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ABSTRACT: 

 

As part of a Tanzanian-Norwegian cooperation project on Monitoring Reporting and Verification (MRV) for REDD+, 2007-2011 C- 

and L-band synthetic aperture radar (SAR) backscatter data from Envisat ASAR and ALOS Palsar, respectively, have been 

processed, analysed and used for forest and forest change mapping over a study side in Liwale District in Lindi Region, Tanzania. 

Land cover observations from forest inventory plots of the National Forestry Resources Monitoring and Assessment (NAFORMA) 

project have been used for training Gaussian Mixture Models and k-means classifier that have been combined in order to map the 

study region into forest, woodland and non-forest areas. Maximum forest and woodland extension masks have been extracted by 

classifying maximum backscatter mosaics in HH and HV polarizations from the 2007-2011 ALOS Palsar coverage and could be 

used to map efficiently inter-annual forest change by filtering out changes in non-forest areas. Envisat ASAR APS (alternate 

polarization mode) have also been analysed with the aim to improve the forest/woodland/non-forest classification based on ALOS 

Palsar. Clearly, the combination of C-band SAR and L-band SAR provides useful information in order to smooth the classification 

and especially increase the woodland class, but an overall improvement for the wall-to-wall land type classification has yet to be 

confirmed. The quality assessment and validation of the results is done with very high resolution optical data from WorldView, 

Ikonos and RapidEye, and NAFORMA field observations.  

 

 

1. INTRODUCTION 

As part of the Group on Earth Observations Forest Carbon 

Tracking Task (GEO FCT) and following Global Forest 

Observations Initiative (GFOI), a Norwegian-Tanzania 

cooperation project was established. The goal is to support 

Measuring, Reporting and Verification (MRV) for REDD+ 

initiative, which aims to be a financial incentive for tropical 

countries to reduce deforestation and forest degradation 

(REDD+). 

An important research issue inside GFOI is to investigate the 

role of synthetic aperture radar (SAR) in establishing national 

forest monitoring systems and develop robust methods to map 

forests and forest change (GFOI, 2013; Haarpaintner et al., 

2012). Two study regions are investigated in this Norwegian-

Tanzanian project by airborne LiDAR as well as by satellite 

remote sensing: the Amani forest reserve and a large study 

region of the Liwale district in the Lindi region in Tanzania.  

Here we focus on the use of C- and L-band SAR of the Liwale 

study site. L-band SAR is generally better suited than C-band 

SAR for forest monitoring as its longer wavelength better 

penetrates the forest canopy. L-band SAR data is provided by 

the Japanese ALOS satellite with its Palsar sensor. C-band SAR 

data is provided by the European Space Agency’s Envisat 

A(dvanced)SAR. The project should complement the National 

Forestry Resources Monitoring and Assessment (NAFORMA), 

which is a nation-wide forest inventory program that has 

collected a total of more than 36000 forest plots (Tomppo, 

2014). 

This paper presents forest mapping results from both ALOS 

Palsar and Envisat ASAR individually as well as combined, and 

yearly forest change detection from ALOS Palsar only. 

 

2. THE LIWALE STUDY SITE 

The Liwale study site of about 15000 km2 is located in the Lindi 

region in the south-east of Tanzania. There are large forested 

areas mainly in the north and west of the site, but the majority 

land type is scattered open to close Miombo woodland. The 

north-eastern quadrant of the study site has little vegetation, 

dominantly open (Miombo) woodland and non-forest areas.  

Fig. 1 shows the location of the Liwale study site in Tanzania. 

 

 

 
  Figure 1. The location of the Liwale study site in Tanzania (© 

GoogleEarth).  
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Figure 2. (Upper panels) 2007-2010 averaged ALOS Palsar 

image (left) and 2009-2011 averaged Envisat ASAR APS image 

(right) over the Liwale study site. (Lower panels) red rectangle 

zoom. 

 

 

3. SAR PRE-PROCESSING 

SAR pre-processing, i.e. georeferencing, radiometric calibration 

and slope correction, has been done with Norut’s in-house 

developed GSAR software (Larsen et al., 2005) using the 

SRTM.v4 DEM. An advanced sigma nought (σ°) correction was 

introduced to the pre-processing in order to account for an angle 

dependency of the illuminated area, according to Shimada & 

Takahiro (2010) and Ulander (1996). The 2007-2010 ALOS 

Palsar Fine-Beam Dual (FBD) data in HH and HV polarization 

has been then processed into yearly dry season mosaics. 

Furthermore an average as well as a maximum backscatter (per 

pixel) mosaic for the dry season have been established for the 

four year period in order to build a maximum forest extent mask 

to filter out changes in non-forest areas (see section 5) for the 

forest change product. The same has been done for the 2009-

2011 Envisat ASAR alternate polarization (APS) data in VV 

and VH polarizations. As Envisat ASAR APS data however is 

far more noisy and variable because of higher sensitivity for 

humidity and phenology effects, the Envisat ASAR APS 

average backscatter in VV and VH have been used only for 

forest mapping. The average backscatter images for ALOS 

Palsar FBD data and for Envisat ASAR APS data for the 

periods 2007-2010 and 2009-2011, respectively, are shown in 

Fig 2. The RGB channels are (R) co-polarization (HH for Palsar 

and VV for ASAR), (G) cross-polarization (HV for Palsar and 

VH for ASAR), and only for presentation purposes (B) the 

normalized difference index (NDI) describing the ration 

between the co-polarization XX (i.e. HH or VV) and cross-

polarization XY (i.e. HV or VH) backscatter as: 

 

NDI=(XX-XY)/(XX+XY). 
 

 
 

 
Figure 3. Forest/Woodland/Non-forest classification from 

averaged ALOS Palsar FBD (left) and Envisat ASAR APS 

(right). Lower panels show the red rectangle zoom. Forest in 

dark green, woodland in light green, and non-forest in beige. 

 

 

4.  FOREST/WOODLAND/NON-FOREST MAPPING 

(FWNF) 

Ground reference data has been collected as forest plots through 

the NAFORMA project providing vegetation types at each plot 

location. As it is unrealistic that each NAFORMA 

land/vegetation type is detectable in SAR data, the different 

types have been aggregated into three main classes: forest, 

dense woodland and non-forest; resulting in a higher number of 

training sites for each class for the classification algorithm. In 

order to reduce speckle of the SAR data, the data has been 

temporally averaged over the totality of available data, which 

are the dry seasons of the years 2007-2010 and 2009-2011 for 

ALOS Palsar FBD and Envisat ASAR APS data, respectively. 

 

4.1 Single sensor approach 

Each of these averaged data sets have then been classified using 

the co- and cross-polarization band (HH/HV for ALOS Palsar 

and VV/VH for Envisat ASAR) and with these training sites 

into forest, woodland and non-forest areas using two methods 

that are part of Norut’s GSAR software package: the Gaussian 

Mixture Model (GMM) and the k-means (KM) classifier. The 

two classification results, GMM and KM, have then been 

combined into one classification taking, by priority, the 

maximum extent of forest, the maximum extent of woodland 

and the rest as non-forest areas. Fig. 3 shows these classification 

results using the ALOS Palsar mean backscatter HH and HV, 

and the Envisat ASAR APS mean backscatter in VV and VH. 

Obviously, using this method, ALOS Palsar FBD detects more 

forest and woodland than Envisat ASAR APS. 

 
 

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-592-1



 

 
 

 
Figure 4. Single sensor classification with ALOS Palsar (left) 

versus multi-sensor classification using ALOS Palsar and 

Envisat ASAR (right). Lower panels are enlargements of the red 

rectangles. Forest in dark green, woodland in light green, and 

non-forest in beige. 

 

 

 
 

 
Figure 5. 2007 (left) and 2010 (right) ALOS Palsar mosaic. 

Rectangle enlargements in lower panel. 

 

4.2 Multi-sensor approach (C- and L-band SAR combined) 

Using the same classification approach than in 4.1., i.e. 

combing the GMM and KM classification, in the multi-sensor 

approach, we feed the classifier with all averaged backscatter 

channels, i.e. Palsar (HH), Palsar (HV), ASAR (VV) and ASAR 

(VH).  The multi-sensor results from the C-and L-band SAR 

combination is shown in Fig. 4 in comparison with the 

individual ALOS Palsar classification result. The forest area 

extent is very similar in both classification, but the multi-sensor 

approach classifies a larger area into woodland especially in the 

north-eastern area, even though Envisat ASAR individually 

classifies this area in large majority into non-forest. 

 

 

5. INTER-ANNUAL FOREST CHANGE FROM ALOS 

PALSAR HV 

Inter-annual forest change has been detected by subtracting the 

ALOS Palsar HV backscatter image of year (y+1) from year y. 

All pixels with a decrease stronger than 3dB are considered as 

forest or woodland loss and all pixels with a variation of +3dB 

are considered as forest gain. Prior to this step the maximum 

ALOS Palsar HH and HV backscatter mosaics have been 

classified into forest, woodland and non-forest and the result is 

used to mask out changes in non-forest areas, which are mainly 

due to difference in ground humidity variation, precipitation or 

agriculture changes. Inter-annual changes have been detected 

for the consecutive years 2007-2008, 2008-2009, 2009-2010 as 

well as for the three year period 2007-2010. The strong 

agreement between the sum of the forest loss of the consecutive 

years and the directly detected three year loss from 2007 to 

2010 indicates that this simple method is quit robust and 

reliable as long as the forest/woodland mask is accurate.  

  

 
 

 
Figure 6. (Left) forest/woodland mask from classifying the 

maximum HH and HV backscatter mosaics. (Right) 2007-2010 

forest and woodland loss in red and orange, respectively. 
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Single forest/woodland loss or forest gain pixels have been 

filtered out as they are often due to speckle effects. 

 

 

6. VALIDATION 

The accuracy of the forest-woodland-non forest classification 

was determined visually using a very high resolution (VHR) 

satellite image WorldView, with 4 m resolution, from 

12.04.2009. In addition, the forest change mapping was visually 

checked against VHR optical images from different years 

(Ikonos, Digital Globe, Rapid Eye and WorldView).  

For the accuracy assessment, a set of 250 random points was 

created across the WorldView image; of these, a total of 134 

points were located in cloud and shadow free areas and were 

classified visually. The visual classification is based on an area 

of approximately 100×100 m around each point. Prior to visual 

classification, the observer was trained by comparing 

NAFORMA field observations with the WorldView image. The 

visual classification is divided into three classes: forest, 

woodland and other (non forest), where woodland includes all 

woodland with >10% tree crown cover. 

The result of the visual accuracy assessment (Table 1) shows 

that the producer’s accuracy of the three classes vary between 

0.65 and 0.96. The overall accuracy of the classification is 

73.1%. The main confusion is in the classification of woodland, 

of which 24% is classified as forest and 12% as non forest. Two 

examples (Fig. 7), comparing the classified image with the 

WorldView image, show that the classification correctly 

identifies the main landscape patterns. 

 

Table 1. Confusion table for a forest/woodland/non-forest 

classification. PA: producer’s accuracy. UA: user’s accuracy. 

 ALOS PALSAR classes   

 forest woodland non 

forest 

total PA 

forest 21 5 0 26 0.81 

woodland 20 55 10 85 0.65 

non forest 0 1 22 23 0.96 

total 41 61 32 134  

UA 0.51 0.90 0.69   

Average accuracy (PA) 80.4% 

Average reliability (UA) 70.0% 

Overall accuracy 73.1% 

 

When combining the forest and woodland classes into a forest 

(= forest + woodland) - non forest classification, the overall 

accuracy increases to 91.8% (Table 2). About 9% of the 

reference forest pixels were classified as non-forest, indicating 

that the extent of forest could be underestimated in this 

classification.  

 

 

Table 2. Confusion table for a forest/non-forest classification. 

PA: producer’s accuracy. UA: user’s accuracy. 

 ALOS PALSAR classes   

 forest non forest total PA 

forest 101 10 111 0.91 

non forest 1 22 23 0.96 

total 102 32 134  

UA 0.99 0.69   

Average accuracy (PA) 93.3% 

Average reliability (UA) 83.9% 

Overall accuracy 91.8% 

  
 

  

WorldView image Classified image 

Figure 7. Two examples of the classified ALOS PALSAR 

image compared with the WorldView image. Dark green: forest. 

Light green: woodland. Beige: non-forest. Red: forest loss. 

Orange: woodland loss. 

 

 

  
 

  
Ikonos 2008 RapidEye 2012S 

Figure 8. Example of an area where forest and woodland loss 

was identified. On the left an Ikonos image from 2008, on the 

right a RapidEye image from 2012. The forest and woodland 

loss classes (in red and orange, respectively) are overlain on the 

bottom two images. 

 

 

The accuracy of the classified forest change between 2007 and 

2010 is difficult to properly validate because of the limited 

availability of overlapping VHR images of the same years. The 

mapped deforested areas were visually checked against pairs of 

overlapping VHR images: Ikonos images from 2008 and 2010, 

the Ikonos image from 2008 against a RapidEye image from 

2012, and a WorldView image from 2009 against a 2012 

RapidEye image. The comparison showed that the main trends 

are correctly classified, although single pixels classified as 

forest or woodland loss tend to be mostly noise. Fig. 8 shows an 
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example of an area where forest and woodland are changed into 

agricultural land. The images are from 2008 and 2012 and it is 

therefore not possible to identify the exact timing of 

deforestation. However, the forest/woodland loss classes appear 

to match well with areas where deforestation is clearly ongoing. 

One should keep in mind, however, that deforested areas in the 

RapidEye image from 2012 may have been deforested after 

2010 and are therefore not picked up in the forest/woodland 

loss classes of 2007-2010. 

 

 

7. CONCLUSION 

C- and L-band SAR imagery have been analysed over a study 

site in Liwale district in Lindi region in Tanzania. At least L-

band SAR imagery has been shown to be a suitable instrument 

to classify into forest, woodland and non-forest with an overall 

accuracy of about 73%. Aggregating the forest and woodland 

class into one forest class results in accuracies of about 92%. 

The classification method presented and used here is a 

combination of a Gaussian Mixture Model and a k-means 

classifier. C-band SAR alone seems to underestimate the 

woodland areas compared to the L-band classification, but 

combing C-and L-band inside the classifier increases the 

woodland area even compared to the single sensor L-band 

classification. C-band and multi-sensor classification results 

have not been validated at this stage. A forest/woodland/non-

forest classification based on the maximum backscatter from the 

time period 2007 to 2010 has been used as a forest/woodland 

mask to detect forest changes from inter-annual HV backscatter 

variation higher than 3dB. Comparison of added single year 

forest loss with a 3 year loss and a visual assessment with VHR 

optical satellite data shows that the forest loss detection method 

seems to be robust. C-band SAR data has not yet been analysed 

for forest change detection, but is planned for future studies. 
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