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ABSTRACT: 

 

The Taita Hills, located in south-eastern Kenya, is one of the world’s biodiversity hotspots. Despite the recognized ecological 

importance of this region, the landscape has been heavily fragmented due to hundreds of years of human activity. Most of the natural 

vegetation has been converted for agroforestry, croplands and exotic forest plantations, resulting in a very heterogeneous landscape. 

Given this complex agro-ecological context, characterizing land cover using traditional remote sensing methods is extremely 

challenging. The objective of this study was to map land cover in a selected area of the Taita Hills using data fusion of airborne laser 

scanning (ALS) and imaging spectroscopy (IS) data. Land Cover Classification System (LCCS) was used to derive land cover 

nomenclature, while the height and percentage cover classifiers were used to create objective definitions for the classes. 

Simultaneous ALS and IS data were acquired over a 10 km × 10 km area in February 2013 of which 1 km × 8 km test site was 

selected. The ALS data had mean pulse density of 9.6 pulses/m2, while the IS data had spatial resolution of 1 m and spectral 

resolution of 4.5–5 nm in the 400–1000 nm spectral range. Both IS and ALS data were geometrically co-registered and IS data 

processed to at-surface reflectance. While IS data is suitable for determining land cover types based on their spectral properties, the 

advantage of ALS data is the derivation of vegetation structural parameters, such as tree height and crown cover, which are crucial in 

the LCCS nomenclature. Geographic object-based image analysis (GEOBIA) was used for segmentation and classification at two 

scales. The benefits of GEOBIA and ALS/IS data fusion for characterizing heterogeneous landscape were assessed, and ALS and IS 

data were considered complementary. GEOBIA was found useful in implementing the LCCS based classification, which would be 

difficult to map using pixel-based methods. 
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1. INTRODUCTION 

The land cover has changed rapidly in the Taita Hills, in south-

eastern Kenya. Large areas of forests, woodlands and 

shrublands have been converted into agricultural use (Clark and 

Pellikka, 2009; Pellikka et al., 2009). However, mapping these 

changes using remote sensing (RS) is a challenging task as even 

the class definitions are based on heuristic views of given 

classification system. The land cover in the area is very 

heterogeneous and consists mostly of mixed classes of trees, 

crops and other vegetation. 

 

Mapping heterogeneous classes using L-resolution satellite data 

is difficult, since individual components (e.g. single trees) that 

form agroforestry or woodland classes cannot be distinguished 

(Zomer et al. 2009; Blinn et al. 2013). On the other hand, using 

H-resolution data allows a clear distinction of individual trees 

(e.g. Eysn et al., 2012; Dalponte et al., 2014). However, linking 

individual trees to certain minimum mapping unit (MMU) of 

agricultural land, which would represent agroforestry is 

challenging (Zomer et al., 2009; Blinn et al., 2013). L-

resolution data refers to situations where the scene objects are 

smaller than the pixel size of the data, while in H-resolution 

data the scene objects are larger than the pixel size (Strahler et 

al., 1986). 

 

Mapping mixed land cover classes accurately is important 

because agroforestry has high potential for carbon sequestration 

in developing countries (Negash and Kanninen, 2015). 

Agroforestry could be a direct target in REDD+ programs 

depending on the country’s forest definition (Minang et al., 

2014). In REDD+ programs the countries are rewarded for 

keeping forests and reducing emissions from deforestation.  

Agroforestry is, however, not been mentioned in REDD+ 

programs, despite its proven climate change mitigation and 

adaptation benefits (Minang et al., 2014). Trees outside forests 

(TOF) also have importance on local and regional scale 

economy. For example, in India TOFs constitute estimated 49 

% of the annual fuelwood and 48% of the annual timber 

consumed (Panday, 2002). 

 

RS could, therefore, highly benefit carbon sequestration plans 

by improving the identification and characterization of 

agroforestry systems. However, several bottlenecks are still 

evident for obtaining reliable results based on H-resolution 

imagery. For instance, when H-resolution data is used with 

pixel-based methods there are problems with salt-and-pepper 

effects and mixing of classes within targets (Blaschke et al. 

2014; Piiroinen et al., 2015). This problem can be tackled using 

geographic object-based image analysis (GEOBIA) approach 

(Blaschke et al., 2014; Benz et al., 2004) where pixels are 

segmented into objects before the classification. Since, for 

example, agroforestry consists of crops with trees, a multiscale 

segmentation and classification, where the target area is first 

segmented into larger areas that consist of different fractions of 

finer scale land cover types, can be applied. A finer scale 

segmentation and classification can then be done inside these 

larger segments. The larger areas can then be classified based on 
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the fractions of finer scale land cover types (e.g. crops and 

trees) they contain. 

 

Furthermore, combining optical data with Light Detection and 

Ranging (LiDAR) technology could highly improve the 

accuracy of land cover classification in agroforestry areas. 

Unfortunately, this approach has not yet been fully explored, in 

particular in tropical mountain environments. 

 

In this article, H-resolution airborne laser scanning (ALS) and 

imaging spectroscopy (IS) data fusion (Torabzadeh et al., 2014) 

was used together with GEOBIA to characterize the mixed land 

cover classes based on biophysical definitions derived from 

Land Cover Classification System (LCCS) (Di Gregorio, 2005). 

ALS enables the use of accurate three dimensional information 

of the land cover, while IS enables the detection of different 

materials based on their spectral characteristics. In this study 

our objectives were to: 

 

(i) create clear definitions for the land cover classes based on 

LCCS and measurable biophysical attributes (tree height, crown 

cover) that are non-overlapping and measurable using remote 

sensing methods. 

 

(ii) test multiscale segmentation for defining mapping units for 

characterizing heterogeneous landscape with emphasis on 

forests and agroforestry. 

 

(iii) assess the benefits of data fusion in creating the land cover 

classes. 

 

2. MATERIAL 

2.1 Study area 

The study area (8 km × 1 km) is located in the elevation range 

of 1100–1800 m a.s.l. in the highlands of the Taita Hills (3° 25′ 

S, 38° 19′ E) in south-eastern Kenya (Figure 1). There are two 

rainy seasons with long rains occurring in the March-June and 

short rains in October-December (Jaetzold and Schmidt, 1983). 

Figure 1. Location of the Taita Hills in south-eastern Kenya. 

 

2.2 Airborne data collection 

Flight campaign was conducted in 3–8.2.2013 during the dry 

season. Two sensors were used to collect ALS and IS data from 

mean flying height of 750 m. Optech ALTM 3100 (Optech, 

Canada) is an oscillating mirror laser scanner capable of 

recording up to four echoes. The sensor was operated with pulse 

rate of 100 kHz and scan rate of 36 Hz. Scan angle was ±16°. 

Achieved pulse density was 9.6 pulses m−2. Mean footprint 

diameter was 23 cm. AisaEAGLE is a pushbroom scanner with 

instantaneous field of view of 0.648 mrad and field of view of 

36.04° (Spectral Imaging Ltd., Finland). The sensor was used in 

four times spectral binning mode that produces output images 

with 129 bands and full width at half maximum of 4.5–5.0 nm 

in spectral range of 400–1000 nm. The output pixel size was 1.0 

meters. 

 

3. METHODS 

3.1 Preprocessing of the data 

ALS data was pre-processed by the data vendor (Topscan 

Gmbh) and delivered as a georeferenced point cloud in 

UTM/WGS84 coordinate system with ellipsoidal heights.  

TerraScan software (Terrasolid Ltd., Finland) was used to create 

digital terrain model (DTM) and digital surface model (DSM) 

from ALS data, which was classified to ground and other 

returns. Some of the very steep slopes were falsely classified 

and had to be manually corrected. The first returns were used to 

create DSM and the returns classified as ground to create DTM 

at 1 m resolution. DTM values were subtracted from DSM 

values to create canopy height model (CHM), which represents 

the height of vegetation and buildings from the ground level 

(CHMbuildings). Another CHM was created using the same 

approach, but the power lines were first removed manually and 

returns classified as buildings were removed (CHMnobuildings). 

DTM was used for calculating slope. 

 

The raw data produced by AisaEAGLE was radiometrically 

corrected and georectified with CaliGeoPro 2.2 (Spectral 

Imaging Ltd., Finland). DSM derived from ALS data was 

interpolated to pixel size of 3 meters and used in the 

georectification process. Atmospheric correction was applied 

using ATCOR-4 (Schläpfer and Richter, 2002). 

 

After the initial georectification of AisaEAGLE data, it was 

noted that there were geometric mismatches between 

AisaEAGLE and ALS data. The geometric accuracy of the ALS 

data was assumed to be better and thus CHMbuildings was used as 

a reference data for manual co-registration of AisaEAGLE data. 

The processed flight lines were first subsetted so that the side 

overlap between images was minimized. Next, 50–100 control 

points were collected from CHMbuildings and AisaEAGLE data 

for each flight line. Then, the first order polynomial 

transformation was applied to co-register the AisaEAGLE flight 

lines and CHMbuildings. After co-registration, RMSE for an 

example flight line was 1.06 pixels (meters), which was 

considered accurate enough for data fusion (Valbuena, 2014). 

 

3.2 LCCS class definitions 

To map mixed classes of trees and other land cover types, the 

first step is to define tree and forest, which is a complex issue as 

numerous definitions exist (Magdon and Klein, 2013). LCCS 

(Di Gregorio, 2005) defines that all woody life forms taller than 

5 m are trees, while 3–5 m tall plants can be trees if they have 
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clear physiognomic aspects of a tree. Mapping physiognomic 

aspects using RS is challenging and thus all the plants taller 

than 3 m were considered as trees. Forest is defined typically 

based on certain tree crown cover (CC) on MMU (Magdon and 

Klein, 2013; Eysn et al., 2013). CC refers to the proportion of 

the forest floor covered by the vertical projection of the tree 

crowns (Jennings et al., 1999; Korhonen et al., 2006). For 

example, UNFCCC as part of Kyoto protocol states that: ‘forest 

is a minimum area of land of 0.05-1.0 hectares with tree crown 

cover (or equivalent stocking level) of more than 10-30 per cent 

with trees with the potential to reach a minimum height of 2-5 

metres at maturity in situ’ (Minang et al., 2014). FAO uses 10 

% CC threshold and 0.5 ha MMU (FAO, 2000). LCCS does not 

define a specific MMU for forests or any other land cover type. 

 

ICRAF (1993) defines agroforestry as follows: “Agroforestry is 

a collective name for land-use systems and technologies, where 

woody perennials are deliberately used on the same land 

management unit as agricultural crops and/or animals, either in 

some form of spatial arrangement or temporal sequence. In 

agroforestry systems there are both ecological and economical 

interactions between the different components”. Panday (2002) 

defines it to include all forms of tree-growing in 

agroecosystems. Mapping agroforestry is difficult using RS 

methods and thus in this article agroforestry refers to trees on 

farmland. The CC thresholds for defining the agroforestry and 

woodland classes were derived from LCCS percentage cover 

classifier. 

 

3.3 Segmentation and classification 

Segmentation and classification was done in eCognition 

Developer (Trimble Navigation, Ltd.). First, multiresolution 

segmentation (MRS) was used to create level-0 segmentation 

based on normalized difference vegetation index (NDVI; 

Tucker, 1979) and CHM using scale parameter of 275, shape of 

0.5 and compactness of 0.7. Next, MRS was used for level-1 

segmentation inside level-0 segments based on CHM using 

scale parameter of 25, shape of 0.2 and compactness of 0.6. 

 

The classification was done first on level-1. The first step was to 

separate all trees. This was done based on CHMnobuildings where 

all targets taller than 3 m were classified as trees. Next, 

CHMbuildings was used to classify the remaining targets that were 

taller than 3 m as buildings. A temporary class was created for 

objects with heights between 1–3 m and training samples were 

collected for buildings and shrubs. Training samples were 

collected visually using AisaEAGLE data. Support Vector 

Machine (SVM) classification (Vapnik, 1998; Mountrakis et al., 

2011) was applied using 12 first minimum noise fraction 

(MNF) transformed (Green et al., 1988) AisaEAGLE bands to 

classify all 1–3 m objects into buildings and shrubs. 12 MNF 

bands have been shown to yield highest classification 

accuracies with AisaEAGLE data in a previous study (Piiroinen 

et al., 2015). 

 

The remaining objects were classified into a temporary class 

and merged to create one segment containing all objects of 0–1 

m height. This object was segmented based only on NDVI for 

better separation of bare soil, water and low vegetation targets. 

SVM classification was applied using median NDVI as input to 

separate these classes. Level-0 classification was based on level-

1 classes and LCCS class definitions.  

 

4. RESULTS AND DISCUSSION 

4.1 LCCS class definitions and their implementation based 

on GEOBIA approach 

We created eight level-0 classes based on LCCS (Table 1). 

These classes were composed of finer scale segmentation and 

classification results based on six land cover classes described 

in Table 2. As agricultural land and other low vegetation targets 

were not separated at level-1, the presence of buildings was 

used as criteria to separate agroforestry and woodland classes. 

This approach is based on the knowledge that in the study area 

agriculture is practiced mainly on small scale family farms, in 

which cultivated areas are located next to buildings. One of the 

strengths of GEOBIA approach is to take advantage of these 

context based rules to separate classes that are hard to separate 

based only on their biophysical characteristics (Blaschke et al., 

2014). 

 

Further visual analysis showed that remaining agroforestry and 

agricultural land, without nearby buildings, were still present in 

the level-0 segments. These remaining agricultural areas were 

separated based on the presence of terraces. Agricultural 

terraces were detected based on the standard deviation (STD) of 

the terrain slope, given that terraced farms are combinations of 

very steep slopes and levelled terraces, which makes the STD 

very high when compared to natural areas where slope angles 

change more gradually.  

 

Currently, there is a large demand for a global land cover 

classification system, which would cover all variation in land 

cover. LCCS (Di Gregorio, 2005) is so far the most ambitious 

attempt to create one. However, there are still many decisions 

that are left for the user when the classification system is 

applied on a certain area. For example, one of the problems 

with LCCS is that it does not define agroforestry class 

implicitly. Agroforestry would belong to cultivated and 

managed lands, while cover and height classifiers are included 

only for natural and semi-natural terrestrial class. This prevents 

using LCCS as such to characterize agroforestry systems and 

further interpretations of the system are left for the user. 

 

ALS data makes it possible to use LCCS height classifier in 

land cover characterization, which makes it possible to use 

unambiguous and objective threshold values for trees, shrubs 

and low vegetation. Percentage cover classifier can be used to 

define mixed land cover classes. However, there is very little 

discussion in the LCCS manual on how the MMUs should be 

selected, while this is a key element in forming the classes. 

 

MRS is one possibility to create MMUs that would represent 

different levels of heterogeneity in the landscape. However, the 

segmentation process itself is subjective and the segmentation 

parameters are difficult to define objectively (Arvor et al., 2013; 

Belgiu and Dragut, 2014; Hay et al., 2005). Even if objective 

definitions for the classes are created the local knowledge of 

land cover is still needed as, for example, some agroforestry 

systems may have a CC of up to 88% (Panday, 2002; Bisseleua 

et al., 2009), which makes them overlap with many forest 

definitions (e.g., Magdon and Klein, 2013; Minang et al., 2014; 

FAO, 2000). 
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Level-0 class Definition 

Cropland Low crops with CC < 10 %. Cover of 

buildings > 0% or slope STD > 10. 

Open 

grassland 

Low crops with CC < 10 %. Cover of 

buildings = 0 % or slope STD < 10. 

Agroforestry 

(sparse) 

Low crops with 10−40 % CC. Cover of 

buildings > 0 % or slope STD > 10. 

Agroforestry 

(dense) 

Low crops with 40−70 % CC. Cover of 

buildings > 0 % or slope STD > 10. 

Woodland 

(sparse) 

Low vegetation with 10−40 % CC. Cover of 

buildings = 0 or slope STD < 10. 

Woodland 

(dense) 

Low vegetation with CC = 40−70 %. Cover of 

buildings = 0 % or slope STD < 10. 

Closed forest CC > 70 %. Segment size > 1 ha. 

Forest patch CC > 70 %. Segment size < 1 ha. 

Table 1. Land cover classes based on LCCS at level-0. 

 

 

 

Level-1 class Definition 

Tree Vegetation with height > 3 m. 

Building Built-up area with height > 3 m. Buildings 

1-3 m classified with SVM based on 12 first 

MNF transformed AisaEAGLE bands. 

Water Height < 1 m. Classified with SVM based 

on median NDVI. 

Low 

vegetation 

Height < 1 m. Classified with SVM based 

on median NDVI. 

Shrub Vegetation with height 1-3 m. Classified 

with SVM based on 12 first MNF 

transformed AisaEAGLE bands. 

Bare soil Height < 1 m. Classified with SVM based 

on median NDVI. 

Table 2. Land cover classes at level-1. 

 

4.2 Data fusion and multi-scale segmentation results 

CHMbuildings shows the height of targets above ground (Figure 

2a) while IS data shows the reflectance (Figure 2b). The results 

of the level-0 segmentation based on NDVI and CHM are 

presented in Figure 2c. The shape value was set to 0.5 so that 

the segments would include heterogeneous objects of trees and 

low vegetation while the forest patches with sharp edges were 

still separated into their own segments. Both data sources were 

shown to be important for creating meaningful segments, as 

segments based only on CHM would stick too closely to 

individual trees. NDVI was used instead of reflectance to 

minimize the influence of shadows. The level-1 segmentation, 

which was based only on CHM and smaller scale parameter 

separated trees and buildings in their own segments (Figure 2d).  

 

 
Figure 2. Examples of canopy height model (a), AISA data (b), 

level-0 segmentation (c) and level-1 segmentation inside level-0 

segments (d). 

 

Our results show that in highly heterogeneous landscapes, the 

fusion of ALS and optical data was essential for successful 

separation of targets that could not be distinguished 

independently by using either ALS or IS data. For instance, 

ALS data created segments that followed trees and buildings 

very closely (Figure 3a), while it could not separate bare soil 

from low vegetation (Figure 3b).  

 

 
Figure 3. Segmentation based on CHM (a) creates segments 

based on their height and thus it does not differentiate between 

very low vegetation and bare soil. NDVI based segmentation 

separates the bare soil from the very low vegetation (b). 

 

The classification based on level-1 segmentation was successful 

in separating the main land cover components (Figure 4a). 

However, this evaluation is based on visual interpretation and 

further validation is needed for a more comprehensive accuracy 

assessment. The validation will be possible when the 

classification is extended to the complete study area of 10 km × 

10 km where field data collected in 2012, 2013 and 2014 are 

available.  

 

The level-0 classification (Figure 4b) describes the mixed 

classes based on level-1 classification. This reveals how much 

trees there are in each segment in relation to agriculture or other 

low vegetation. The most common class was sparse agriculture, 

which indicates that in the study area it is common practice to 

grow trees on farmland. On the other hand, dense agroforestry 

areas were not commonly observed. Woodlands were located 

mainly on steep slopes and further away from roads and 

buildings. 
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Figure 4. Example of the level-1 classification (a) and level-0 

classification based on the fractional cover of level-1 classes 

(b). 

 

The benefits of data fusion in segmentation and classification 

process were evident as, for example, CHM was very suitable 

for segmenting and classifying trees, while AisaEAGLE data 

was suitable for segmenting and classifying bare soil, water and 

low vegetation. These results are in agreement with Torabzadeh 

et al. (2014), who concluded that, at the moment, land cover 

maps are RS products that are benefiting the most from ALS 

and IS data fusion. 

 

5. CONCLUSIONS AND FURTHER DEVELOPMENTS 

LCCS was successfully modified to characterize mixed land 

cover classes like agroforestry. The height and percentage cover 

classifiers are useful when these classes are defined as 

objectively as possible. Multiresolution segmentation and 

multiscale approach created meaningful mapping units for the 

classes, while further validation of the results is needed before 

making more detailed conclusions. The benefit of this approach 

over pixel based methods is that clear threshold values can be 

used when the classes are defined and mapped. ALS and IS  

data nicely complemented each other, while all the potential of 

IS data was not used at this stage. The importance of IS 

increases as the classification is extended to species level. 

Species level information can then be used for more detailed 

definitions of level-0 classes. Information of tree types is 

important for agroforestry classification as farmers are known to 

plant specific species on their farmland for specific purposes.  

The strength of GEOBIA approach is to include these context 

based rules in the classification process. Future efforts will 

extend the classification system to our entire study area and the 

results will be validated based on field surveys. These results, 

together with further assessments of above ground biomass, will 

be used for assessing the carbon stocks and biodiversity in 

different land cover classes. This information will be highly 

beneficial for researchers and policy makers aiming to promote 

agroforestry practices and the design of biodiversity 

conservation plans.  
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