The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-62-1

THE MATHEMATICAL MODEL OF OPTICAL REMOTE SENSING SYSTEM SIGNAL
CONSIDERING BROKEN CLOUDINESS EFFECTS

V.P. Budak , O.V. Shagalov *

Moscow Power Engineering University, Light Engineering Department, Moscow, 111250 Krasnokasarmennaya Street 14, Russian
Federation — ShagalovOV@gmail.com

KEY WORDS: Broken clouds, Synthetic iterations, Quasi two-stream approximation

ABSTRACT:

With increasing of the accuracy of measuring equipment for the optical remote sensing in recent years the requirements for speed
and accuracy of the algorithms for satellite data processing has greatly increased. It became necessary accurately to account all of the
known factors, which affect the signal significantly. At each time, more than half of the planet is covered with clouds, so it is almost
always necessary to take measurements into breaks in clouds. Cloudiness is among those factors which affect significantly the signal
and its neglect in extreme cases can lead to an error of 140%. Here we propose a new solution of the radiative transfer equation
(RTE) for a slab of a turbid medium with consideration of broken clouds. We use the classical approach to solving RTE: complete
solution is represented as the sum of the anisotropic and regular parts. We express anisotropic part using small-angle modification of
the spherical harmonics method. For the regular part we propose to use quasi two-stream approximation. This method is a special
case of the synthetic iterations method. The method is based on splitting the ordinary iteration into two stages. At the first step one of
approximate methods is used, and on the second step one ordinary iteration is used. We use two-stream approximation as an
approximate method. In this paper we proposed a solution for the simplest case of broken clouds - cylindrical hole in the slab.

Comparison of the algorithm was performed with established program MDOM, and showed good agreement.

1. INTODUCTION
1.1 Problem description

In recent years measuring equipment for the optical remote
sensing had made a significant step forward as far as
measurement accuracy is concerned. Thereby now it is possible
to face one of the most actual humanity’s challenge associated
with the threat of global warming: to provide observations of
atmospheric small gaseous components with necessary accuracy
(Rayner and O’Brien, 2001; Suto et al., 2008). In turn it led to
increasing of the requirements for speed and accuracy of the
algorithms for satellite data processing. It became necessary to
account accurately all of the known factors, which affect the
signal significantly, including polarization, anisotropy of
scattering, terrain reflection, and true absorption. Among these
factors also are effects due to broken cloudiness. Cloudiness
affects significantly the signal and its neglect in extreme cases
can lead to an error up to 140% (Kassianov et al., 2009).

1.2 Proposed solution

In current paper we propose a new solution of the RTEp for a
slab of a turbid medium with consideration of broken clouds,
based on quasi two-stream approximation. We use classical
representation of the full RTE solution: as a sum of anisotropic
part (which comprises all singularities and represented
analytically) and regular part (which is a smooth function and
calculated numerically). For anisotropic part computations we
use small-angle modification of the spherical harmonics method
(MSH). For the regular part we use quasi two-stream
approximation. This method is a special case of the synthetic
iterations method proposed in nuclear physics (Adams and
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Larsen, 2002). Now we apply it in radiative transfer theory. It
based on a combination of approximate method and one
ordinary iteration. As the broken cloudiness case we consider
the simplest situation when we have the cylindrical hole in the
cloud slab. For this case we use diffusion approximation instead
of two-stream approximation because it is more convenient for
the arbitrary geometry generalization. After that we use the
hexagonal mesh to calculate the first iteration.

2. QUASI TWO-STREAM APPROXIMATION

2.1 Boundary value problem of RTE for a homogeneous
slab

We consider the case, where the slab with optical depth z; is
irradiated by flat unidirectional source with angle of incidence
6y. Boundary value problem of RTE in this case is
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where L(z,u,¢) is the radiance of the light field at the optical
depth 7, in direction which is defined by x=cosé and ¢ (¢ and ¢
are zenith and azimuth angles accordingly), wo=c0s8, A is the

single scattering albedo, x(I'1) is the phase function (here and

after unit vectors are marked with symbol i ””). The integration

in equation (1) is by full solid angle4n, and di’ is an

elementary solid angle in the direction i’ .
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2.2 Anisotropic part solution

The base of the RTE solution is to substitute the scattering
integral by finite sum with aim to use later one or another
numerical method. But there is a J-singularity in boundary
conditions which requires infinite number of decomposition
terms. So let us represent the full solution as a sum

L(r, 1) = Ly(r,0) + L(r,1), 2

Ly(r.0)

singularity) and I:(r,i) is the regular (smooth) part of the

solution. For computation of the anisotropic part of the solution
we use MSH. This method based on the radiance angle
distribution expanding in series by spherical functions taking
into account the following property. The function, which
changes fast according to its argument in spatial range, changes
slow according to the number of decomposition term in spectral
range. This procedure is described in detail, e.g. in the paper
(Budak et al, 2011). So we will not elaborate on this, but only
give the final expression:

where is the anisotropic part (comprises the
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X« is the phase function decomposition term, Qy is the

renormalized Legendre polynomial. It should be noted that the
way of representation of the anisotropic part (from the point of
view of expressions) is only affects on the source function form,
but from the point of view of the full solution MSH is the best
method to eliminate the anisotropic part of the solution (Budak
and Fedosov, 1985). It allows obtaining the regular part of the
solution like a very smooth, almost isotropic function.

2.3 Regular part solution

If we substitute the sum (2) in the initial boundary value
problem we obtain a new equation for the regular part of the
solution

a~ ~
ﬂer L(z, ) = ©)
5
= 2 (e Qe 1.0,
where
Qz, u, i, 0,9) = 4A<}Sx(i'i’) L4 )l
T

oL, (z, 11, ) ©

_,uaT - La(T,,Uy(P)

is the source function which is a misclosure due to anisotropic
part of the solution. For the regular part of the solution in this
case we use quasi two-stream approximation, which is the
combination of two-stream approximation and one ordinary

iteration. Two stream-approximation method is based on RTE
integration by upper and lower hemispheres. This approach is
the simplest method for RTE solution so it seems to be the
fastest from computer implementation’s point of view. After
integration we have two ordinary non-homogeneous differential
equations for the hemi-spherical irradiancies (in matrix form):

i
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where E(r)

irradiancies, M is the diagonal matrix which contains average

scattering cosines, A is the square system matrix and F is the
term which defined by the method of anisotropic part
elimination. We use the representation of matrix exponent with
eigen vectors and eigen values and obtain the solution of this
equation:

is the vector-column of the hemi-spherical
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where B=M™A. After this we can evaluate the scattering
integral in the equation (5) and obtain the radiance of the first
iteration of the smooth part of the solution
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where W, (z) and W, (z) are linear combinations of the hemi-
spherical irradiancies and scattering coefficients.

3. CLOUD SLAB

3.1 Boundary value problem of RTE for the cylindrical
hole in the cloud slab

Let us consider the case, where the cloud slab with cylindrical
hole is irradiated by flat unidirectional source with angle of
incidence 6, (geometry is presented on Figure 1).

z H

B
Figure 1. Geometry and nomenclature in case of the cylindrical
hole in the turbid medium
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Boundary value problem of RTE in this case is:

(1, V)L(r,T) =
3, A(ne(r) ST DN
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where L(r,i) is radiance of the light field in point r, in

direction 1, (r) is the attenuation coefficient, the sum of the

scattering and absorption coefficients, T and B are upper and
lower boundaries of the slab accordingly, C is the cylindrical
hole in the slab, H is the height of the slab. Origin of
coordinates OXYZ is in the centre of upper base of the
cylindrical hole. The parameters of the cloud slab are

e Ax(), rec,

12
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e(r), A(r), x(r; 1) = {

3.2 Anisotropic part

Anisotropy is a local property of the equation, so for its
definition we assume approximation of independent slab of
turbid medium with optical thickness equals to the optical
thickness for direct rays. Due to this factor the expression for
the anisotropic part will be same as (3) but with optical
thickness &(r) which is depends on spatial coordinates.

3.3 Optical thickness computation

We have to find the intersection of the ray and cylinder with
aim to obtain the expression for the optical thickness:

r=d+&l, (13)
is equation of the ray along the direction of the incidence of the

unidirectional source, d is the vector of ray’s input of the
independent slab;

(r—(r,k)k)? = R? (14)

is the point on the cylinder’s surface on the distance R from its
axis. Let us to substitute (13) in (14)

£2 4 2(d—(r,k)k,ig) + (d - (r,k)k)>~R?=0.  (15)

Now we have the second-degree equation and can obtain an
optical thickness &, If the ray does not cross the cylindrical hole

E=H/ 1.
3.4 Regular part solution

We also substitute the radiance in the initial boundary value
problem by the sum (2) and obtain a new equation for the
regular part of the solution

(4, V)L(r, 1) +eL(r,1) = %cﬁ L(r,1Yx(1",Dydl" + S(r,1), (16)
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In case of the cylindrical hole we deal with changing of the axis
of the symmetry respect to two-stream approximation.
Especially it becomes important in case of arbitrary geometry.
So this approach is not appropriate here. The next one after it
from the implementation simplicity’s point of view seems to be
diffusion approximation. Thereby for the first step in the
method of synthetic iterations for this case we suggest to use
diffusion approximation instead of two-stream approximation.
Further it will be more convenient to generalize it on arbitrary
geometry. Diffusion approximation is based on the
decomposition of the radiance angle distribution in the series by
spherical harmonics with saving of the first two terms:

1
L(r 1) =Cop () YE (M) + > Cim() V" (1) =
m=—1 (18)

L L (Eo(r)+3£(r)l)

= 4— Eo(r) + —€(I‘)|

1
S(nD) =500 (MM + D (M) ¥{"() =
A (19)

- 4—1T[(so(r) + 3s(r)i),

x('-1) = zﬁx, Y@ (20)

where

Eq(r) = gSL(r hdi, &)= gSL(riii

(21)
so(r) = qSS(r hdi, s(r) = <jSS(r P)idi.
We substitute (18)-(20) in the (16) , consider that
4i<J5 x(@\ i =1, 22)
T

1 [ o~ on s
—@I'x(I',Dhdl' =
47Iq.> (h
- %qS(i iR cosp+ iy)x(i',i)di' - 23)
T
1. NN A
:—I(ﬁ,ux(l Al =iz,
4n
where  T'=1,\L— 42 cosgp+ 4, ﬁ:%(ﬁ(i’,i)x(i',i)di':ﬁ
71
is the average scattering cosine and obtain

[(i,V) p —Ag] Eo(r)+
. . . (24)
+3[(|,V) te— Agﬁ] 1E(r) = so(r) +3s(r)l.



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-62-1

Let us integrate obtained expression by solid angle, taking into
account that

idi =0,

qSie(r)di —endidi=o, (25)
qi(i, V)ig(rydi = vcﬁ ide(rydi= %"ve(r),

that lead to the following expression:
£(L- A)Eg(r) + VE(r) = 5o(r) . (26)

We multiply equation (24) by 1 and integrate it by solid angle
again:

%VEO(r) +el—AR)E(r) =s(r). @7

We assume that the radiance angle distribution due to
anisotropic part misclosure is too close to the isotropic one, that

s(r) ~0. (28)

This means that equation (27) can be represented in the
following form

LVE, (N + - AB)EM) =0
3

L (29)
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and it’s become possible to lead the equation for the regular part
of the solution to diffusion equation

DAEq (r) + &(1— A)Ep(r) = so(r) - (30)

3.5 Iteration in case of the cylindrical hole in the slab

To take the first iteration we have to move to Peierls’ integral
RTE. To do this we introduce the new coordinate system along
the ray (Budak et al., 2011). In this case arbitrary point r in
Cartesian coordinate system from the point R at the distance

in direction i is defined by expression

r=R+¢1. (31)

We substitute this expression in the RTE and after some
transformations obtain

LR+<T) = LR+ +

¢
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where Lo(R +¢T) is the radiance of direct non-scattering light.

To calculate (32) we divide the bulk of medium into the mesh
of the hexagonal cells (Mitchell and Wait, 1976), in each node
r;j of which we store the discrete values of radiance by the fixed

direction ipq in accordance with the selected quadrature

formula of the integration over the solid angle (Koch and
Becker, 2004). At the first step the convolution over the solid
angle is calculated in every node. Further the integral
convolution values are interpolated between the nodes using
one of the approximation schemes while calculating the integral
over the ray. Comparison of proposed approach was realized
with algorithm, called MDOM (Budak et al., 2011), which uses
MSH for the anisotropic part and discrete ordinate method for
the regular part of the solution and intrinsically is accurate
solution of RTE. MDOM is designed for the case of
homogeneous slab so the correct comparison was possible only
in case of R=0. The results showed that the error for the upper
hemisphere is not more than 4%.

4. CONCLUSIONS

New method for solving the RTE, consider broken cloudiness
effects was proposed. MSH is the best way to eliminate the
anisotropic part of the solution which allows obtaining the
regular part like almost isotropic function. This factor in its turn
allows assuming that it is appropriate to use synthetic iterations
method and the simplest method for RTE solving on its first
step here. Quasi two-stream approximation is good enough for
the homogeneous medium slab, but in case of arbitrary
geometry it is more convenient to use diffusion approximation
for the first step in synthetic iterations.
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