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ABSTRACT:

Limitations and deficiencies of different remote sensing sensors in extraction of different objects caused fusion of data from different
sensors to become more widespread for improving classification results. Using a variety of data which are provided from different
sensors, increase the spatial and the spectral accuracy. Lidar (Light Detection and Ranging) data fused together with hyperspectral
images (HSI) provide rich data for classification of the surface objects. Lidar data representing high quality geometric information
plays a key role for segmentation and classification of elevated features such as buildings and trees. On the other hand, hyperspectral
data containing high spectral resolution would support high distinction between the objects having different spectral information
such as soil, water, and grass. This paper presents a fusion methodology on Lidar and hyperspectral data for improving classification
accuracy in urban areas. In first step, we applied feature extraction strategies on each data separately. In this step, texture features
based on GLCM (Grey Level Co-occurrence Matrix) from Lidar data and PCA (Principal Component Analysis) and MNF
(Minimum Noise Fraction) based dimension reduction methods for HSI are generated. In second step, a Maximum Likelihood (ML)
based classification method is applied on each feature spaces. Finally, a fusion method is applied to fuse the results of classification.
A co-registered hyperspectral and Lidar data from University of Houston was utilized to examine the result of the proposed method.
This data contains nine classes: Building, Tree, Grass, Soil, Water, Road, Parking, Tennis Court and Running Track. Experimental

investigation proves the improvement of classification accuracy to 88%.

1. INTRODUCTION

One of the powerful methods for improving classification
performance is data and sensor fusion. In recent years, different
remote sensing sensors are provided a wide spectrum of data.
For many applications, the information provided by single
sensors are incomplete and imprecise, multiple sensors can
provide complementary data and fusion of information from
different sensors can provide the better information from
desired area which is not possible with individual sensors
(Simon, 2002. Pohl and Van Genderen, 1998).

Fusion of multiple datasets can be performed at the signal,
pixel, feature and decision level (Esteban, 2014, Pohl, 1998). In
signal level fusion, signals from multiple sensors are combined
together to create new signal with a better signal-to-noise ratio
than the input signals. In pixel level fusion, the information
from different images on a pixel by pixel are merged to improve
detection of objects in some tasks such as segmentation. Feature
level fusion consists of merging features extracted from
different images. In this level of fusion, features are extracted
from different sensors are combined to create a feature vector
for classified using a classifiers methods. In decision level
fusion, different datasets are combined at a higher level of
integration. In this level of fusion, at first the data from each
single sensor is classified, then fusion consists of merging the
output from the classification (Du et al. 2013, Dong et al. 2009,
Yan, 2004).

The aim of our work is fusion of HSI with Lidar data based on a
Maximum Likelihood classification algorithm. On the one hand,
hyperspectral data are optical images describing spectral
characteristics of each pixel with high spectral resolution. On
the other hand, Lidar data show the heights of observed areas

and objects on the ground. Objects such as buildings covered
with different roofing materials, streets and other open spaces as
well as different vegetation types can be detected in HIS,
because the spectral characteristics of these materials differ
from each other in a significant way (Roessner et al., 2001, Segl
et al., 2003, Heiden et al., 2007).

In Lidar data object detection is possible as well as prediction
about height of objects. Fusion of these both datasets is
expected to increase the classification accuracy.

Simental et al. (2003) showed that fusion of hyperspectral and
Lidar data can enhance overall detection and classification
performance in vegetation classes. As HSI provide a widespread
description of the spectral information in some classes without
any height information such as building, street and vegetation,
fusion of this data with Lidar data may improve classification
results in areas with different height. Lemp et al. (2005) fused
hyperspectral and Lidar data for improving classification of
urban areas. They used Lidar data for segmentation and
hyperspectral data for classification tasks. Delponte et al. (2008)
investigate the joint of hyperspectral and Lidar data with
classification based on SVM for rainforest areas. They applied a
band reduction strategy to select the best features from
hyperspectral data. Then, they added a Lidar data to selected
features from hyperspectral data for the classification. In recent
years, Zhao et al. (2013) applied four features: Principal
Component Analysis (PCA), Minimum Noise Fraction (MNF),
Normalized Difference Vegetation Index (NDVI) and GLCM
on hyperspectral data. Next, non-ground and ground points on
Lidar data are separated based on the algorithm proposed by
Axelsson (Zhao, 2013). After that they applied three classifiers
on features of hyperspectral data and Lidar data. Finally, they
fused all classifiers using majority voting (Zhao, 2013).
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This paper proposes a classifier fusion system based on ML
classifier and dimension reduction methods for fusion of HSI
and Lidar data. At first, different features are extracted from
both datasets generate features spaces on hyperspectral and
Lidar data. Then, classification based on ML was applied on
features from hyperspectral and Lidar data. Finally, using a
classifier fusion method the outputs of classifiers from
hyperspectral and Lidar data are fused.
2. PROPOSED METHOD

This paper proposes a classification method based on ML and
dimension reduction for fusion of HSI and Lidar data. In first
section, different feature extraction methods are used for
extracting more information from Lidar data. In this step
different dimension reduction methods are applied on HIS data.
In second section, classification based on ML is applied on
features separately. In final section, the classifiers are obtained
from two datasets fused together using a fusion method and
provided a final image. General diagram for proposed method is
shown in figure 1.
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Figure 1. Proposed method for Lidar and hyperspectral data
fusion

2.1 Feature Extraction

In this step, as shown in the figure 1, different features are
extracted from Lidar and hyperspectral data. These features
must contain useful information to improve accuracy of
classification process.

2.1.1 Dimension Reduction on HSI data

One of the main steps of classification process on HSI is
extraction of proper features from dataset. These features must
contain useful information to identify different regions of the
surface. NDVI (Normalized Difference Vegetation Index) can
be used to transform HSI into a single image band representing
vegetation distribution. The NDVI values indicate the amount

of green vegetation present in the pixel. Higher NDVI values
indicate more green vegetation. This formulation is shown in
equation 1.

NDVI = (pyir — Prep)/(Pair — Prep) 1)

Other feature extraction methods are Principal Component
Analysis (PCA) and Minimum Noise Fraction (MNF). PCA and
MNF have been utilized to reduce the dimension of spectral
bands. The number of 30 features containing the most
information of the HSIs is considered for both PCA and MNF.
Because the variances of bands are high in 30 first bands than
other bands.

2.1.2  Feature extraction on Lidar data

Extraction of proper features from Lidar data is one of main
steps in classification process. Feature descriptors can be
measured based on the grey value relationships between each
pixel and its neighbouring pixels in a local window or in the
global image. On Lidar data, different GLCM have been used
on Lidar data. GLCM can be measured by calculating how often
a pixel with grey intensity value i occurs horizontally adjacent
to a pixel with the value j. GLCM is one of the fundamental
techniques used for texture analysis defined by Haralick and his
colleague (1973).

The features on Lidar data are represented in Table 1.

Feature’s Name Formulation |
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Table 1. Different features on Lidar data

Homogeneity

Second Moment

Variance

2.2 ML based classification

Several urban classification methods have been proposed for
classification of Lidar and hyperspectral data. Maximum
Likelihood (ML) is a supervised classification method derived
from the Bayes theorem, the probability which a pixel with
feature vector w belongs to class I is given by:

plwlilecd
Biw)

P(ilw) = @
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Where P(w]i) is the likelihood function, P(i) is the probability
which class | occurs in the area and P(w) is the probability that
w is observed.

ML classification often assumes that the statistics for each class
in each band are normally distributed. Then the probability of
belonging of each pixel to a specific class was calculated.
Consequently, each pixel is assigned to the class which has the
highest probability (Richards, 1999):

0:w) = mPOwlE) = =3 G = k€T v = ) = 5 1n(2)

1
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3)
2.3 Fusion of HSI and Lidar data

In step 1, different features are extracted on HSI and Lidar data.
Then, ML classifiers are applied on each feature space
separately. After that results of each classifier are fused
together. Classifier fusion is applied on various types of data to
improve single classifier results. Generally, two types of
classifier fusion methods exist: crisp and fuzzy (Kuncheva,
2004). In our proposed method, we applied one of the crisp
classifier fusion methods: NB (Naive Bayes) (Kuncheva, 2004).
Naive Bayes is a statistical classifier fusion method which can
be used for fusing the outputs of single classifiers. Denote by
P(s;) the probability that classifier jth labels x in class s; e ). L
is the number of classifier and c is the number of classes. NB is
based on the Bayesian theory (Kuncheva, 2004) which is
represented as follows:

P(slwy) = P(sy,53, .., 5lwy) = TTi=y P(5;|wy) 4
The posterior probability needed to label x equal with:

P(w)P(slwy) P(wk)l'[f': P(s;lwy)
Pwds) =——pry — = R
k=1,..,c )

The denominator does not depend on w7 and can be ignored, so
the support for class wy can be presented as follows:

() o P(wi ) TTE=; P (s |wye) (6)

The practical implementation of the NB method on a data set
with cardinality N is explained as follows. For each classifier, a
¢ x ¢ confusion matrix CM® is calculated by applying testing
data set. The (K, s) the entry of this matrix, r:mij is the number
of the elements of data set whose true class label was w and
are assigned by the classifier to class w;. By N, we denote the
total number of elements of data set from class w;. Taking
oms, /Ny as an estimate of the probability P(s;,wy), and
Ny /N as an estimate of the prior probability for class w;. The

final equation for class wx is:
1 . .
“k(x} DCJ.‘.-_.-__-1H-:'L=1 Cmi,sl- (7)

NB classifier has been found to be surprisingly accurate and
efficient in many studies (Kuncheva, 2004).

3. RESULT
3.1 Data set

In this paper, we present a fusion method for improvement of
classification results on urban areas. The proposed approach

was applied on two data sets. A HSI and a Lidar derived digital
surface model (DSM); both data sets with spatial resolution of
2.5 m which is shown in figure 2. The HSI consists of 144
spectral bands. The data sets have captured over the University
of Houston campus and the neighbouring urban area and have
been acquired by the National Science Foundation (NSF)-
funded Centre for Airborne Laser Mapping (NCALM). The
ground truth of this data set which was provided by NCALM
have 15 different land cover classes; in our proposed method
some of these classes have been merged, Building class has
been provided by combining commercial and residential classes,
Road class has been provided by merging highway, road and
railroad classes, Grass class has been provided by combining
grass healthy, grass stressed and grass synthetic and by merging
parking lotl and parking lot2 have been produced Parking class.
These classes are shown in table 2.

.'.\ >

Figure 2.data sets: a) Hyperspectral Image, b) Lidar derived
DSM

Grass 580
Tree 188
Soil 186
Water 182
Building 387
Road 565
Parking 376
Tennis court 181
Running track 187

Table 2. Land cover classes and reference number

3.2 Results and Experiment

In first step of proposed method, feature spaces on HSI and
Lidar data has been produced independently. All of textural
features in Table 1 were applied on Lidar data to generate
different feature spaces. Some of these feature spaces are
illustrated in Figure 3.
Figure 4 also illustrates feature space on HSI.

(a) Mean
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atures on Lidar data

In next step, classification based on ML is applied on

hyperspectral and Lidar data. After classification of
hyperspectral and Lidar data, NB is applied as classifier fusion
methods on the outputs of classifiers.

Table 3 illustrates the accuracies of classification results on all
nine classes of data sets. Finally, Figure 5 demonstrates the
classifier fusion strategy on hyperspectral and Lidar data.

Table 3. Accuracies of classification results on all classes

Class Name Producer User ‘
Accuracy Accuracy

Grass 92.96 94.96
Tree 92.80 96

Soil 93.84 93.84
Water 91.60 96

Building 78.90 87.42

Road 89.61 89.28

Parking 81.10 68.07
Tennis court 90.73 96
Running track 92.87 96

[l i
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Figure 5. Final classification map

4. CONCLUSION

In this paper, the performance of a decision fusion method for
fusion of hyperspectral and Lidar data is assessed. In first step,
feature spaces have been extracted on hyperspectral and Lidar
data. Then ML classifiers were applied independently on both
data sets. Finally, a decision fusion method based on Bayesian
theory was applied to fuse outputs of classifiers of hyperspectral
and Lidar data.

Fusion of hyperspectral and Lidar data in decision level is the
important aim of our proposed method. In this level,
complexities of hyperspectral and Lidar data are considered.
Because HSIs provide a detailed description of the spectral

signatures of objects but no information on the height of ground
covers, whereas Lidar data provide detailed information about
the height of objects but no information on the spectral
signatures. So the elevation information of Lidar data is very
effective for the separation of objects with similar spectral
signatures. Also the spectral information of hyperspectral data is
very effective for discrimination of similar elevation objects but
different spectral information. Based on the results of our
proposed method, fusion of classifiers on two data sets
improves classification accuracy. The overall accuracy (OA)
and kappa coefficient of this strategy are shown in Table 4.
Based on these results, proposed classifier fusion on
hyperspectral and Lidar data improves the classification
accuracy.
Table 4. Results of final fusion method

OA 87.95
Kappa 0.8668
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