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ABSTRACT:

The Taita Hills, located in south-eastern Kenya, is one of the world’s biodiversity hotspots. Despite the recognized ecological
importance of this region, the landscape has been heavily fragmented due to hundreds of years of human activity. Most of the natural
vegetation has been converted for agroforestry, croplands and exotic forest plantations, resulting in a very heterogeneous landscape.
Given this complex agro-ecological context, characterizing land cover using traditional remote sensing methods is extremely
challenging. The objective of this study was to map land cover in a selected area of the Taita Hills using data fusion of airborne laser
scanning (ALS) and imaging spectroscopy (IS) data. Land Cover Classification System (LCCS) was used to derive land cover
nomenclature, while the height and percentage cover classifiers were used to create objective definitions for the classes.
Simultaneous ALS and IS data were acquired over a 10 km x 10 km area in February 2013 of which 1 km x 8 km test site was
selected. The ALS data had mean pulse density of 9.6 pulses/m?, while the 1S data had spatial resolution of 1 m and spectral
resolution of 4.5-5 nm in the 400-1000 nm spectral range. Both IS and ALS data were geometrically co-registered and IS data
processed to at-surface reflectance. While IS data is suitable for determining land cover types based on their spectral properties, the
advantage of ALS data is the derivation of vegetation structural parameters, such as tree height and crown cover, which are crucial in
the LCCS nomenclature. Geographic object-based image analysis (GEOBIA) was used for segmentation and classification at two
scales. The benefits of GEOBIA and ALS/IS data fusion for characterizing heterogeneous landscape were assessed, and ALS and IS
data were considered complementary. GEOBIA was found useful in implementing the LCCS based classification, which would be
difficult to map using pixel-based methods.

1. INTRODUCTION Agroforestry could be a direct target in REDD+ programs

depending on the country’s forest definition (Minang et al.,
The land cover has changed rapidly in the Taita Hills, in south-

eastern Kenya. Large areas of forests, woodlands and
shrublands have been converted into agricultural use (Clark and
Pellikka, 2009; Pellikka et al., 2009). However, mapping these
changes using remote sensing (RS) is a challenging task as even
the class definitions are based on heuristic views of given
classification system. The land cover in the area is very
heterogeneous and consists mostly of mixed classes of trees,
crops and other vegetation.

Mapping heterogeneous classes using L-resolution satellite data
is difficult, since individual components (e.g. single trees) that
form agroforestry or woodland classes cannot be distinguished
(Zomer et al. 2009; Blinn et al. 2013). On the other hand, using
H-resolution data allows a clear distinction of individual trees
(e.g. Eysn et al., 2012; Dalponte et al., 2014). However, linking
individual trees to certain minimum mapping unit (MMU) of
agricultural land, which would represent agroforestry is
challenging (Zomer et al., 2009; Blinn et al.,, 2013). L-
resolution data refers to situations where the scene objects are
smaller than the pixel size of the data, while in H-resolution
data the scene objects are larger than the pixel size (Strahler et
al., 1986).

Mapping mixed land cover classes accurately is important
because agroforestry has high potential for carbon sequestration
in developing countries (Negash and Kanninen, 2015).
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2014). In REDD+ programs the countries are rewarded for
keeping forests and reducing emissions from deforestation.
Agroforestry is, however, not been mentioned in REDD+
programs, despite its proven climate change mitigation and
adaptation benefits (Minang et al., 2014). Trees outside forests
(TOF) also have importance on local and regional scale
economy. For example, in India TOFs constitute estimated 49
% of the annual fuelwood and 48% of the annual timber
consumed (Panday, 2002).

RS could, therefore, highly benefit carbon sequestration plans
by improving the identification and characterization of
agroforestry systems. However, several bottlenecks are still
evident for obtaining reliable results based on H-resolution
imagery. For instance, when H-resolution data is used with
pixel-based methods there are problems with salt-and-pepper
effects and mixing of classes within targets (Blaschke et al.
2014; Piiroinen et al., 2015). This problem can be tackled using
geographic object-based image analysis (GEOBIA) approach
(Blaschke et al., 2014; Benz et al., 2004) where pixels are
segmented into objects before the classification. Since, for
example, agroforestry consists of crops with trees, a multiscale
segmentation and classification, where the target area is first
segmented into larger areas that consist of different fractions of
finer scale land cover types, can be applied. A finer scale
segmentation and classification can then be done inside these
larger segments. The larger areas can then be classified based on
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the fractions of finer scale land cover types (e.g. crops and
trees) they contain.

Furthermore, combining optical data with Light Detection and
Ranging (LiDAR) technology could highly improve the
accuracy of land cover classification in agroforestry areas.
Unfortunately, this approach has not yet been fully explored, in
particular in tropical mountain environments.

In this article, H-resolution airborne laser scanning (ALS) and
imaging spectroscopy (IS) data fusion (Torabzadeh et al., 2014)
was used together with GEOBIA to characterize the mixed land
cover classes based on biophysical definitions derived from
Land Cover Classification System (LCCS) (Di Gregorio, 2005).
ALS enables the use of accurate three dimensional information
of the land cover, while IS enables the detection of different
materials based on their spectral characteristics. In this study
our objectives were to:

(i) create clear definitions for the land cover classes based on
LCCS and measurable biophysical attributes (tree height, crown
cover) that are non-overlapping and measurable using remote
sensing methods.

(ii) test multiscale segmentation for defining mapping units for
characterizing heterogeneous landscape with emphasis on
forests and agroforestry.

(iii) assess the benefits of data fusion in creating the land cover
classes.

2. MATERIAL
2.1 Study area

The study area (8 km x 1 km) is located in the elevation range
of 1100-1800 m a.s.l. in the highlands of the Taita Hills (3° 25’
S, 38° 19" E) in south-eastern Kenya (Figure 1). There are two
rainy seasons with long rains occurring in the March-June and
short rains in October-December (Jaetzold and Schmidt, 1983).
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Figure 1. Location of the Taita Hills in south-eastern Kenya.

2.2 Airborne data collection

Flight campaign was conducted in 3-8.2.2013 during the dry
season. Two sensors were used to collect ALS and IS data from
mean flying height of 750 m. Optech ALTM 3100 (Optech,
Canada) is an oscillating mirror laser scanner capable of
recording up to four echoes. The sensor was operated with pulse
rate of 100 kHz and scan rate of 36 Hz. Scan angle was +16°.
Achieved pulse density was 9.6 pulses m™2. Mean footprint
diameter was 23 cm. AisaEAGLE is a pushbroom scanner with
instantaneous field of view of 0.648 mrad and field of view of
36.04° (Spectral Imaging Ltd., Finland). The sensor was used in
four times spectral binning mode that produces output images
with 129 bands and full width at half maximum of 4.5-5.0 nm
in spectral range of 400-1000 nm. The output pixel size was 1.0
meters.

3. METHODS
3.1 Preprocessing of the data

ALS data was pre-processed by the data vendor (Topscan
Gmbh) and delivered as a georeferenced point cloud in
UTM/WGS84 coordinate system with ellipsoidal heights.
TerraScan software (Terrasolid Ltd., Finland) was used to create
digital terrain model (DTM) and digital surface model (DSM)
from ALS data, which was classified to ground and other
returns. Some of the very steep slopes were falsely classified
and had to be manually corrected. The first returns were used to
create DSM and the returns classified as ground to create DTM
at 1 m resolution. DTM values were subtracted from DSM
values to create canopy height model (CHM), which represents
the height of vegetation and buildings from the ground level
(CHMuuildings). Another CHM was created using the same
approach, but the power lines were first removed manually and
returns classified as buildings were removed (CHMnobuildings)-
DTM was used for calculating slope.

The raw data produced by AisaEAGLE was radiometrically
corrected and georectified with CaliGeoPro 2.2 (Spectral
Imaging Ltd., Finland). DSM derived from ALS data was
interpolated to pixel size of 3 meters and used in the
georectification process. Atmospheric correction was applied
using ATCOR-4 (Schlapfer and Richter, 2002).

After the initial georectification of AisaEAGLE data, it was
noted that there were geometric mismatches between
AisaEAGLE and ALS data. The geometric accuracy of the ALS
data was assumed to be better and thus CHMbuildings Was used as
a reference data for manual co-registration of AisaEAGLE data.
The processed flight lines were first subsetted so that the side
overlap between images was minimized. Next, 50-100 control
points were collected from CHMuuildings and AisaEAGLE data
for each flight line. Then, the first order polynomial
transformation was applied to co-register the AisaEAGLE flight
lines and CHMuuiings. After co-registration, RMSE for an
example flight line was 1.06 pixels (meters), which was
considered accurate enough for data fusion (Valbuena, 2014).

3.2 LCCS class definitions

To map mixed classes of trees and other land cover types, the
first step is to define tree and forest, which is a complex issue as
numerous definitions exist (Magdon and Klein, 2013). LCCS
(Di Gregorio, 2005) defines that all woody life forms taller than
5 m are trees, while 3-5 m tall plants can be trees if they have
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clear physiognomic aspects of a tree. Mapping physiognomic
aspects using RS is challenging and thus all the plants taller
than 3 m were considered as trees. Forest is defined typically
based on certain tree crown cover (CC) on MMU (Magdon and
Klein, 2013; Eysn et al., 2013). CC refers to the proportion of
the forest floor covered by the vertical projection of the tree
crowns (Jennings et al., 1999; Korhonen et al., 2006). For
example, UNFCCC as part of Kyoto protocol states that: ‘forest
is a minimum area of land of 0.05-1.0 hectares with tree crown
cover (or equivalent stocking level) of more than 10-30 per cent
with trees with the potential to reach a minimum height of 2-5
metres at maturity in situ’ (Minang et al., 2014). FAO uses 10
% CC threshold and 0.5 ha MMU (FAO, 2000). LCCS does not
define a specific MMU for forests or any other land cover type.

ICRAF (1993) defines agroforestry as follows: “Agroforestry is
a collective name for land-use systems and technologies, where
woody perennials are deliberately used on the same land
management unit as agricultural crops and/or animals, either in
some form of spatial arrangement or temporal sequence. In
agroforestry systems there are both ecological and economical
interactions between the different components”. Panday (2002)
defines it to include all forms of tree-growing in
agroecosystems. Mapping agroforestry is difficult using RS
methods and thus in this article agroforestry refers to trees on
farmland. The CC thresholds for defining the agroforestry and
woodland classes were derived from LCCS percentage cover
classifier.

3.3 Segmentation and classification

Segmentation and classification was done in eCognition
Developer (Trimble Navigation, Ltd.). First, multiresolution
segmentation (MRS) was used to create level-0 segmentation
based on normalized difference vegetation index (NDVI;
Tucker, 1979) and CHM using scale parameter of 275, shape of
0.5 and compactness of 0.7. Next, MRS was used for level-1
segmentation inside level-0 segments based on CHM using
scale parameter of 25, shape of 0.2 and compactness of 0.6.

The classification was done first on level-1. The first step was to
separate all trees. This was done based on CHMobuildings Where
all targets taller than 3 m were classified as trees. Next,
CHMuuidings Was used to classify the remaining targets that were
taller than 3 m as buildings. A temporary class was created for
objects with heights between 1-3 m and training samples were
collected for buildings and shrubs. Training samples were
collected visually using AisaEAGLE data. Support Vector
Machine (SVM) classification (Vapnik, 1998; Mountrakis et al.,
2011) was applied using 12 first minimum noise fraction
(MNF) transformed (Green et al., 1988) AisaEAGLE bands to
classify all 1-3 m objects into buildings and shrubs. 12 MNF
bands have been shown to vyield highest classification
accuracies with AisaEAGLE data in a previous study (Piiroinen
etal., 2015).

The remaining objects were classified into a temporary class
and merged to create one segment containing all objects of 0-1
m height. This object was segmented based only on NDVI for
better separation of bare soil, water and low vegetation targets.
SVM classification was applied using median NDVI as input to
separate these classes. Level-0 classification was based on level-
1 classes and LCCS class definitions.

4. RESULTS AND DISCUSSION

4.1 LCCS class definitions and their implementation based
on GEOBIA approach

We created eight level-0 classes based on LCCS (Table 1).
These classes were composed of finer scale segmentation and
classification results based on six land cover classes described
in Table 2. As agricultural land and other low vegetation targets
were not separated at level-1, the presence of buildings was
used as criteria to separate agroforestry and woodland classes.
This approach is based on the knowledge that in the study area
agriculture is practiced mainly on small scale family farms, in
which cultivated areas are located next to buildings. One of the
strengths of GEOBIA approach is to take advantage of these
context based rules to separate classes that are hard to separate
based only on their biophysical characteristics (Blaschke et al.,
2014).

Further visual analysis showed that remaining agroforestry and
agricultural land, without nearby buildings, were still present in
the level-0 segments. These remaining agricultural areas were
separated based on the presence of terraces. Agricultural
terraces were detected based on the standard deviation (STD) of
the terrain slope, given that terraced farms are combinations of
very steep slopes and levelled terraces, which makes the STD
very high when compared to natural areas where slope angles
change more gradually.

Currently, there is a large demand for a global land cover
classification system, which would cover all variation in land
cover. LCCS (Di Gregorio, 2005) is so far the most ambitious
attempt to create one. However, there are still many decisions
that are left for the user when the classification system is
applied on a certain area. For example, one of the problems
with LCCS is that it does not define agroforestry class
implicitly. Agroforestry would belong to cultivated and
managed lands, while cover and height classifiers are included
only for natural and semi-natural terrestrial class. This prevents
using LCCS as such to characterize agroforestry systems and
further interpretations of the system are left for the user.

ALS data makes it possible to use LCCS height classifier in
land cover characterization, which makes it possible to use
unambiguous and objective threshold values for trees, shrubs
and low vegetation. Percentage cover classifier can be used to
define mixed land cover classes. However, there is very little
discussion in the LCCS manual on how the MMUs should be
selected, while this is a key element in forming the classes.

MRS is one possibility to create MMUs that would represent
different levels of heterogeneity in the landscape. However, the
segmentation process itself is subjective and the segmentation
parameters are difficult to define objectively (Arvor et al., 2013;
Belgiu and Dragut, 2014; Hay et al., 2005). Even if objective
definitions for the classes are created the local knowledge of
land cover is still needed as, for example, some agroforestry
systems may have a CC of up to 88% (Panday, 2002; Bisseleua
et al., 2009), which makes them overlap with many forest
definitions (e.g., Magdon and Klein, 2013; Minang et al., 2014;
FAO, 2000).
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Level-0 class Definition
Cropland Low crops with CC < 10 %. Cover of
buildings > 0% or slope STD > 10°.
Open Low crops with CC < 10 %. Cover of
grassland buildings = 0 % or slope STD < 10°.
Agroforestry  Low crops with 10—40 % CC. Cover of
(sparse) buildings > 0 % or slope STD > 10°.
Agroforestry  Low crops with 40-70 % CC. Cover of
(dense) buildings > 0 % or slope STD > 10°.
Woodland Low vegetation with 10-40 % CC. Cover of
(sparse) buildings = 0 or slope STD < 10°.
Woodland Low vegetation with CC = 40-70 %. Cover of
(dense) buildings = 0 % or slope STD < 10°.

Closed forest
Forest patch

CC > 70 %. Segment size > 1 ha.
CC > 70 %. Segment size < 1 ha.

Table 1. Land cover classes based on LCCS at level-0.

Level-1 class Definition

Tree Vegetation with height >3 m.

Building Built-up area with height > 3 m. Buildings
1-3 m classified with SVM based on 12 first
MNF transformed AisaEAGLE bands.

Water Height < 1 m. Classified with SVM based
on median NDVI.

Low Height < 1 m. Classified with SVM based

vegetation on median NDVI.

Shrub Vegetation with height 1-3 m. Classified
with SVM based on 12 first MNF
transformed AisaEAGLE bands.

Bare soil Height < 1 m. Classified with SVM based

on median NDVI.

Table 2. Land cover classes at level-1.

4.2 Data fusion and multi-scale segmentation results

CHMuuidings Shows the height of targets above ground (Figure
2a) while IS data shows the reflectance (Figure 2b). The results
of the level-0 segmentation based on NDVI and CHM are
presented in Figure 2c. The shape value was set to 0.5 so that
the segments would include heterogeneous objects of trees and
low vegetation while the forest patches with sharp edges were
still separated into their own segments. Both data sources were
shown to be important for creating meaningful segments, as
segments based only on CHM would stick too closely to
individual trees. NDVI was used instead of reflectance to
minimize the influence of shadows. The level-1 segmentation,
which was based only on CHM and smaller scale parameter
separated trees and buildings in their own segments (Figure 2d).

LA 8 2 ;
Figure 2. Examples of canopy height model (a), AISA data (b),
level-0 segmentation (c) and level-1 segmentation inside level-0
segments (d).

Our results show that in highly heterogeneous landscapes, the
fusion of ALS and optical data was essential for successful
separation of targets that could not be distinguished
independently by using either ALS or IS data. For instance,
ALS data created segments that followed trees and buildings
very closely (Figure 3a), while it could not separate bare soil
from low vegetation (Figure 3b).

Figure 3. Segmentation based on CHM (a) creates segments
based on their height and thus it does not differentiate between
very low vegetation and bare soil. NDVI based segmentation

separates the bare soil from the very low vegetation (b).

The classification based on level-1 segmentation was successful
in separating the main land cover components (Figure 4a).
However, this evaluation is based on visual interpretation and
further validation is needed for a more comprehensive accuracy
assessment. The validation will be possible when the
classification is extended to the complete study area of 10 km x
10 km where field data collected in 2012, 2013 and 2014 are
available.

The level-0 classification (Figure 4b) describes the mixed
classes based on level-1 classification. This reveals how much
trees there are in each segment in relation to agriculture or other
low vegetation. The most common class was sparse agriculture,
which indicates that in the study area it is common practice to
grow trees on farmland. On the other hand, dense agroforestry
areas were not commonly observed. Woodlands were located
mainly on steep slopes and further away from roads and
buildings.
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The benefits of data fusion in segmentation and classification
process were evident as, for example, CHM was very suitable
for segmenting and classifying trees, while AisaEAGLE data
was suitable for segmenting and classifying bare soil, water and
low vegetation. These results are in agreement with Torabzadeh
et al. (2014), who concluded that, at the moment, land cover
maps are RS products that are benefiting the most from ALS
and IS data fusion.

5. CONCLUSIONS AND FURTHER DEVELOPMENTS

LCCS was successfully modified to characterize mixed land
cover classes like agroforestry. The height and percentage cover
classifiers are useful when these classes are defined as
objectively as possible. Multiresolution segmentation and
multiscale approach created meaningful mapping units for the
classes, while further validation of the results is needed before
making more detailed conclusions. The benefit of this approach
over pixel based methods is that clear threshold values can be
used when the classes are defined and mapped. ALS and IS
data nicely complemented each other, while all the potential of
IS data was not used at this stage. The importance of IS
increases as the classification is extended to species level.
Species level information can then be used for more detailed
definitions of level-0 classes. Information of tree types is
important for agroforestry classification as farmers are known to
plant specific species on their farmland for specific purposes.
The strength of GEOBIA approach is to include these context
based rules in the classification process. Future efforts will
extend the classification system to our entire study area and the
results will be validated based on field surveys. These results,
together with further assessments of above ground biomass, will
be used for assessing the carbon stocks and biodiversity in
different land cover classes. This information will be highly
beneficial for researchers and policy makers aiming to promote
agroforestry practices and the design of biodiversity
conservation plans.

ACKNOWLEDGEMENTS

The airborne remote sensing campaigns were funded by two
projects from the Ministry for Foreign Affairs of Finland,
namely by CHIESA (Climate Change Impacts on Ecosystem
Services and Food Security in Eastern Africa) and BIODEV
(Building Biocarbon and Rural Development in West Africa.
Petri Pellikka is the Principal Investigator of both projects. Dr.
Heiskanen and Mr. Jesse Hietanen work in BIODEV, Mr.
Hurskainen and Mr. Piiroinen work in CHIESA, while Dr.
Maeda is currently funded by a research grant from the
Academy of Finland. The authors would also like to
acknowledge the Taita Research Station of the University of

Helsinki in Kenya for the logistical support. We wish to thank
Elisa Schafer, Arto Viinikka and Hari Adhikari for their efforts
in producing high quality georectification for AisaEAGLE data
and co-registration of the two data products used.

REFERENCES

Arvor, D., Durieux, L., Andrés, S., Laporte, M.-A., 2013.
Advances in geographic object-based image analysis with
ontologies: a review of main contributions and limitations from
a remote sensing perspective. ISPRS  Journal of
Photogrammetry and Remote Sensing, 82, pp. 125-137.

Belgiu, M., Dragut, L., 2014. Comparing supervised and
unsupervised multiresolution segmentation approaches for
extracting buildings from very high resolution imagery. ISPRS
Journal of Photogrammetry and Remote Sensing, 96, pp. 67-75.

Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I.
Heynen, M., 2004. Multi-resolution, object-oriented fuzzy
analysis of remote sensing data for GIS-ready information.
ISPRS Journal of Photogrammetry & Remote Sensing, 58, pp.
239-258.

Bisseleua, D.H.B., Missoup, A.D., Vidal, S., 2009. Biodiversity
conservation, ecosystem functioning and economic incentives
under cocoa agroforestry intensification. Conservation Biology,
23(5), pp. 1176-1184.

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P,
Addink, E., Feitosa, R.Q., van der Meer, F., van der Werff, H.,
van Coillie, F., Tiede, D., 2014. Geographic object-based image
analysis — Towards a new paradigm. ISPRS Journal of
Photogrammetry and Remote Sensing, 87, pp. 180-191.

Blinn, C.E., Browder, J. O., Pedlowski, M. A., Wynne, R. H.,
2013. Rebuilding the Brazilian rainforest: Agroforestry
strategies for secondary forest succession. Applied Geography,
43, pp. 171-181.

Clark, B.J.F., Pellikka, P.K., 2009. Landscape analysis using
multi-scale segmentation and object-oriented classification. In:
Raéder, A., Hill, J. (Eds.), Recent Advances in Remote Sensing
and Geoinformation Processing for land Degradation
Assessment, pp. 323-342. Taylor & Francis Group, London.

Dalponte, M., @rka, H.O., Ene, L.T., Gobakken, T. Nasset, E.,
2014. Tree crown delineation and tree species classification in
boreal forests using hyperspectral and ALS data. Remote
Sensing of Environment, 140, pp. 306-317.

Di Gregorio, A. 2005. Land cover classification system —
Classification concepts and user manual — Software version 2.
Food and Agriculture Organization of the United Nations,
Rome. pp. 190.

Eysn, L., Hollaus, M., Schadauer, K., Pfeifer, N., 2012. Forest
delineation based on airborne LIDAR data. Remote Sensing, 4,
pp. 762-783.

FAO, 2000. FRA 2000 — On definitions of forest and forest
change. Food and Agriculture Organization of the United
Nations — Forestry Department. Working Paper 33, Rome 2000.

Green, A.A., Berman, M., Switzer, P., Craig, M.D., 1988. A
transformation for ordering multispectral data in terms of image



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-59-1

quality with implications for noise removal. IEEE Transactions
on Geoscience and Remote Sensing, 26(1), pp. 65-74.

Hay, G.J., Castilla, G., Wulderr, M.A., Ruiz, J.R., 2005. An
automated object-based approach for the multiscale image
segmentation of forest scenes. International Journal of Applied
Earth Observation and Geoinformation, 7, pp. 339-359.

ICRAF, 1993. Annual report 1993. International Centre for
Research in Agroforestry. Nairobi, Kenya. pp 208.

Jaetzold, R., Schmidt, H., 1983. Farm management handbook of
Kenya. Natural conditions and farm management information 2
C. Ministry of Agriculture, Kenya & German Agricultural
Team, German Agency for Technical Cooperation. Rossdorf,
Germany.

Jennings, S. B., Brown, N. D., Sheil, D., 1999. Assessing forest
canopies and understorey illumination: canopy closure, canopy
cover and other measures. Forestry 72(1), pp. 59-74.

Korhonen, L., Korhonen, K. T., Rautiainen, M., Stenberg, P.,
2006. Estimation of forest canopy cover: a comparison of field
measurement techniques. Silva Fennica, 40(4), pp. 577-588.

Magdon, P., Kleinn, C., 2013. Uncertainties of forest area
estimates caused by the minimum crown cover criterion.
Environmental Monitoring and Assessment, 185, pp. 5345-
5360.

Minang, P.A., Duguma, L.A., Bernard, F., Mertz, O., van
Noordwijk, M., 2014. Current Opinion in Environmental
Sustainability, 6, pp. 78-82.

Mountrakis, G., Im, J., Ogole, C., 2011. Support vector
machines in remote sensing: a review. ISPRS Journal of
Photogrammetry and Remote Sensing, 66, 247-259.

Negash, M., Kanninen, M. 2015. Modeling biomass and soil
carbon sequestration of indigenous agroforestry systems using
CO2FIX approach. Agriculture, Ecosystems and Environment,
203, pp. 147-155.

Panday, D.N., 2002. Carbon sequestration in agroforestry
systems. Climate policy, 2, pp. 367-377.

Pellikka, P., L&tjonen, M., Siljander, M., Lens, L., 2009.
Airborne remote sensing of spatiotemporal change (1955-2004)
in indigenous and exotic forest cover in the Taita Hills, Kenya.
International Journal of Applied Earth Observation and
Geoinformation, 11, pp. 221-232.

Piiroinen, R., Heiskanen, J., Méttus, M., Pellikka, P., 2015.
Classification of crops across heterogeneous agricultural
landscape in Kenya using AisaEAGLE imaging spectroscopy
data. International Journal of Applied Earth Observation and
Geoinformation, 39, pp. 1-8.

Schlapfer, D., Richter, R., 2002. Geo-atmospheric processing of
airborne imaging spectroscopy data. Part 1: parametric
orthorectification. International Journal of Remote Sensing,
23(13), pp. 2609-2630.

Strahler, A-H., Woodcock, C.E., Smith, J.A., 1986. On the
nature of models in remote sensing. Remote Sensing of
Environment, 20, pp. 121-139.

Torabzadeh, H., Morsdorf, F., Schaepman, M.E., 2014. Fusion
of imaging spectroscopy and airborne laser scanning data for
characterization of forest ecosystems — A review. ISPRS
Journal of Photogrammetry and Remote Sensing, 97, pp. 25-35.

Valbuena, R., 2014. Integrating airborne laser scanning with
data from global navigation satellite systems and optical
sensors. In: Maltamo, M., Neesset, E. and Vauhkonen, J. (eds.).
Forestry Applications of Airborne Laser Scanning — Concepts
and Case Studies. Managing Forest Ecosystems 27(4), pp. 63-
88.

Vapnik, V.N., 1998. Statistical learning theory. John Wiley &
Sons, New York, USA.

Zomer R. J., Trabucco A., Coe R. Place F., 2009. Trees of
Farm: Analysis of global extent and geographical patterns of
agroforestry. ICRAF Working Paper, 89. Nairobi, Kenya:
World Agroforestry Centre.



