The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-593-1

Cloud Optimized Image Format and Compression

P. Becker, L. Plesea, T. Maurer

Esri, 380 New York St, Redlands, CA, 92373, USA
PBecker@esri.com, LPlesea@esri.com, TMaurer@esri.com

Commission VI, WG VI/4
KEY WORDS: Raster Format, Image Format, Compression, Cloud Storage, MRF, LERC

ABSTRACT:

Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive
volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such
as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as
JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly
hold in cloud based elastic storage and computation environments.

This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud
environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression.
For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy
compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data
size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for
imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm
that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will

help resolve some of the challenges of big image data on the internet.

1. MANUSCRIPT
1.1 Overview

Image processing and analysis has changed significantly over
the last 15 years. Traditional desktop image processing
packages were designed to process one image at a time.
Similarly much image processing was done in a sequential
mode one image at a time. The massive increase in computation
performance, storage and processing technology has changed
image processing and analysis. Cloud infrastructures now
enable massive volumes of imagery to be stored and accessed
with many processes running in parallel. For example processes
to compute segments or apply feature identification from images
require multiple servers to quickly access large volumes of such
image data. Esri’s ArcGIS Image Server technology is an
example of technology that enables large collections of imagery
to be quickly accessed with the server applying a wide range of
on-the-fly functions to transform the source pixels into valuable
information products. These functions apply both geometric
and radiometric transformations to the pixels, but require the
servers to very quickly access near random sets of pixels from a
large collection of images or rasters. A typical query that may
need such access is the creation of a temporal NDVI
(Normalized Difference Vegetation Index) profile for an area of
interest. The databases on which the Dynamic Image Services
are based provide instantaneously the list of scenes required as
well as pixel georeferencing, but the pixel data must then be
read from the mass storage and processed.

Such Dynamic Image Server based access enables a single copy
of the source data to be stored while providing the client

application with a near infinite range of products without the
need to store the intermediate products. In this way the volumes
of data stored are significantly reduced. Users can define their
own processing functions to be applied on the servers. Such
processes can be applied using the REST based image service
or geoprocessing requests. Image Service requests provide
synchronous access and typically process a screen worth’s of
pixels at a time, returning the results directly to the client
application. Geoprocessing requests are typically asynchronous
and can involve the server performing large number of
individual processes on raster and vector datasets with the
product typically being a map that is then accessed.

All these applications require fast access to the pixel values.
Although ArcGIS can access imagery in any standardized
format, performance of any processing system is affected by the
storage location of the imagery, as well as the format and
compression of the imagery. This has led Esri to carefully
review how imagery is stored and compressed. Most imagery is
currently stored in formats such as geoTIF, JPEG2000 or NITF.
There are also a wide range of other formats such as netCDF,
HDF or GRIB used primarily for scientific data. Each of these
formats has developed a range of flavours and many such as
geoTIF were adapted from more generic formats. For example
geoTIF can be quite well optimized for access, if it is tiled and
includes required overviews or reduced resolution datasets, but
a large proportion of geoTIF files exists as non-tiled and so is
not optimized for more random access.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-593-1

1.2 Cloud Raster Considerations

These traditional image formats were all designed more than 10
years ago, when ‘cloud computing’ had not been conceived.
The design criteria for the formats was primarily to handle the
traditional desktop type access. Esri has been reviewing the
requirements for storing and accessing imagery to identify how
best to optimize access for cloud based image access and
processing. Moving data to the cloud provides an inherent
opportunity to change the storage format. Once in the cloud the
mode of data access changes to using APIs to extract the
required pixels or using protocols such as GeoREST, WMS or
WCS. The format in which the data is stored needs to
interoperable with multiple programs, but need not be in its
original format, so long as the original data can be retrieved as
part of a download process. The focus changes to ensuring that
cloud based processing tools get fast access to the pixels as well
as associated metadata.

There does not exist a ‘god’ format that will handle all the
requirements. We have looked into identifying the optimum
format taking into consideration the following primary
requirements:

- Be accessible from cloud storage such as S3 as well as
enterprise storage systems such as NAS and SAN.

- Handle very large volumes.

- Enable large numbers of scenes/images/rasters.

- Support both georeferenced of non-georeferenced imagery
from satellite, aerial or UAS sensors.

- Support 8 to 64 bits/band with potentially large number of
bands.

- Enable fast random access in terms of both scale and extent.

- The data can be assumed to be WORM (Write Once Read
Many) as such scenes are typically not modified.

- Enable many simultaneous requests.

- Enable direct access and streaming.

- Handle different compression methods.

Unlike traditional file or enterprise storage, cloud storage such
as S3 is accessed through HTTP and has relatively higher
latency for each individual request, hence access is optimized
by minimizing the number of requests that are made to identify
and extract a group of pixels.

1.3 Meta Raster Format

Esri has identified the Meta Raster Format (MRF) designed by
NASA ™ as a highly optimal format due to its very simple
design that enables cloud optimization and extensibility.

MRF is a very simple format for tiling imagery. Its original
purpose was as a high performance web tile service storage
format. MRF is optimized for fast reading and splits a raster
dataset into 3 separate files:

Metadata file (MRF) — XML file containing key properties
such as the number of rows & columns, data type, tiling, tile
packing, projection and location information. This file is
purposely kept small.

Data file — File containing tiles of imagery data. Tiles may be
fully formed raster images such as PNG, JPEG and TIF, or raw
data, possibly compressed using Deflate or other compression
algorithms. Esri has also added LERC compression as a tile
encoding (see below).

Index (.IDX) — Very simple binary index of tile offsets and sizes
within the data file, establishing the geometric organization of
the tiles.

The extensions for the files are optional and can be changed if
required.

Since MRF is a GDAL format, additional metadata not directly
handled by MRF but supported by GDAL can be stored in
aux.xml (as defined by GDAL) or other metadata standards
defined by source data products. Typically such metadata gets
ingested into a database and is only accessed during processes
that crawl for the data. MRF rasters can include reduced
resolution overviews with factor 2 or 3, created using nearest or
average down sampling.

The splitting of the raster in to three files is an MRF feature that
helps to accelerate access to the data tiles, by optimizing file
location on different classes of storage. In its simplest
implementation copies of the small MRF and IDX files can be
stored on low latency storage, while data file remains on slower
storage. As a result when access to a tile is required, all the
required metadata can be read with only limited requests to read
from the slower storage. In the GDAL implementation, access
to remote files can be achieved using VSICurl. The multiple file
structure of MRF also enables applications to easily cache tiles
that may be accessed multiple times thereby reducing repeat
requests for the same tiles.

The MRF GDAL driver is open source and is available on
Github. Esri has been contributing to its development and are
integrating it into ArcGIS 10.3.1. Esri is also developing a
JavaScript based reader that enables certain MRF files to be
directly read and streamed by browser based applications. This
JavaScript implementation also provides additional value for
enabling a range of cloud processing algorithms to be
implemented directly on MRF files.

MRF provides a way of optimizing access to the millions of
scenes from satellite, aerial and UAS sensor. It has a number of
advantages over the more complex traditional file formats, as
well as key value map raster implementations such as NoSQL
which are more optimized for dynamically changing data sets.
MRF does have its limitations. It is not highly optimized for
storing a very large disparate dataset, such as a single raster to
define 1m resolution imagery of the entire globe. It is also not
optimized for multi-dimensional datasets or for environments
were multiple processors need to write to a single rasters, as
may be the case for the output from raster analysis.

1.4 LERC Compression

Traditional image formats include a range of compressions.
Common lossless compressions include LZW, Deflate, PNG,
and JPEG2000. Common lossy compression include JPEG and
JPEG2000. A lot of work has gone into optimizing these
compressions for a wide variety of data sources. JFEG2000 has
been optimized in many ways, and so now incorporates a wide
range of different flavours. JPEG has remained relatively static
and has been highly optimized due to its integration into web
clients.

Compression of the data is important as it reduces both the
storage costs and transfer volume. The reduction in data transfer
volume can speed up access, on the condition that the CPU load
required to decompress the imagery is low. One of the issues
with some existing compression types is that the CPU load to
decompress the image becomes a significant factor in the access
speed. Where this cost is split over many separate client
applications the cost can be negligible, but in applications



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-593-1

where servers are processing massive volumes of data, the
decompression costs become very significant. Similarly, to
enable web clients to directly access the data without plugins,
and for some big data processes, the decompression needs to be
implementable in JavaScript.

We reviewed what lossy and lossless compression methods are
most appropriate for MRF. JPEG is the most common lossy
compression and is very efficient. It is primarily useful for 8bit
3band imagery having the advantage of being very fast for
typical natural colour imagery. It does not provide as high a
compression as some wavelet based compression methods, but
has the significant advantage of being directly usable in web
applications. We are looking to potentially incorporate other
compression methods such as JPEG-XR which can handle
higher bit depths while being optimized for speed. JPEG-XR to
date has not been used in many geospatial applications due to
the lack of a suitable container. A 12bit/channel
implementation of JPEG does exist in GDAL as part of the TIF
support, but is not widely supported. JPEG12 bhit is relatively
fast to decompress and has minimal effect on the pixel
geometry. It is therefore valuable for the compression of
panchromatic imagery where the lossy artefacts have minimal
effect. One recommendation for reducing the size of scenes that
have a higher resolution pan band, is to compress the pan band
using lossy compression while using lossless compression on
the multispectral imagery that is used for analysis.

Most Lossy compression methods are controlled by a quality
parameter that controls the size of the resulting file, but does
not control the maximum error of the pixels. ‘Controlled
Lossy’ compression enables a tolerance to be defined that sets
the maximum deviation that a compressed pixel may vary from
the original value. A practical example is the compression of
elevation data. Elevation often needs to be stored as floating
point, but the source data often contains noise that is beyond the
accuracy or precision of the measurements. Such data does not
compress well using lossless compression and most lossy
compression methods will result in uncontrolled accuracy
degradation.

Esri has developed a new compression method called LERC
(Limited Error Raster Compression) that was designed to
provide such controlled lossy compression, while also being
very efficient, such that it utilizes very few CPU cycles both to
compress and decompress the data. The patented algorithm
identifies the appropriate scaling to be applied to groups of
pixels such that the each group can be quantized and efficiently
compressed. LERC is used extensively in ArcGIS for the
transmission of elevation data, but has also found to be very
effective for the compression of imagery.

For imagery of analytical value lossless compression is
required, this is especially true for the multispectral imagery
from high resolution optical satellites and airborne cameras. A
number of lossless compression algorithms exist including
lossless JPEG2000, PNG, LZW and Deflate. JPEG2000
although providing the highest compression, has by far the
highest CPU Load to decompress. From the other standard
compressions Deflate provides a good compromise for good
lossless compression and relatively low CPU load.

By setting tolerance to 0.5 for integer data, LERC also acts as a
very fast lossless compression. The simplicity of LERC has
enabled it to be coded in JavaScript and so can be incorporated
into web applications that can directly work on the pixel data

values. LERC also includes check sums that can be used to
verify the integrity of the data, which can in some cases be
compromised during the copying or moving of massive data
volumes. Esri has added optional support for LERC to the MRF
format.

We did an evaluation of the different lossless compression
methods for a sample of high bit depth (> 8bit) imagery from
Landsat 8, WorldView 3, Pleiades and UltraCam imagery.

The following table summarizes the typical difference in
compression speed, resulting file size and time to read all
pixels, as a factor of Deflate.

Compression | Compression

Method Speed Size Read Time
Deflate 1.00 1.00 1.00
DeflateP2* 0.76 0.92 1.26
JPEG2000 0.56 0.62 8.68
LZW 2.92 1.20 1.17
PNG 0.41 0.90 1.99
LERC 3.00 0.81 0.94

DeflateP2 — Is deflate with horizontal differencing

The table above shows that LERC is very fast, being about 3x
faster to write than Deflate while providing about 20% more
compression and being a slightly faster to read. In comparison
to Lossless JPEG2000, LERC is about 5x faster to write, 9x
faster to read, but results is about 30% larger files.

1.5 Conclusion

MRF provides an optimized format for the storage of imagery in
both cloud and enterprise environments. There are many cases
where it is advantageous to transform the data to MRF when
moving it to cloud or slower access storage environments. It has
a simple structure that enables high performant
implementations. For lossy compression MRF currently utilizes
JPEG, but may be expanded to other compressions. For lossless
compression None, Deflate, PNG or LERC compression can be
currently used. The LERC compression provides further
advantages in providing both lossless and controlled lossy
compression, while being faster to both compress and
decompress.

REFERENCES

*1 - OnEarth and MRF Now Available on GitHub
https://wiki.earthdata.nasa.gov/display/G1BS/2014/02/04/OnEar
th+and+MRF+Now+Available+on+GitHub



