
Cloud Optimized Image Format and Compression

P. Becker, L. Plesea, T. Maurer

Esri, 380 New York St, Redlands, CA, 92373, USA

PBecker@esri.com, LPlesea@esri.com, TMaurer@esri.com

Commission VI, WG VI/4

KEY WORDS: Raster Format, Image Format, Compression, Cloud Storage, MRF, LERC

ABSTRACT:

Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive

volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such

as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as

JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly

hold in cloud based elastic storage and computation environments.

This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud

environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression.

For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy

compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data

size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for

imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm

that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will

help resolve some of the challenges of big image data on the internet.

1. MANUSCRIPT

1.1 Overview

Image processing and analysis has changed significantly over

the last 15 years. Traditional desktop image processing

packages were designed to process one image at a time.

Similarly much image processing was done in a sequential

mode one image at a time. The massive increase in computation

performance, storage and processing technology has changed

image processing and analysis. Cloud infrastructures now

enable massive volumes of imagery to be stored and accessed

with many processes running in parallel. For example processes

to compute segments or apply feature identification from images

require multiple servers to quickly access large volumes of such

image data. Esri’s ArcGIS Image Server technology is an

example of technology that enables large collections of imagery

to be quickly accessed with the server applying a wide range of

on-the-fly functions to transform the source pixels into valuable

information products. These functions apply both geometric

and radiometric transformations to the pixels, but require the

servers to very quickly access near random sets of pixels from a

large collection of images or rasters. A typical query that may

need such access is the creation of a temporal NDVI

(Normalized Difference Vegetation Index) profile for an area of

interest. The databases on which the Dynamic Image Services

are based provide instantaneously the list of scenes required as

well as pixel georeferencing, but the pixel data must then be

read from the mass storage and processed.

Such Dynamic Image Server based access enables a single copy

of the source data to be stored while providing the client

application with a near infinite range of products without the

need to store the intermediate products. In this way the volumes

of data stored are significantly reduced. Users can define their

own processing functions to be applied on the servers. Such

processes can be applied using the REST based image service

or geoprocessing requests. Image Service requests provide

synchronous access and typically process a screen worth’s of

pixels at a time, returning the results directly to the client

application. Geoprocessing requests are typically asynchronous

and can involve the server performing large number of

individual processes on raster and vector datasets with the

product typically being a map that is then accessed.

All these applications require fast access to the pixel values.

Although ArcGIS can access imagery in any standardized

format, performance of any processing system is affected by the

storage location of the imagery, as well as the format and

compression of the imagery. This has led Esri to carefully

review how imagery is stored and compressed. Most imagery is

currently stored in formats such as geoTIF, JPEG2000 or NITF.

There are also a wide range of other formats such as netCDF,

HDF or GRIB used primarily for scientific data. Each of these

formats has developed a range of flavours and many such as

geoTIF were adapted from more generic formats. For example

geoTIF can be quite well optimized for access, if it is tiled and

includes required overviews or reduced resolution datasets, but

a large proportion of geoTIF files exists as non-tiled and so is

not optimized for more random access.

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-593-1

1.2 Cloud Raster Considerations

These traditional image formats were all designed more than 10

years ago, when ‘cloud computing’ had not been conceived.

The design criteria for the formats was primarily to handle the

traditional desktop type access. Esri has been reviewing the

requirements for storing and accessing imagery to identify how

best to optimize access for cloud based image access and

processing. Moving data to the cloud provides an inherent

opportunity to change the storage format. Once in the cloud the

mode of data access changes to using APIs to extract the

required pixels or using protocols such as GeoREST, WMS or

WCS. The format in which the data is stored needs to

interoperable with multiple programs, but need not be in its

original format, so long as the original data can be retrieved as

part of a download process. The focus changes to ensuring that

cloud based processing tools get fast access to the pixels as well

as associated metadata.

There does not exist a ‘god’ format that will handle all the

requirements. We have looked into identifying the optimum

format taking into consideration the following primary

requirements:

- Be accessible from cloud storage such as S3 as well as

enterprise storage systems such as NAS and SAN.

- Handle very large volumes.

- Enable large numbers of scenes/images/rasters.

- Support both georeferenced of non-georeferenced imagery

from satellite, aerial or UAS sensors.

- Support 8 to 64 bits/band with potentially large number of

bands.

- Enable fast random access in terms of both scale and extent.

- The data can be assumed to be WORM (Write Once Read

Many) as such scenes are typically not modified.

- Enable many simultaneous requests.

- Enable direct access and streaming.

- Handle different compression methods.

Unlike traditional file or enterprise storage, cloud storage such

as S3 is accessed through HTTP and has relatively higher

latency for each individual request, hence access is optimized

by minimizing the number of requests that are made to identify

and extract a group of pixels.

1.3 Meta Raster Format

Esri has identified the Meta Raster Format (MRF) designed by

NASA *1 as a highly optimal format due to its very simple

design that enables cloud optimization and extensibility.

MRF is a very simple format for tiling imagery. Its original

purpose was as a high performance web tile service storage

format. MRF is optimized for fast reading and splits a raster

dataset into 3 separate files:

Metadata file (.MRF) – XML file containing key properties

such as the number of rows & columns, data type, tiling, tile

packing, projection and location information. This file is

purposely kept small.

Data file – File containing tiles of imagery data. Tiles may be

fully formed raster images such as PNG, JPEG and TIF, or raw

data, possibly compressed using Deflate or other compression

algorithms. Esri has also added LERC compression as a tile

encoding (see below).

Index (.IDX) – Very simple binary index of tile offsets and sizes

within the data file, establishing the geometric organization of

the tiles.

The extensions for the files are optional and can be changed if

required.

Since MRF is a GDAL format, additional metadata not directly

handled by MRF but supported by GDAL can be stored in

.aux.xml (as defined by GDAL) or other metadata standards

defined by source data products. Typically such metadata gets

ingested into a database and is only accessed during processes

that crawl for the data. MRF rasters can include reduced

resolution overviews with factor 2 or 3, created using nearest or

average down sampling.

The splitting of the raster in to three files is an MRF feature that

helps to accelerate access to the data tiles, by optimizing file

location on different classes of storage. In its simplest

implementation copies of the small MRF and IDX files can be

stored on low latency storage, while data file remains on slower

storage. As a result when access to a tile is required, all the

required metadata can be read with only limited requests to read

from the slower storage. In the GDAL implementation, access

to remote files can be achieved using VSICurl. The multiple file

structure of MRF also enables applications to easily cache tiles

that may be accessed multiple times thereby reducing repeat

requests for the same tiles.

The MRF GDAL driver is open source and is available on

Github. Esri has been contributing to its development and are

integrating it into ArcGIS 10.3.1. Esri is also developing a

JavaScript based reader that enables certain MRF files to be

directly read and streamed by browser based applications. This

JavaScript implementation also provides additional value for

enabling a range of cloud processing algorithms to be

implemented directly on MRF files.

MRF provides a way of optimizing access to the millions of

scenes from satellite, aerial and UAS sensor. It has a number of

advantages over the more complex traditional file formats, as

well as key value map raster implementations such as NoSQL

which are more optimized for dynamically changing data sets.

MRF does have its limitations. It is not highly optimized for

storing a very large disparate dataset, such as a single raster to

define 1m resolution imagery of the entire globe. It is also not

optimized for multi-dimensional datasets or for environments

were multiple processors need to write to a single rasters, as

may be the case for the output from raster analysis.

1.4 LERC Compression

Traditional image formats include a range of compressions.

Common lossless compressions include LZW, Deflate, PNG,

and JPEG2000. Common lossy compression include JPEG and

JPEG2000. A lot of work has gone into optimizing these

compressions for a wide variety of data sources. JPEG2000 has

been optimized in many ways, and so now incorporates a wide

range of different flavours. JPEG has remained relatively static

and has been highly optimized due to its integration into web

clients.

Compression of the data is important as it reduces both the

storage costs and transfer volume. The reduction in data transfer

volume can speed up access, on the condition that the CPU load

required to decompress the imagery is low. One of the issues

with some existing compression types is that the CPU load to

decompress the image becomes a significant factor in the access

speed. Where this cost is split over many separate client

applications the cost can be negligible, but in applications

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-593-1

where servers are processing massive volumes of data, the

decompression costs become very significant. Similarly, to

enable web clients to directly access the data without plugins,

and for some big data processes, the decompression needs to be

implementable in JavaScript.

We reviewed what lossy and lossless compression methods are

most appropriate for MRF. JPEG is the most common lossy

compression and is very efficient. It is primarily useful for 8bit

3band imagery having the advantage of being very fast for

typical natural colour imagery. It does not provide as high a

compression as some wavelet based compression methods, but

has the significant advantage of being directly usable in web

applications. We are looking to potentially incorporate other

compression methods such as JPEG-XR which can handle

higher bit depths while being optimized for speed. JPEG-XR to

date has not been used in many geospatial applications due to

the lack of a suitable container. A 12bit/channel

implementation of JPEG does exist in GDAL as part of the TIF

support, but is not widely supported. JPEG12 bit is relatively

fast to decompress and has minimal effect on the pixel

geometry. It is therefore valuable for the compression of

panchromatic imagery where the lossy artefacts have minimal

effect. One recommendation for reducing the size of scenes that

have a higher resolution pan band, is to compress the pan band

using lossy compression while using lossless compression on

the multispectral imagery that is used for analysis.

Most Lossy compression methods are controlled by a quality

parameter that controls the size of the resulting file, but does

not control the maximum error of the pixels. ‘Controlled

Lossy’ compression enables a tolerance to be defined that sets

the maximum deviation that a compressed pixel may vary from

the original value. A practical example is the compression of

elevation data. Elevation often needs to be stored as floating

point, but the source data often contains noise that is beyond the

accuracy or precision of the measurements. Such data does not

compress well using lossless compression and most lossy

compression methods will result in uncontrolled accuracy

degradation.

Esri has developed a new compression method called LERC

(Limited Error Raster Compression) that was designed to

provide such controlled lossy compression, while also being

very efficient, such that it utilizes very few CPU cycles both to

compress and decompress the data. The patented algorithm

identifies the appropriate scaling to be applied to groups of

pixels such that the each group can be quantized and efficiently

compressed. LERC is used extensively in ArcGIS for the

transmission of elevation data, but has also found to be very

effective for the compression of imagery.

For imagery of analytical value lossless compression is

required, this is especially true for the multispectral imagery

from high resolution optical satellites and airborne cameras. A

number of lossless compression algorithms exist including

lossless JPEG2000, PNG, LZW and Deflate. JPEG2000

although providing the highest compression, has by far the

highest CPU Load to decompress. From the other standard

compressions Deflate provides a good compromise for good

lossless compression and relatively low CPU load.

By setting tolerance to 0.5 for integer data, LERC also acts as a

very fast lossless compression. The simplicity of LERC has

enabled it to be coded in JavaScript and so can be incorporated

into web applications that can directly work on the pixel data

values. LERC also includes check sums that can be used to

verify the integrity of the data, which can in some cases be

compromised during the copying or moving of massive data

volumes. Esri has added optional support for LERC to the MRF

format.

We did an evaluation of the different lossless compression

methods for a sample of high bit depth (> 8bit) imagery from

Landsat 8, WorldView 3, Pleiades and UltraCam imagery.

The following table summarizes the typical difference in

compression speed, resulting file size and time to read all

pixels, as a factor of Deflate.

Compression

Method

Compression

Speed Size Read Time

Deflate 1.00 1.00 1.00

DeflateP2* 0.76 0.92 1.26

JPEG2000 0.56 0.62 8.68

LZW 2.92 1.20 1.17

PNG 0.41 0.90 1.99

LERC 3.00 0.81 0.94

DeflateP2 – Is deflate with horizontal differencing

The table above shows that LERC is very fast, being about 3x

faster to write than Deflate while providing about 20% more

compression and being a slightly faster to read. In comparison

to Lossless JPEG2000, LERC is about 5x faster to write, 9x

faster to read, but results is about 30% larger files.

1.5 Conclusion

MRF provides an optimized format for the storage of imagery in

both cloud and enterprise environments. There are many cases

where it is advantageous to transform the data to MRF when

moving it to cloud or slower access storage environments. It has

a simple structure that enables high performant

implementations. For lossy compression MRF currently utilizes

JPEG, but may be expanded to other compressions. For lossless

compression None, Deflate, PNG or LERC compression can be

currently used. The LERC compression provides further

advantages in providing both lossless and controlled lossy

compression, while being faster to both compress and

decompress.

REFERENCES

*1 - OnEarth and MRF Now Available on GitHub

https://wiki.earthdata.nasa.gov/display/GIBS/2014/02/04/OnEar

th+and+MRF+Now+Available+on+GitHub

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-593-1

