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ABSTRACT:

Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for
numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies
which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various
high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and
empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and
Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data
with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case
study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive
analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets
towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn’t
establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system
followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results
indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully
established. The highest rates were for chl-a (r>=89.80%), dissolved oxygen (r>=88.53%), conductivity (r>=88.18%), ammonium
(r>=87.2%) and pH (r>=86.35%), while the total phosphorus (r’=70.55%) and nitrates (1>=55.50%) resulted in lower correlation
rates.

1. INTRODUCTION (Dekker, Vos, & Peters, 2002, Zheng, Z., Yuanling, 2011). In
particular, monitoring the good environmental status through

Water quality is a fundamental aspect of global freshwater  earth observation data is not new but among the first objectives

resources. Information about water quality is needed to assess
baseline conditions and to understand trend for water resource
management. Therefore, the importance of evaluating and
monitoring water quality in terrestrial reservoirs is clear and
self-evident. The most commonly used methodology to examine
the quality of water is through in-situ sampling and chemical
analysis. In-situ sampling lead to accurate estimations but lacks
in several other areas. More specifically:

- In-situ measurements fail to provide the spatial distribution of
a phenomenon throughout the water body, since the results
correspond to the exact location/region from which the sample
was taken.

- Water bodies are usually inaccessible on a regular basis.

- In many cases, monitoring one, let alone tens or hundreds of
lakes in a region, is a prohibitive process, both financially and
logistically.

- The location of the sampling regions usually is not correlated
with any phenomena, sensitive regions or management
practices.

- Comprehensive monitoring of any crucial phenomena requires
a frequent sampling.

To this end, the main advantage of remote sensing technology
provides the capability and the required information on a
regular basis. Moreover, it provides the means for exploiting
information from dates that in-situ sampling was not conducted

of remote sensing data exploitation (Wrigley and Horne, 1974).

Natural inland waters are optically complex due to the
interaction of three main parameters, namely chlorophyll,
inorganic suspended solids and dissolved organic matter. The
estimation of water concentrations in sensitive shallow systems
through the use of multispectral remote sensing imagery can be
hindered due to possible errors in consistent correlation. The
optical complexity poses many challenges to the accurate
retrieval of biogeochemical parameters. The depth of the lake
and the aquatic vegetation levels is of significant importance.
Many standard chlorophyll-a retrieval algorithms, which are
optically dominated by phytoplankton and their breakdown
products, tend to fail when applied to more turbid inland and
coastal waters whose optically properties are strongly
influenced by non-covarying concentrations of non-algal
particles and coloured dissolved organic matter (Huang et al.,
2015; Palmer et al., 2015; Sass, et al., 2007).

The advent of new generation satellite optical sensors like US
Landsat-8 and the upcoming EU Sentinel-2 provides
opportunities for developing satellite-based operational
monitoring geospatial services globally. However, there are
certain challenges regarding the limitations, operational
feasibility, inter-calibration between the different sensors and
the standardization of procedures for delivering accurate



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-624-1

geospatial value-add maps regarding the good environmental
statuts of inland systems.

The establishment of relations between in-situ ground truth and
earth observation data is usually based on three approaches
(Duan and Bastiaanssen, 2015, Giardino et al. 2007, Chen et
al. 2008, Alparslan et al., 2007, Hellweger et al, 2007, Tyler et
al., 2006, Han et al., 2005, Vincent et al, 2004; Young et al.,
2011):

- empirical algorithms, which is based on the creation of a
regression models using satellite imagery and water quality
parameters,

- semi-empirical approach, which embodies the use of spectral
water quality characteristics in the statistical analysis,

- analytical approach, in which key water quality parameters are
related to inherent optical properties and therefore to apparent
optical properties and top-of-atmosphere radiance.

In this study, we have experimented with multi-temporal
Landsat 7 and Landsat 8 high resolution satellite data, coupled
with the corresponding hyperspectral data from a field
spectroradiometer and in-situ ground truth data with several
physico-chemical and key monitoring indicators. All available
datasets, covering a 4 years period were processed and fused
under a quantitative evaluation framework. The performed
comprehensive analysis posed certain questions regarding the
applicability of single empirical models across multi-temporal,
multi-sensor datasets towards the accurate prediction of key
water quality indicators for shallow inland systems. Landsat 7
and 8 resulted in quite promising results indicating that from the
recreation of the lake and onward concreate per-sensor, per-
depth prediction models can be successfully established.

2. MATERIALS AND METHODS
2.1. Study Area

The study area is located in Greece, on the southeast of Larissa,
near the northern slopes of Pelion (Figure 1). It was completely
desiccated in 1962 as part of a plan to address the flooding of
the surrounding areas and to create new agricultural land. In
2010 it was recreated in order to compensate the profound
consequences on the local ecosystem and it now occupies an
area of 42.000 acres. It is characterized as shallow and
eutrophic while it is constantly pressured by land use changes,
hydrological flow modifications and excessive chemical
enrichment (Chamoglou et al. 2014).

The protection, conservation and management of the site was
undertaken by the Management Body of Ecodevelopment Area
of Karla — Mavrovouni — Kefalovriso — Velestino
(E.A.Ka.Ma.Ke.Ve.) which was established in 2003 and
conducted frequent water quality sampling until 2013.

2.2. Multi-temporal
Campaigns

Remote Sensing Data and Field

Multitemporal high resolution satellite data were collected from
the recreation of the Lake and onward. In particular, Landsat 7
(L7) and Landsat 8 (L.8) data were acquired. Landsat 7 consists
of seven spectral bands, from 0.45 to 2.35 micrometers, with
spectral resolutions of 0.06-0.20 micrometers and spatial
resolution of 30 meters for Bands 1 to 5 and 7. The thermal
infrared band has a 60 meter pixel and wavelengths of 10.40-
12.50pum. However, the Lake Karla region is heavily affected by

the presence of gaps (approximately 20% of image pixels) in all
the corresponding L7 paths and rows (Figure 1). The problem is
caused by the early failure of the Scan Line Corrector which
compensates for the forward motion of the satellite. In addition,
Landsat 8 OLI consists of seven spectral bands with
wavelengths from 0.43-2.29um, spectral resolution from 0.02-
0.18um and spatial resolution of 30m.

In-situ ground-truth sampling data were systematically collected
from 2011 an onward from the lake’s Management Body.
Among the various field and lab sensors and instruments, the
Hach’s HQ40d Portable Multi-Parameter Meter carried out the
measurements of the physicochemical parameters, while the
quantitative determination of water’s inorganic nutrient
compounds and chlorophyll-a’s concentration was performed
by applying different determination protocol for each
compound, based on standard methods (APHA, 1998) and
using the spectrophotometer HACH DR / 3900 (Chamoglou et
al. 2014). In-situ hyperspectral reflectance observations were,
also, acquired using the GER 1500 (Spectra Vista Corporation,
US) portable spectroradiometer which provides spectra with
512 spectral bands distributed in the spectral region from
350nm to 1050nm with 3.2 nm FWHM. The location of every
measurement, which was the same with the sampling positions,
was recorded using a portable GPS.

This study is focused mainly on the long term monitoring of the
following parameters: chlorophyll-a (mg/lt), NO3 (mg/It), NH4
(mg/lt), Total Phosphorus (mg/lt), pH, conductivity (mS/cm),
Dissolved Oxygen and temperature (C°). Chlorophyll-a (Chla)
is a biological parameter and the necessary pigments used by
most photosynthetic organisms for the release of chemical
energy. When in vivo form, it exhibits two main absorption
maxima positioned at 433nm (blue) and 686 nm (red) of the
spectrum (Hunter et al. 2008). The concentration of chl-a is
used as an indicator for the description of bioproduction and is
linearly related to the biomass, the age of algae communities
etc. (Thiemann, et al., 2000).

Dissolved Oxygen (D.O.) is an important physical and chemical
parameter which is used by most organisms for respiration and
oxidation of organic substances. It primarily originates in the
water from the atmosphere, through the phenomenon of
diffusion, and secondarily due to the photosynthesis of aquatic
flora. It has a seasonal and daily circle. PH is a physico-
chemical parameter expressing the negative decimal logarithm
of the hydrogen ion, in particular of hydronium (H3O") in a
solution. As most aquatic organisms survive in a relatively
small pH range, the parameter is an indicator of the existence of
life.

Conductivity is physico-chemical parameter that expresses the
ability of the water body to allow the passage of electric current,
and gives the total content of water in minerals. Conductivity
values are influenced by ion concentration, mobility and electric
charge, as well as water temperature. Total Phosphorus (TP) is
the sum of the organic and inorganic phosphorus, dissolved or
in the form of particles. It is affected by temperature, pH, nitrate
and ammonium ions etc. and is usually the limiting factor of
primary production, thus of utmost importance for the
restoration of the ecological balance of a lake. Finally, nitrates
(NOs) and ammonium (NH4) are an inorganic chemical
parameter and one of nitrogen’s forms in the aquatic
environment. Their concentration plays a decisive role in the
trophic state of the lake.
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Figure 1: Lake Karla in central Greece was the study area. Several permanent (with yellow color) and non-permanent (with red color)

Landsat 8 (raw image)

Landsat 8 (reflectance)

Water Detection

sampling locations have been employed (top, second from left). Landsat 8 colour composites (RGB 432) before and after the
radiometric and atmospheric corrections are, also, shown (top). An example of the processing procedure for the Landsat 7 datasets are
presented (bottom). Landsat 7 images before and after the developed gap-filling algorithm are shown. The detected inland water in a
binary format and the estimated map with dissolved oxygen concentrations are also demonstrated. Note that all the processing

procedure is automated.

2.3. Pre-processing Procedures and

Reflectance

Multitemporal

Radiometric and atmospheric corrections were performed on the
satellite imagery towards the elimination of solar illumination,
atmospheric and terrain effects. Digital numbers were converted
to top-of-atmosphere reflectance using the absolute radiometric
calibration factors and effective bandwidths for each band.
Atmospheric correction was then conducted through ATCOR2
and MODTRAN4 for calculating a radiative transfer model for
atmospheric transmittance, direct and diffuse solar flux, and
path radiance. Several parameters were employed like the
aerosol model, as well as satellite and sun geometry information
including the satellite inclination, sun azimuth and zenith.

2.4. Relationships between Reflectance and Concentrations

Several empirical regression models were evaluated in order to
study and establish consistent relationships between the
concentrations of the water quality parameters and the satellite
reflectance values.

Several experiments were performed in order to evaluate the
potential of establishing relationships between multi-temporal
and multi-sensor data. The time difference between the
sampling date and the acquisition of the satellite image was up
to three days maximum. Three models were developed and
evaluated. One containing in-situ sampling locations from the
relatively deep parts of the lake, the second containing sampling
data from the very shallow parts of the lake and the third

including all in-situ sampling data from all lake depths. From
every model, linear regression equations were computed for
about 140 combinations of Landsat 8 spectral bands and for
about 120 combinations of Landsat 7 spectral.

Moreover, concurrent reflectance hyperspectral data from a
field spectroradiometer were calculated. These observations
were, also, correlated with both the in-situ ground truth and the
satellite images. About 120 band ratios and indices were
computed and tested.

The overall analysis and comprehensive evaluation posed
certain questions regarding the applicability of single empirical
models across multi-temporal, multi-sensor datasets. In
accordance with the literature, in all cases there wasn’t a single
linear regression model which could establish concrete relations
across multi-temporal, multi-sensor datasets. In particular, only
the first model managed to provide high correlations for several
water quality indicators for such a shallow and sensitive inland
system. The shallower parts of the inland system followed
different regression patterns, however a consistent empirical
model couldn’t be established.

On the contrary, the first model provided quite promising
results for most of the examined water quality indicators. The
highest correlation rates regarding the hyperspectral reflectance
from the field spectroradiometer were for chl-a (1>=97.6%),
ammonium (r>=88.5%), nitrates (r’=85.7%), conductivity
(r>=81.7%) and dissolved oxygen (1’=81.9%).
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Regarding the satellite datasets a number of band ratios, indices
and equations established relationships with correlation rates. In
Table 1, the highest correlation rates (r?) that were calculated
per satellite sensor (i.e, Landsat 7 or Landsat 8), per water
quality indicator (i.e, pH, Chla, etc) and per spectral band
combination (e.g., ratio) are shown. Regarding chlorophyll-a
the highest rates were calculated for the EXP(R835/R2220),
EXP(R835/R660), EXP(R835/R1650), R835/R660,
(R835/R660)+R1650, R835/R2220, R835/(R485+R560+R660),
EXP(R835/R560), LnR660-L.nR835 formulas and for Landsat
7. However, the R835/R660 was selected as was most simple
and included bands that seemed to correlated more with chla.
For Landsat 8, the higher rates were for the (R480-R655)/R560,
R560-R865, EXP(R865/R1610), R480-R560, R560-R480,
R440-R560, R560-R440, R560-R655 formulas and the selected
of the same reasons was the R480-R560. For both sensors the
R835, R660 and R560 spectral bands (and their neighbours)
were involved in most high correlated models.

Regarding NH4 concentrations, the high rates for Landsat 7
were the EXP(R600/R835), R600/R835, EXP(R660/R835),
EXP(R600/R1650), EXP(R660/R1650), (R600-R835)/R660,
EXP(R600/R2220), R660/R835 and R600-R835 formulas,
while the one employed was the R600/R835. Regarding Landsat
8, the highest rates were for the (R480-R655)/R560, R480-
R560, R560-R480, EXP(R865/R1690), R560-R865, R440-
R560, R560-R440, R560-R655, R480/R2200 formulas. The
first one was employed for calculating the corresponding maps.
For both sensors the R560, R835 and R660 spectral bands (and
their neighbours) were involved in most high correlated models.

Regarding the pH parameter, for Landsat 7 the highest rates
were for the LnR485-LnR2220, R485-R2220, R485/R2220,
R485-R1650, EXP(R2220), R2220, LnR2220  and
EXP(R485/R2220) formulas, while for Landsat 8 the highest
correlations were for the LnR865-LnB6, R865/R1690, R440-
R560, R560-R440, R865/R2200, R480-R560, R560-R480,
R655/R2200, R480/R2200 and LnR440-LnR2200. For both
sensors the R485 and R2200 spectral bands (and their
neighbours) were involved in most high correlated models.

3. EXPERIMENTAL RESULTS AND VALIDATION

Regarding the evaluation of the employed empirical algorithms
the overall validation indicated that several water quality
indicators could quite accurately estimated through high
resolution multispectral data. In particular, the highest rates
were for chl-a (r=89.80%), dissolved oxygen (1=88.53%),
conductivity (r>=88.18%), ammonium (r>=87.2%) and pH
(r>=86.35%), while the total phosphorus (1>=70.55%) and
nitrates (r>=55.50%) resulted in lower correlation rates.

Note that algorithms which included the EXP form, while in
many cases provided high correlations, proved to be sensitive
and unable to estimate correctly the corresponding parameters
especially in images with a certain cloud cover. In particular,
images with important cloud cover had to be excluded due to

certain inaccurate reflectance calculations and relative
radiometric calibration.
Experimental  results  regarding chla  concentrations

demonstrated quite promising correlations i.e, for L7
[r*=89.80%, (R835/R660)] and L8 [r?>=76.65%, (R480-R565)].
These quantitative results were also verified from the performed

comparison between the delivered maps from L7 and L8 for
close dates. In particular, the two sensors and the employed per-
sensor model estimated the same concentration levels when
only one day temporal difference. Few higher differences were
calculated in the quite shallow parts of the lake. In general,
when comparing with the in-situ ground truth data the
calculated chla levels were slightly overestimated with L7 data
and slightly underestimated with L8 data.
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Table 1: The highest correlation rates (r?) that were calculated
per satellite sensor (i.e, Landsat 7 or Landsat 8), per water
quality indicator (i.e, pH, Chla, etc) and per spectral band

combination (e.g., ratio).
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Figure 2: Multi- temporal geospatial maps with the est1mated conéentratlons for certain key water quallty 1ndlcat0rs It can be observed
that chlorophyll-a presented slight variations throughout the year. TP reached certain peaks in March and then dropped to lower rates.
Conductivity resulted in high rates throughout the year although from June and afterwards there was a minor decrease. Dissolved

oxygen reached a maximum in March (as TP) and then decreased stably.

Regarding the DO estimation the experimental results indicated
high correlation rates i.e, [r= 88.53%, (R560+660)/2 for L7
and r’=80.49%, (R480/R655) for L8]. This was also confirmed
by the comparative analysis between the two sensors for maps
of closing dates. The conductivity was estimated, also, for both
sensors with high rates [r?=66.02%, (R485-R835)/(R660-R835)
for L7 and r=88.18%, (R480-R655)/R560 for L8].

Moreover, regarding the estimation of NH4 concentrations high
correlations were established [r>=94.32%, (R560/R835) for L7
and 1r=80.64%, (R480-R655)/R560 for L8] by the regression
models. However, when all the multi-temporal maps were
computed for all the acquired data for the 4 years period, some
negative values where calculated indicating that the established
relation was sensitive to certain optical variations.

The pH parameter was estimated, also, with high correlation
rates [r*=82.46%, (R485/R2220] for L7 and r*=86.35%,

(R865/R1610)] and delivered consistent and stable maps across
the multi-temporal dataset.

The TP and NOs parameters were calculated with lower rates
than the aforementioned ones. In particular, the TP was
estimated with a higher rate 1>=70.55% (R660/R835) for the L7
datastes and with a lower one r>=50.82% (R560-R1610) for L8.
For the estimation of NO; concentrations the calculated
correlation was at 1>=55.50% (R835/R2220) for L7 and
’=55.50% (LnR1610-Ln2200) for L8.

Generally speaking, chla resulted to high correlations and
included the RED and NIR bands. NOs mainly the SWIR2, NH4
the GREEN and BLUE, the TP for GREEN and the pH for
SWIR2, BLUE, GREEN and RED. These observations are,
generally, in accordance with the literature. In particular, there
is a number of studies that established correlations for e.g., chla
between the Landsat ETM1, ETM2, ETM3 and ETM4 bands,
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while the models were constructed using genetic algorithms,
multilinear regression with correlations ranged from r?> =0.58 to
0.95 (Chen et al. 2008,, Alparslan et al., 2007, Hellweger et al,
2007, Tyler et al., 2006, Han et al., 2005, Vincent et al, 2004).

4. CONCLUSIONS

We have experimented with Landsat 7 and Landsat 8 multi-
temporal satellite data, coupled with hyperspectral data from a
field spectroradiometer and in-situ ground truth data with
several physico-chemical and other key monitoring indicators.
All available datasets, covering a 4 years period, in our case
study Lake Karla in Greece, were processed and fused under a
quantitative evaluation framework. The performed comprehend-
sive analysis posed certain questions regarding the applicability
of single empirical models across multi-temporal, multi-sensor
datasets towards the accurate prediction of key water quality
indicators for shallow inland systems. Landsat 7 and 8 resulted
in quite promising results indicating that from the recreation of
the lake and onward concrete per-sensor, per-depth prediction
models can be successfully established. The highest rates were
for chl-a (r=89.80%), dissolved oxygen (r*=88.53%),
conductivity (r>=88.18%), ammonium (r>=87.2%) and pH
(r>=86.35%), while the total phosphorus (1>=70.55%) and
nitrates (r>=55.50%) resulted in lower correlation rates.
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