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ABSTRACT:

Satellite data provide high spatial coverage and characterization of atmospheric components for vertical column. Additionally, the use
of air pollution modelling in combination with satellite data opens the challenging perspective to analyse the contribution of different
pollution sources and transport processes. The main objective of this work is to study the AOD over Portugal using satellite
observations in combination with air pollution modelling. For this purpose, satellite data provided by Spinning Enhanced Visible and
Infra-Red Imager (SEVIRI) on-board the geostationary Meteosat-9 satellite on AOD at 550 nm and modelling results from the
Chemical Transport Model (CAMx - Comprehensive Air quality Model) were analysed. The study period was May 2011 and the aim
was to analyse the spatial variations of AOD over Portugal. In this study, a multi-temporal technique to retrieve AOD over land from
SEVIRI was used. The proposed method takes advantage of SEVIRI's high temporal resolution of 15 minutes and high spatial
resolution.

CAMX provides the size distribution of each aerosol constituent among a number of fixed size sections. For post processing, CAMXx
output species per size bin have been grouped into total particulate sulphate (PSO4), total primary and secondary organic aerosols
(POA + SOA), total primary elemental carbon (PEC) and primary inert material per size bin (CRST_1 to CRST_4) to be used in AOD
quantification. The AOD was calculated by integration of aerosol extinction coefficient (Qext) on the vertical column.

The results were analysed in terms of temporal and spatial variations. The analysis points out that the implemented methodology
provides a good spatial agreement between modelling results and satellite observation for dust outbreak studied (10th -17th of May
2011). A correlation coefficient of r=0.79 was found between the two datasets. This work provides relevant background to start the

integration of these two different types of the data in order to improve air pollution assessment.

1. INTRODUCTION

Over the last decade, air pollution has become a major problem
in Portugal due to high concentration of particulate matter (PM)
in the atmosphere, being the exceedance of daily limit values one
of the main issues for air pollution management. Therefore, better
characterisation of the emission sources and understanding the
atmospheric processes involved in the aerosol formation,
transport and deposition are of prime concern. Atmospheric
aerosols are associated with various environmental impacts from
local to global scales. Thus, aerosols cause detrimental health
effects in humans and an increase of fine particles concentration
is associated with rising morbidity and mortality (e.g. Pope and
Dockery, 2006; WHO, 2006a,b). At global scale, atmospheric
aerosols have direct and indirect effects on the climate system
and affect both temperature and precipitation patterns on the
earth’s surface (IPCC, 2007).

The concentrations and compositions of aerosols vary strongly in
space and time (Dentener et al., 2006; Kaufman and Koren, 2006;
Tsigaridis et al., 2006; van der Werf et al., 2006; Koch et al.,
2007) because the residence time of particles in the atmosphere
is only in the order of hours to weeks, depending mainly on the
particle size and meteorological conditions. Therefore, adequate
techniques should be identified to characterise these variations
and to improve our understanding on the pollution sources and
their possible effects. In this context, the use of satellite data in
combination with air pollution modelling opens a challenging
perspective. An increasing interest to use satellite observations in

air pollution modelling is mainly related with two important
properties of the data in comparison with surface measurements:
more complete spatial coverage and characterization of
atmospheric components for vertical column (Tchepel et al.,
2013; Vijayaraghavan et al., 2008; Engel-Cox et al., 2004).
Satellite data may be used to evaluate, initialize, constrain, and
improve the performance of air pollution models
(Vijayaraghavan et al., 2008). On the other side, chemical
transport models provide essential information on aerosol
composition, size distribution and vertical profiles that may be
used to improve satellite aerosol retrievals (Hu et al., 2009;
Randall, 2008).

Long-range transport of atmospheric pollution, including mineral
dust from natural sources, is one of the research topics where an
integration of the satellite data with air pollution modelling may
provide promising results. In Europe, and particularly in
Mediterranean countries, desert dust particles transported from
arid and semi-arid regions of North Africa have a strong impact
on air quality (Monteiro et al., 2015; Basart et al., 2012; Pay et
al., 2012; Querol et al., 2009, 2004; Rodriguez et al., 2001). It has
been estimated that this natural contribution to PM may range
from 5% to 50% in different European Countries (Marelli, 2007).
Therefore, the development of a harmonized methodology that
contributes to a better understanding of the natural aerosol burden
is an important issue.

In this study, we present a combined analysis of satellite data and
air pollution modelling to assess the contribution of PM to the air
pollution levels in Portugal. The Comprehensive Air Quality
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Model (CAMx) model was used to provide 3D fields on aerosol
concentration, size distribution and chemical composition. The
modelling results were evaluated against ground-based
observations and analysed in combination with aerosol satellite
observations provided by Spinning Enhanced Visible and Infra-
Red Imager (SEVIRI).

2. METHODOLOGY
2.1 Modelling approach

To investigate the spatial variations of aerosol optical depth
(AOD) over Portugal, May 2011 was chosen as a study period for
this study. During this period Portugal was influenced by African
dust outbreaks (Monteiro et al., 2015). The air quality modelling
system WRF-CAMYX, constituted by the Weather Research &
Forecasting (WRF) model (Skamarock et al., 2008) and the
CAMx model (ENVIRON, 2013) weas considered as a suitable
tool for the purpose of this study. The input/output structure of
WRF-CAMX is presented in Figure 1. CAMX is a 3D chemistry-
transport Eulerian photochemical model that allows for an
integrated assessment of gaseous and particulate air pollution
over many scales, ranging from sub-urban to continental. CAMx
is well-known and has been extensively applied for Portugal and
worldwide (Tchepel et al., 2013; Ferreira et al., 2012, 2010;
Huang et al., 2010; Borrego et al., 2008).
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Figure 1. Air quality modelling system — input/output structure

The WRF-CAMX air quality modelling system has been applied
for May 2011 to simulate 3D pollutant concentration fields. The
modelling setup included 2 nesting domains covering Europe
(D1) and Portugal (D2) with 27 and 9 km horizontal resolution,
respectively (Figure 2), both with about 15 km vertical column
(non-regularly subdivided on 15 levels considering higher details
near ground).
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Figure 2. Modelling domains for WRF and CAMX.

For this WRF-CAMx application, initial and boundary
conditions for Europe were taken from the Model for OZone and
Related chemical Tracers (MOZART), an offline global
chemical transport model (Emmons et al., 2010). MOZART
outputs at every 6 hours were downloaded for May 2011
(http://www.acd.ucar.edu/wrf-chem/mozart.shtml), at 1.9°x2.5°
horizontal resolution and 56 vertical levels. A pre-processing tool
allowed for the conversion of MOZART gaseous and aerosol
species into CAMXx species according to the chemical mechanism
in use — CB05. Emission inputs were prepared for the two
simulation domains. The EMEP-EU27 gridded emissions
(http://webdabl.umweltbundesamt.at/scaled_country_year.html
) by SNAP sector available for the pollutants CO, NH3,
NMVOC, SOx, PM2.5 and PMcoarse, were disaggregated by
area to EU grid. This emission inventory was subject to a
comparative analysis with other emission inventories available
for Europe (Ferreira et al., 2013). Despite the fact that it is not the
highest resolution inventory, it is suitable for the purpose
considering that the EU simulation is only used to get initial and
boundary conditions for the domain of interest. For the
Portuguese domain, the national emission inventory
(http://www.apambiente.pt/index.php?ref=17&subref=150)
developed for regulation purposes were used. Emissions of CO,
NOx, NH3, NMVOC, S02, PM10 and PM2.5 from
anthropogenic sources are available by municipality for the
whole territory of Portugal, and were disaggregated to the 9x9
km2 grid cell domain. Biogenic emissions were provided as well.
The aerosol chemistry module in CAMx performs the following
three processes: 1) Aqueous sulphate and nitrate formation in
resolved cloudwater using the RADM aqueous chemistry
algorithm (Chang et al., 1987); 2) partitioning of condensable
organic gases to secondary organic aerosols to form a condensed
“organic solution phase” using a semi-volatile, equilibrium
scheme called SOAP (Strader et al., 1999); and 3) partitioning of
inorganic aerosol constituents between the gas and aerosol phases
using the ISORROPIA thermodynamic module (Nenes et al.,
1998, 1999).

For post processing, CAMXx output species per size bin have been
grouped into total particulate sulphate (PSO4), total primary and
secondary organic aerosols (POA + SOA), total primary
elemental carbon (PEC) and primary inert material per size bin
(CRST_1to CRST_4:0.1-1.0um, 1.0 -2.5 pum, 2.5 -5.0 ym, 5.0 -
10.0 pm) to be used in AOD quantification and compared with
the aerosol data provided by the SEVIRI satellite sensor.

The comparison of modelled aerosol load with satellite retrieval
is done in terms of AOD which is a measure of the attenuation of
the incoming solar radiation by particle scattering and absorption.
AOD is calculated by integration the aerosol extinction
coefficient (Qext) over the vertical column from the surface level
to the top of the modelling domain (Eg. (1)):

Zmax

AOD (A) = J'Q

0

(ﬂ,Z),dZ (Eq l)

ext

Both AOD and Qext depend on the wavelength () and are related
with particle chemical composition, size distribution and shape
(Martin et al., 2003; Tegen and Lacis, 1996). These data are used
in combination with aerosol column mass loading provided by
the modelling system to estimate AOD at 550 nm.

2.2 SEVIRI aerosol retrievals

The MSG SEVIRI sensor measures the reflected and emitted
electromagnetic radiation of the Earth's atmosphere and surface
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utilizing 11 spectral channels between 0.6 pm and 14 pm and one
broad band visible channel with higher spatial resolution. MSG
is in a geostationary orbit enabling SEVIRI to capture the entire
observed disc every 15 minutes. To estimate AOD from the
satellite data, the channel centred at 0.6 um with a spatial
resolution of 3 km at the sub-satellite point (approximately 5 km
for central Europe) is used. A detailed description of the retrieval
algorithm can be found in Popp et al. (2007).

A short summary of the algorithm is given in the following lines.
To retrieve AOD from SEVIRI, the top-of-atmosphere (TOA)
signal (converted to reflectance units) measured by the satellite
sensor needs to be decomposed into the Earth surface’s and
atmospheric contribution. First, the surface reflectance for every
pixel is estimated selecting the lowest observed reflectance
(corrected for ozone, water vapor, and background aerosol
concentration) from a temporal window of 15 days. A fixed
aerosol model (continental aerosol type, single scattering albedo
®0=0.89 at A=0.55 pm) and meteorological data (0ozone and water
vapour concentration) from the European Centre for Medium
Range Wether Forecasts (ECMW) operational analysis are then
fed into a radiative transfer model to invert the AOD from the
(estimated) surface and (measured) TOA reflectance. The
Simplified Model for Atmospheric Correction (SMAC, Rahman
and Dedieu, 1994) is used for the radiative transfer simulations
which is a parameterized version of 6S (Vermote et al., 1997). As
a last step, a spatial averaging filter (moving 5x5 pixel box) is
applied to the retrieved AOD to reduce noise such that, finally,
each pixel represents the AOD of an area of approximately 25x25
km?,

To compare the AOD from SEVIRI with the modelling results,
the spatial join tool from a geographic information system was
used to combine both grids. Then, we selected the maximum
value in each pixel for each hour. The result of this methodology
is a grid with SEVIRI data adequate to compare with CAMXx
results.

3. RESULTS AND DISCUSSION

In this section, we present the results from the analysis and
comparison of the air quality model outputs, SEVIRIand
AERONET observations in order to verify their agreement.
During May 2011, over mainland Portugal, two dust outbreaks
from North of Africa were identified by Monteiro et al. (2015).
One of them occurred during several days (10-17 May 201) was
selected to investigate the long-range transport of mineral dust.

3.1 SEVIRI observations

The AOD data provided by SERIVI over mainland Portugal were
analysed in terms of average of the daily values, in order to assess
its spatial and temporal distribution. SERIVI obtains
observations with a high temporal resolution of 15 minutes and a
spatial resolution of approximately 9 km? (Figure 3a). In the first
step, it was necessary get a single SEVERI observation per hour.
Therefore, the maximum value for each pixel and each hour was
selected. The last step was to apply the spatial join tool from the
geographic information system to combine both grids. The result
is a grid with a maximum value for each pixel and each hour with
SEVIRI data adequate to compare with CAMXx results (Figure
3b).

Figure 3. SEVIRI data for 14 May 2011 at 14 UTC: a) original
pixel size (3x3 km?) and b) pixel size of the modelling results
(9x9 km?).

3.2 SEVIRI observations and AERONET data

SEVIRI AOD retrievals were compared with Aerosol Robotic
Network (AERONET) level 2.0 AOD measurements from 4
stations (Figure 4a) in the modelling domain for May 2011
(http://aeronet.gsfc.nasa.gov/)(Figure 2). For that purpose,
AERONET observations were averaged to the 15 min resolution
of SEVIRI observations. For both data, SEVIRI and AERONET,
the daily mean AOD value was calculated. Figure 4b shows the
scatterplot of daily mean AOD values provided by SEVIRI and
AERONET for all stations located within the modelling domain
at May 2011.
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Figure 4. a) Localition of AERONET Stations, b) Scatterplot of
daily mean AOD values from AERONET versus SEVIRI and c)
trendlines of the daily mean AOD value from AERONET and
SEVIRI for May 2011.

SEVIRI AODs agree well with AERONET observations with a
correlation coefficient value of 0.57 (Figure 4b). The trendlines
of the daily mean AOD value from AERONET and SEVIRI for
all stations at May 2011 are presented in Figure 4c. The lowest
correlation coefficient (0.61) was found for Evora station, located
in the centre of the domain.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-588-1

3.3 Air quality modelling results

Figure 5 presents a particulate matter mass field for Portugal, for
a specific hour of day as an example. These values result from
the sum of organic carbon, black carbon, sulphate and mineral
dust from all the vertical levels. As one can see, the southern part
of the domain presents higher particulate matter (PM) mass than
the other regions of the study area influenced mainly by mineral
dust.
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Figure 5. PM mass (g.m-?) are shown for 14" May 2011 at 14
UTC.

The analysis of the contribution of each PM component by
vertical layers is important to better understand the atmospheric
processes that influence aerosol loading and to identify possible
long-range transport of mineral dust. For this propose, the 3D
model outputs were analysed and an example for 2 random points
is presented (Figure 6a), one in the north and another in the south
of the domain. The plots (Figure 6b and 6c) display the vertical
profile of the concentrations obtained for each PM component.
At both points, the highest PM concentration was simulated at
2000 meters. The results in the South point (Figure 6b) showed
higher PM concentration values in all layers comparing to the
North point (Figure 6c). The component with largest contribution
is the dust bin 2 (1.0-2.5um).
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Figure 6. Vertical distribution of PM concentration: a)
localization of the two points, b) results for South point and c)
results for North point.

3.4 Air quality model results and SEVIRI observations

A spatial analysis of the monthly results obtained from modelling
application and their comparison with remotely sensed aerosol
data are presented in Figure 7 a) and b) respectively. The monthly
results were obtained by computing the average of the daily AOD
values between 6 -17 UTC (diurnal time). The southern part of
the domain presents higher concentrations, showing a clear
influence of the mineral dust.

Latitude
Latitude

a)
Longitude Longitude
Figure 7. Monthly mean Aerosol Optical Depth (AOD) for May
2011. a) Spatial distribution obtained with CAMx and b) Spatial
distribution of SEVIRI data.

The scatter plot of the modelling results (Figure 7a) versus
satellite data (Figure 7b) is presented in Figure 8 for each cell for
May 2011. The modelling data are in agreement with the
observations showing a correlation coefficient of 0.38 (Figure 8).
Moreover, simulated and observed values exhibit different
spatial patterns and distinct magnitudes (Figures 7 and 8).
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Figure 8. Scatterplot of monthly mean AOD for each grid cell
from CAMx and SEVIRI for May 2011.

3.5 Analysis of the dust outbreak

During May 2011, over mainland Portugal, two dust outbreaks
from North of Africa were identified by Monteiro et al. (2015).
One of them occurred during several days (10-17 May 2011) and
was the biggest dust outbreak during 2011. This dust outbreak
was selected to analyse the spatial variation of daily mean AOD
value from CAMx (Figure 9a) and SEVIRI (Figure 9b).
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Figure 9. Mean Aerosol Optical Depth (AOD) shown for 10th-
17th May 2011. a) Spatial distribution obtained from CAMXx
data and b) Spatial distribution of SEVIRI data.

The scatter plot of the modelling results versus satellite data is
presented in Figure 10 for each cell, for the dust outbreak period.
The modelling data are in agreement with the observations
showing a correlation of r=0.79 between the two datasets for the
studied period (10th-17th of May 2011) (Figure 10).
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Figure 10. Scatterplot of mean AOD spatial distribution
between CAMx and SEVIRI for 10th -17th of May 2011.

CAMX results of mean AOD for 10th -17th of May 2011 were
evaluated against SEVIRI observations with standard statistical

techniques to determine mean bias (MB) (Eg. 2) and root mean
square error (RMSE) (Eg. 3):

MB = - ¥ (CAMx — SEVIRI) (Eq.2)
N _ 291/2
RMSE = [21 (CAMxNSEVIRI) (qu 3)

For each daily mean spatial plot, statistics were generated if the
number of grid cells with successfully retrieved SEVIRI AOD
values was greater than 1500 for each day over all study domain
(total grid cells = 2898).

Figure 11 shows the mean bias and root-mean square error
derived using the data at each grid cell over the 8-day time period.
It can be observed that, in the south part of the domain, MB and
RMSE are higher, reaching values between 0.5 and 0.9 this could
be related to the fact that CAMx simulated higher particulate
matter concentrations, mainly influenced by mineral dust (Figure
6).
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Figure 11. Statistical analysis between CAMX results and
SEVIRI observations for 10th -17th of May 2011. a) Mean bias
and b) Root mean square error.

Spatial analysis of AOD over three regions of the study domain
is given in Figure 12.
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Figure 12. Daily mean AOD values obtained from CAMx
results and SEVIRI observation for each region a) North (red
box), b) Center (green box) and c) South (blue box) for the
period 10th -17th May 2011.

The analysis of AOD over the regions shows significant spatial
variations, more evident in CAMXx results. However, AOD over
the south region is observed to be high compared to other regions.
There is a better agreement between SEVIRI and CAMX in the
North region probably because of the less important contribution
of mineral dust in this region. Moreover, the higher difference
between CAMx and SEVIRI averages in all regions was
identified during the first four days of the study period.

4. CONCLUSION

Atmospheric aerosols play an important role in the energy budget
of the Earth climate system by interacting with solar and
terrestrial radiation. Therefore, the development of a harmonized
methodology that contributes to a better understanding of the
aerosol burden is an important issue to determine their impacts
on the global climate and human health.

The chemical transport model CAMx was applied to characterise
the 3D distribution of aerosols over Portugal. Modelling results
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were analysed in combination with SEVIRI observations in terms
of AOD at 550 nm.

The results show that the implemented methodology provides a
reasonable agreement between the modelling outputs and
satellite observations. For the selected and analysed dust
outbreak (10th-17th May 2011) a correlation coefficient of
r=0.79 was found between the two datasets. Spatially, the
differences are bigger over the region where mineral dust
exhibited higher concentration, with mean bias and root mean
square error values between 0.5 and 0.9. This paper presents
relevant background to start the integration of these two different
types of the data in order to improve air pollution assessment.
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