also randomly selected. The prediction
is determined by evaluating the responses from all the trees.
Pixels are assigned to each class based on a majority voting rule
which assigns a pixel to the class with the maximum number of
votes. The strong law of large numbers ensures that the solution
always converges without overfitting (Ghimier et al., 2010).

There are two parameters in Random forest classifier: the
number of trees and the number of split variables at each node.
For the number of split variables at each node, the square root of
the total number of variables has been suggested (Zhu et al.,
2012). In our study, we used 1000 for the number of trees and
the square root of the total number of variables as the number of
split variables.

The OOB error has been used to evaluate classification accuracy
in remote sensing, and it is often ideal for smaller data sets as it
allows for all information to be included within classification
tree construction (Watts et al., 2011). Because there was limited
number of field plots in our study, we used OOB error for
estimating classification overall accuracy (OA), user’s accuracy
and producer’s accuracy. To minimize the random variation
between classification results, we run 100 classifications for
each scenario and took the mean value as classification accuracy.

There were three types of input datasets for classification: (1)
using each single date Landsat image separately; (2) using each
single date Landsat image together with the image providing the
highest classification accuracy; (3) using all the Landsat images
from one year.

Some images were affected by fire with clear burn scars. After
classification, we masked burnt pixels for each image using burn
area index (BAIl = 1 / ((0.1 — Band4)? + (0.06 — Band5)?))
(Chuvieco et al., 2002) and normalized difference vegetation
index (NDVI = (Band5 — Band4) / (Band5 + Band4)) (T ucker,

1979). The threshold value for separating burnt areas was
determined by visual analysis.

3. RESULTS
3.1 Seasonal effects on classification accuracy

According to the classification results, the season had an effect
on the overall accuracy (Figure 3). To visualize the relationship
between the overall accuracy and phenology, we computed the
mean NDVI for the sample plots from the 14 images. From the
NDVI time series, it is evident that cloud free images were not
available between 23 July and 11 October when maximum
NDVI likely occurred.
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Figure 3. Overall accuracy and mean NDVI for each image.

The lowest overall accuracy among the 14 images (65.1%) was
provided by the image from 11 October corresponding to the
wet season and the maximum NDVI period. The best
classification accuracy was provided by the image from 14
December (85.5%). This date corresponds to the dry season and
is close to the minimum NDVI. The overall accuracy for the
December image was around 20% higher than that of the
October image.

100%
80%
=
g 60%
2
40%
Closed Forest UA Open Forest UA
S0
20% Cropland UA Closed Forest PA
0% —e—Open Forest PA Cropland PA
Yo
06-Apr-13 15-Jul-13 23-Oct-13 31-Jan-14 11-May-14

Figure 4. User’s accuracy and producer’s accuracy for different
land cover types.

The user’s and producer’s accuracies varied similarly to the
overall accuracy (Figure 4). The user’s accuracy and producer’s
accuracy for cropland were relatively stable and higher than
those of closed forest and open forest. The highest user’s
accuracy for cropland was provided by the 16 February image,
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and for closed forest and open forest by the 14 December image.
The image providing the lowest user’s accuracy for cropland
was 27 October image, for closed forest 23 July image, and for
open forest 11 October image. The image providing the highest
producer’s accuracy for cropland, closed forest and open forest
was 14 December image. The image providing the lowest
producer’s accuracy for cropland and open forest was 11
October image and for closed forest 23 July image.

Land cover classification maps based on 11 October image and
14 December image are shown in Figure 5. The most obvious
difference between the maps is in the distribution of the closed
forest class.
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Figure 5. Land cover classifications based on (a) 11-Oct-13
image and (b) 14-Dec-13 image.

3.2 Multi-temporal classification accuracy

The highest overall accuracy among the 14 images was provided
by the image from 14 December. In order to test the effect of
temporal information on overall accuracy, we combined the 14
December image with other 13 images (Table 2). Amongthe 13
combinations, the highest overall accuracy was yielded when
combining 14 December image with 11 October image (OA =
87.0%). However, in general the overall accuracies were
increased only marginally and in most cases the overall accuracy
was not increased in comparison to 14 December image.

| cloud or burn mask pixels

We extracted the mean spectral profiles for the three land cover
types from 11 October and 14 December images (Figure 6). The
profiles indicated that reflectance of open forest and closed
forest in band 4 (near infrared) was similar in October image. By
contrast, the difference was greater in December image. When
combining the two images, the spectral bands capture the most
important seasonal variation of the different land cover types.
Other multi-temporal classification combinations did not
improve the overall accuracy, which showed that multi-temporal
classification does not necessarily increase the overall accuracy.
Although the multi-temporal classification improved the overall
accuracy, the improvement was small because seasonal changes
are similar in the different land cover classes.

Date Single image OA 14-Dec-13 + other
image OA

18-Apr-13 75.0% 85.3%
20-May-13 68.0% 82.6%
21-Jun-13 70.4% 85.4%
23-Jul-13 67.4% 85.9%
11-Oct-13 65.1% 87.0%
27-Oct-13 71.1% 85.0%
12-Nov-13 73.8% 83.7%
28-Nov-13 74.4% 84.7%
14-Dec-13 85.5%

30-Dec-13 76.3% 85.3%
15-Jan-14 76.7% 86.2%
16-Feb-14 78.6% 84.6%
20-Mar-14 73.9% 85.0%
05-Apr-14 70.9% 84.0%

Table 2. Overall accuracy (OA) of the multi-temporal

classifications.
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Figure 6. Mean spectral profiles for the three land cover types
from 11 October 2013 image and 14 December 2013
image separately .
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3.3 Classification accuracy with all the images

The overall accuracy was 82.9% when all the 14 images were
used together. The overall accuracy was improved in
comparison to most single image classifications and was only
2.6% lower than that of the best single image classification
(Table 2). However, it was lower than the overall accuracy of
most two image combinations.

4. DISCUSSION AND CONCLUSION

We explored the seasonal variation in land cover classification
accuracy in seasonal tropics in southern Burkina Faso. The
result demonstrated that during the dry season the classification
result tends to be higher than during the wet season. The multi-
temporal classification based on images from October and
December had higher accuracy than single image classifications
and other multi-temporal combinations. The results are similar
to Senf et al. (2015) who found that multi-temporal
classification of the maximum and minimum NDVI images
increased the overall accuracy in the Mediterranean area. This
indicates that careful image selection is needed before using
multi-temporal classification. When using all the 14 images
together for classification, there were 6 x 14 input bands, and
the high dimensionality and correlation between the spectral
bands decreased overall accuracy .
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