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ABSTRACT: 

SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution 

SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical 

vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and 

texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the 

utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage 

hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three 

distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are 

utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most 

informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high 

accuracy. A feature selection procedure that utilizes heuristic measures based on features’ statistical characteristics, followed by an 

exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most 

appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m 

resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were 

used in the classification process. The experimental results show that this method has good performance in ship classification, with 

an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress. 

 

 

1. INTRODUCTION 

During the past two decades, ocean ship monitoring and 

recognition has raised much attention in the remote sensing 

community, with applications in maritime management, 

fishing law enforcement, illegal immigration monitoring and 

rescue, safe shipping and oil spill detection. Conventional 

techniques include Automatic Identification Systems (AIS) 

and Vessel Traffic Services (VTS), which are functional 

mainly at shoreline and for compliant ships. In recent years, 

satellite Synthetic Aperture Radar (SAR) systems have raised 

much attention in vessel traffic monitoring (Limes, 2006; 

Greidanus, 2006), due to their insensitivity to weather and 

illumination condition changes, but also due to the need to 

provide feedback in cases that AIS or VTS systems are not 

adequate or fully functional. 

Even though SAR images have been widely used for ship 

detection practices, little research has been performed on ship 

classification. Early works were devoted to the analysis of 

backscattering properties of vessel signatures in inverse 

synthetic aperture radar (ISAR) images (Musman, 1996; 

Menon, 1993), which have also gained some insights 

nowadays (Martorella, 2009). However, the classification 

accuracy of these methods is rather limited in low or medium 

resolution SAR images, without having the means to be 

further improved. Recently, research has shifted to the 

exploitation of polarimetric SAR data properties presented by 

(Touzi, 2004), (Margarit, 2006) and (Margarit, 2009), which 

utilize the composite mechanisms of ships based on 

combinations of basic scattering procedures. The geometric 

properties of the polarimetric scattering behaviour can act as 

a good estimate of the vessel’s category under investigation. 

However, this method requires fully polarimetric data and the 

adoption from ship recognition systems is rather limited, 

mainly due to the increased cost of polarimetric data with 

respect to single-pol (or even dual-pol) ones. 

Besides research on ISAR and polarimetric data that impose 

the limitations addressed previously, various feature 

extraction and selection techniques have been proposed for 

ship pattern analysis and classification. For example, a 

variety of extracted features and different distance metrics 

were used in (Cotuk, 2003) to compare the performance of 

point-enhanced high range-resolution (HRR) profiles and 

successfully recognize oil tankers, ferries and yachts. An 

approach to categorize targets using fuzzy logic decision rule 

was presented in (Margarit, 2011), based on some macroscale 

features such as length, breadth, and radar cross section 

profile along the ship signature.  

Since 2007 and the successful launch of a series of high-

resolution SAR satellites, new possibilities to ship 

recognition and classification emerged. Both Cosmo-SkyMed 

and TerraSAR-X missions were able to capture SAR images 

with more than 3m pixel size, making feature extraction and 

analysis techniques more efficient, and, thereafter, providing 

ship recognition systems of higher accuracy and robustness. 

For example, Yin (Yin, 2012) extracted several structural 

features and estimated different descriptors to perform robust 

classification of different types of ships. In another study 
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(Zhang, 2013), the orientation of the principal axis is 

extracted based on Hough Transform (HT) and the minimum 

enclosing rectangle (MER) of ship chips. Both features are 

used to classify correctly between three different ship types 

on Cosmo-SkyMed SAR data according to the width ratio of 

MER between the HT line, the ratio of ship and non-ship 

points on the principal axis, as well as the scattering density. 

Recognition of civilian vessels based on the ratio of 

backscattering and structural features was also performed on 

Cosmo-SkyMed images (Jiang, 2012), demonstrating good 

classification precision on three different ship types 

containing cargos, containers and oil tankers. 

However, the extraction of a high number of features and 

their utilization in the classification scheme increases 

significantly the dimension of the constructed feature space, 

not to mention that there exists redundancy among the 

various features. Therefore, some researchers have recently 

proposed different feature selection methodologies to cope 

with these restrictions. In such a study, an abundant of feature 

extraction algorithms for ship pattern analysis were proposed 

(Chen, 2012), followed by a novel RCS density encoding 

feature for ship description and a two-stage feature selection 

approach. A novel ship classification scheme based on 

analytic hierarchy process (Zhao, 2013) on both feature 

selection containing several evaluation measures and 

classification decision demonstrated good results on 

TerraSAR-X images. Recently (Wang, 2014), a novel 

hierarchical ship classifier for COSMO-SkyMed SAR data 

was proposed based on the analysis of geometric and 

backscattering characteristics of various ship types. The ships 

were classified into bulk carriers, container ships, and oil 

tankers, with an average accuracy of more than 80%. 

In this way, commercial ships can be divided into container 

ships, tankers, general cargos, bulk carriers and other types of 

ships (e.g. ferries, passenger, etc.) (Zhang, 2013). This 

manuscript presents a novel hierarchical vessel classification 

procedure for ship classification using COSMO-SkyMed 

SAR data with 3-m resolution. In the first stage, four 

different types of feature extraction algorithms are 

implemented in order to form the utilized feature pool, able to 

represent the structure, material, orientation and other vessel 

type characteristics. A two-stage hierarchical feature 

selection algorithm is utilized next in order to be able to 

discriminate effectively civilian vessels into three distinct 

types, in COSMO-SkyMed SAR images: cargos, small ships 

and tankers. In our analysis, scale and shape features are 

utilized in order to discriminate smaller types of vessels 

present in the available SAR data, or shape specific vessels. 

Then, the most informative texture and intensity features are 

incorporated in order to be able to better distinguish the 

civilian types with high accuracy. A feature selection 

procedure that utilizes heuristic measures based on features’ 

statistical characteristics, followed by an exhaustive research 

with feature sets formed by the most qualified features is 

carried out, in order to discriminate the most appropriate 

combination of features for the final classification. A total of 

111 ships were used in the classification process, while AIS 

data were applied to verify the effectiveness of the algorithm. 

The experimental results show that this method has good 

performance in ship classification, with an overall accuracy 

reaching 83%. 

The rest of this paper is organized as follows. The experiment 

and SAR data description is provided in Section 2. Section 3 

provides the general methodology of the approach, consisting 

of the data pre-processing algorithms, a short description of 

the utilized CFAR-based ship detector, the general feature 

extraction methodology, the proposed feature selection 

technique and the description of the classification procedure. 

Experimental results are analysed in Section 4 and 

conclusions are made in Section 5 along with future research 

objectives. 

 

2. EXPERIMENT DESCRIPTION 

The high resolution SAR scenes used in this study were 

acquired on June 17 to June 19, 2013 in the greater area of 

Malta, by the Cosmo-SkyMed instrument, having HH 

polarization and resolution of 2.2𝑚 × 2.2𝑚. The incident 

angle was between 34.6° and 37.2°. The experiment area is 

located in the yellow rectangle presented in Figure 1. Five 

scenes that were situated in the highlighted area and for the 

specific dates were used for the experiments. For all the 

processed scenes AIS data were also used in order to classify 

the detected ships according to the AIS class specifications. 

 

 

Figure 1. The experiment’s test site (acquired from Google 

Earth). 

 

3. METHODOLOGY 

The proposed method can be mainly divided into five parts, 

which are shown in Figure 2. In the following sections a brief 

description of the approaches implemented for the specific 

flow chart is given. 

 

 

Figure 2. Flow chart of vessel classification. 
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3.1 SAR Data Pre-processing 

The application of proper pre-processing techniques will not 

only reduce the recognition computational burden but also 

give the user the opportunity to extract the most useful 

information and avoid of the redundant and confusing 

patterns in terms of classification. The pre-processing step 

consists of the initial scene ortho-rectification, speckle 

filtering and land masking, along with the conversion in a 

format suitable for the next processing steps. 

 

3.2 Ship Detection 

Ship detection from SAR images has been deeply reviewed 

during these past three decades. Crisp (Crisp, 2004) compares 

a number of ship detection software systems, while the topic 

is actively researched until nowadays (Tunaley, 2010; Juan, 

2009). Ships must be detected against a background of radar 

sea clutter. Different distributions have been proposed in the 

literature to describe the intensity statistics of radar sea clutter 

(Crisp, 2004; Darymli, 2013). These techniques involve the 

specification of a Constant False Alarm Rate (CFAR), which 

implies that a threshold of detection is set according to the 

local statistics of the clutter at each point in the image plane 

in order to avoid increased false alarms. 

In this work, the optimal parametric CFAR for Weibull 

clutter proposed by Anastassopoulos was utilized 

(Anastassopoulos, 1995). The optimal Weibull CFAR (OW-

CFAR) detector is implemented using the maximum 

likelihood estimation (MLE) method, which was proven to be 

asymptotically efficient estimator of the mean power of the 

Weibull clutter. 

Prior to feature extraction from the detected ships some basic 

pre-processing stages comprising: 

 The rotation of ships in such a way that the main 

axis is the tangent of the horizontal axis. 

 The extraction of the Minimum Enclosing 

Rectangle (MER). 

A number of the resulting pre-processed detected ships are 

illustrated in Figure 3. 

 

 

 

Figure 3. Resulting pre-processed detected ships. 

 

3.3 Feature Extraction 

A huge number of features appropriate for characterizing the 

detected vessels are available in the remote sensing literature 

(Chen, 2012). In this work, the selected features are grouped 

into two main categories. 

 Scale and shape features 

 Textural features 

A brief description of the proposed features will be given in 

the following section. Nevertheless more features can be used 

in order to have a better characterization and discrimination 

of the final vessel classes. 

 

3.3.1 Extraction of shape and scale features: After 

computing the bounding box that surrounds the detected 

vessel a shape feature extraction scheme will be applied. The 

shape features initially selected for this purpose are the 

following: 

 Area: the actual number of pixels of the detected 

vessel. 

 Equivalent Diameter: the diameter of a circle with 

the same area as the detected vessel body, 

computed as: 

 

 Equivalent Diameter = √
4×area

π
 (1) 

 

 Extent: the ratio of pixels in the region to pixels in 

the total bounding box. Computed as the 

Area divided by the area of the bounding box. 

 Gamma value: 𝛾, is given by 

 

 γ =
(Perimeter)2

4π(Area)
 (2) 

 

 Major Axis: the length (in pixels) of the major axis 

of the ellipse that has the same normalized second 

central moments as the detected vessel body. 

 Perimeter: the distance around the boundary of the 

detected vessel body. 

 Size ratio: is given by 

 

 Size ration =
Major Axis

Minor Axis
 (3)

  
 

 Solidity: the proportion of the pixels in the convex 

hull that are also in the detected vessel body, 

computed as: 

 

 Solidity =
Area

ConvexArea
 (4)

  
 

3.3.2 Extraction of textural features: In order to extract 

meaningful texture features, appropriate modification of the 

given data must be done. Texture measures like the co-

occurrence matrix have found application in satellite image 

processing and analysis. In order to extract texture features 

from the detected vessel bounding box, Gray-Level Co-

occurrence Matrices (GLCMs) along with Gray Level Run-

Length Matrices (GLRLM) will be utilized. 

Whether considering the intensity or grayscale values of the 

image-data or various dimensions of colour, the co-

occurrence matrix can measure the texture of the image-data. 

Because co-occurrence matrices are typically large and 

sparse, various metrics of the matrix are often taken to get a 

more useful set of features. Features, generated using this 

technique, are usually called Haralick features (Haralick, 

1973). 

A Gray-Level Co-occurrence Matrix (GLCM) represents a 

matrix that is defined over an image to be the distribution of 

The 36th International Symposium on Remote Sensing of Environment,
11 – 15 May 2015, Berlin, Germany, ISRSE36-64-1



 

4 

 

co-occurring values at a given offset. It is formulated over an 

𝑛 × 𝑚 image 𝐼 by: 

 

GLCMΔx,Δy(i, j) =

∑ ∑ {
1,   if I(p, q) = i  and I(p + Δx, q + Δy) = j

   0,   otherwise                                                         
m
q=1

n
p=1 (5) 

 

where i and j are the image intensity values of the image, 

p and q are the spatial positions in the image I, and 
(Δx, Δy) represent the given offset. 

 

Given the GLCM, local Haralick texture features (Haralick, 

1973) can be now computed, such as: 

 

 Energy= ∑ GLCM(i, j)2
I,j  (6)

  

 

 Entropy = − ∑ GLCM(i, j)log2(GLCM(i, j))i,j  (7) 

 

 Correlation = ∑
(i−μ)(j−μ)GLCM(i,j)

σ2i,j  (8) 

 

 Inverse Difference Moment= 

 =∑
1

1+(i−j)2 GLCM(i, j)i,j  (9) 

 

 Inertia = ∑ (i − j)2GLCM(i, j)i,j  (10) 

 

 Cluster Shade = 

 =∑ ((i − μ) + (j − μ))
3

GLCM(i, j)i,j  (11) 

 

 Cluster Prominence = 

 =∑ ((i − μ) + (j − μ))
4

GLCM(i, j)i,j  (12) 

 

 Haralick's Correlation =
∑ (i,j)GLCM(i,j)−μt

2
i,j

σt
2  (13) 

 

where μt and σt are the mean and the standard deviation 

of the row (or column, due to symmetry) sums, 

μ is the weighed pixel average given by: 

 

 μ = ∑ i ∙ GLCM(i, j) =i,j ∑ j ∙ GLCM(i, j)i,j  

 

and σ is the weighed pixel variance given by: 

 

σ = ∑(i − μ)2GLCM(i, j) = ∑(j − μ)2 GLCM(i, j)

i,ji,j

 

 

Moreover local higher order statistics texture coefficients 

based on the Gray Level Run-Length Matrix (GLRLM) will 

be processed (Tang 1998). The GLRLM is a two dimensional 

matrix in which each element GLRLM(i, j|θ) gives the total 

number of occurrences of runs of length j at grey level i, in a 

given direction θ. Thus, given the GLRLM we can calculate 

the following indices: 

 

 Short Run Emphasis =
1

nr

∑
GLRLM(i,j)

j2i,j  (14) 

 

 Long Run Emphasis =
1

nr

∑ j2GLRLM(i, j)i,j  (15) 

 

 Grey Level Nonuniformity = 

 =
1

nr

∑ (∑ GLRLM(i, j)j )
2

i  (16) 

 

 Run Length Nonuniformity = 

 =
1

nr

∑ (∑ GLRLM(i, j)i )2
j  (17) 

 

 Run Percentage =
nr

np
 (18) 

 

 

 Low Grey Level Run Emphasis = 

 =
1

nr

∑
GLRLM(i,j)

i2i,j  (19) 

 

High Grey Level Run Emphasis =
1

nr

∑ i2GLRLM(i, j)i,j  (20) 

 

 Short Run Low Grey Level Run Emphasis=  

 =
1

nr

∑
GLRLM(i,j)

i2j2i,j  (21) 

 

 Short Run High Grey Level Run Emphasis= 

 
1

nr

∑
i2GLRLM(i,j)

j2i,j  (22) 

 

 Long Run Low Grey Level Run Emphasis= 

 =
1

nr

∑
j2GLRLM(i,j)

i2i,j  (23) 

 

 Long Run High Grey Level Run Emphasis= 

 =
1

nr

∑ i2j2GLRLM(i, j)i,j  (24) 

 

where nr is the total number of runs and 

np the total number of pixels of the processed 

patch. 

 

3.4 Hierarchical Feature Selection 

Various feature selection algorithms are available in the 

literature. Those algorithms can be classified into filter-based 

and wrapper-based algorithms (Chen, 2012). A feature 

selection scheme adopted is presented in Figure 4. 

 

Extracted features

Filter-based algorithm

 Stability
 Discriminability

Wrapper-based algorithm

 Feature combination 
generation

 k-NN classifier

Optimal feature set
 

Figure 4. Feature selection procedure scheme. 

 

At first the extracted features are examined for their stability 

and discriminability in turn, with some features, which do not 

present good results, subtracted from the features that will be 

used for the classification. With the remainder features we 

form all possible feature set combinations, which are then 

applied to ship classification using a k-NN classifier. The 
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optimal feature set is the one that presents the maximum 

overall classification accuracy. 

 

3.4.1 Stability: For calculating the stability measure, the 

normalized variance coefficient is used, given by (Chen, 

2012): 

 

 ρi
(ω)

=
Ε[‖Fi

(ω)
‖

2

2
]−E2[‖Fi

(ω)
‖

2
]

Ε[‖Fi
(ω)

‖
2

2
]

 (25) 

 

where 𝜔 denotes the ship class, 

𝑖 the feature checked for its stability, 

‖𝐹𝑖
(𝜔)

‖
2
 is the second norm of feature vector  

𝐹𝑖
(𝜔)

, while 

𝛦 [‖𝐹𝑖
(𝜔)

‖
2

2
] denotes the square of mean value. 

 

The lower the stability ρi
(ω)

 is, the more stable the feature is 

found, and thus this feature will be able to provide better 

classification results. 

 

3.4.2 Discriminability: The discriminability of a given 

feature is calculated as an inter-intra class distance ratio 

defined as (Chen, 2012): 

 

 Ji =
SBi

SWi

 (26) 

 

where SWi
 is the average within-class covariance matrix, 

while SBi
 is the estimation of the average between-

class covariance matrix. 

 

Those values can be estimated from the given data sets by: 

 

 SWi
= 

 = ∑
Nω

N
(

1

Nω

∑ (‖Fi,s
(ω)

‖
2

− E2 [‖Fi
(ω)

‖
2

])
2Nω

s=1 )n
ω=1 (27) 

 

and 

 

 SBi
= ∑

Nω

N
((E [‖Fi

(ω)
‖

2
] − EFi

)
2

)n
ω=1  (28) 

 

where 𝐸𝐹𝑖
=

1

𝛮
∑ ∑ ‖𝐹𝑖,𝑠

(𝜔)
‖

2

𝑁𝜔
𝑠=1

𝑛
𝜔=1  is the overall mean 

vector, 

𝑛 denotes the number of classes,  

𝑁𝜔 the number of ships that belongs to the class 𝜔, 

and 

𝑁 the total number of the ships in the dataset. 

 

The higher the value of Ji is, the more discriminative the 

feature is, and thus this feature can be able to better 

discriminate different types of ships. 

 

3.4.3 Wrapper-based algorithm: Features that present 

high stability and discriminability scores can next be checked 

thoroughly in every possible combination. The created 

feature sets are applied to a training classifier directly with 

their performance evaluation based on the classification 

results of the training data. K-NN classifier is used in order to 

evaluate the aforementioned formed feature sets and the 

maximum precision is used for the selection of the most 

appropriate feature set. The precision is computed by: 

 

 P =
Nc

N
 (29) 

 

where 𝑁𝑐 is the number of ships which are classified 

correctly, 

while 𝑁 is the total number of ships. 

 

The best performance is achieved by the feature set that 

presents the maximum precision. 

 

3.5 Vessel Classification 

Three main categories were used for the evaluation of the 

proposed methodology: 

 Cargo ships (40) 

 Small ships (13) 

 Tanker ships (58) 

Ships listed in one of the three categories are in most cases 

constructed by different materials and their deck is occupied 

by different structures, so the backscattering coefficient in 

SAR images is different as well. Table 1 shows typical 

images of all three kinds of ships forming the given dataset. 

The images show that the scattering components can 

represent the physical meaning of the ships’ structure in a 

very accurate way. 

 

Ship 

type 
Optical image of ships 

SAR images of 

ships 

Cargo 

 

 

Small 

ships 

 
 

Tanker 

 
 

Table 1. Optical images of ships and their associated SAR 

images.  

 

Small ships category consists of 7 fishing boats and 6 tug 

pilots. For all the ships of the dataset a feature vector of 26 

dimensions, as the total number of the aforementioned shape 

and texture features is created. The first 8 dimensions refer to 

the shape features described in 3.3.1, while the remaining 

vector is completed by the texture features derived by the 

GLRLM and GLCM respectively. 

As can be easily understood, the small ships category, can be 

separated from the other two categories easily, so a two-stage 

classification can be adopted, where the first stage is carried 

out by the separation of small ships class from the other two, 

while in the second stage vessels not classified as small ships 

are classified as tanker and cargo ships respectively. This 

classification could move on a third level, where cargo ships 

could be classified into container and general cargo, while the 
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category of small ships could be divided into fishing boats 

and tugs, as shown in Figure 5. 

 

 

Figure 5. Hierarchical classification scheme, utilizing two 

distinct classification stages, plus a potential third one. 

 

4. EXPERIMENTAL RESULTS 

For a classification scheme, where all extracted features are 

taken into count, using a k-NN classifier (𝑘 = 5) the overall 

accuracy is calculated equal to 74.77%  (recall for each 

category is  80.00% | 69.23% | 72.41%) for the three 

categories. The confusion matrix for the specific 

classification scheme is presented in Table 2. 

 

Actual 

classes 

Predicted classes 
Recall 

cargo small ships tanker 

cargo 32 0 8 80,00% 

small 

ships 
2 9 2 69,23% 

tanker 12 4 42 72,41% 

Precision 74,47% 69,57% 80,77% 74,77% 

Table 2. Confusion matrix for a classification scheme using 

all extracted features.  

 

Although the overall accuracy of the previous classification 

scheme, where all the extracted features were used for the 

classification, a hierarchical approach is more adequate and, 

as we will see in what follows, gives better classification 

results. 

 

4.1 Hierarchical-based vessel classification results 

For every stage of the hierarchical classification procedure an 

exhaustive search between the strongest features for the 

specific stage is implemented. The features used for each one 

of the two stages of the Hierarchical classification scheme are 

shown in Figure 6. 

Following the feature extraction procedure, feature stability 

and discriminability analysis results are presented in Figure 7 

and Figure 8 respectively. From the resulting measurements a 

first selection of the stronger features regarding those filter 

based algorithms is done, with those features used as an input 

to the wrapper based algorithms section, where an exhaustive 

search is implemented using all possible combinations of 

those features as an input in a k-NN classifier.  

 

Small ship?

Small ship

yes

Cargo ship?

no

Cargo ship

yes no

Detected vessels

Features used: extent, gamma 
value, major axis, solidity, 

energy, correlation

Features used: equivalent 
diameter, extent size ratio, gray 

level non uniformity

Tanker ship

 

Figure 6. Hierarchical classification scheme with the 

dominant features used in every stage. 

 

 

Figure 7. Feature stability results. 

 

 

Figure 8. Feature discriminability results. 

 

Regarding the first stage, where the task is to discriminate 

small ships over tanker and cargo ships, four features were 

finally selected (Equivalent diameter, Extent, Size ratio and 

Gray level non-uniformity). The first three features are shape 

features, while the last one is a texture feature derived from 

GLRLM. The overall classification accuracy for the first 

stage is 96.40% (recall for each category 

is 97.00% | 90.90%). Table 3 illustrates the confusion matrix 

of the classification results for the first stage. Three of the 

ships belonging to the small ships category are misclassified 

in the tanker/cargo category, while one of the 98 ships of the 

tanker/cargo class is classified in the small ships class. 
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Actual 

classes 

Predicted classes 
Recall 

tanker / cargo small ships 

tanker / 

cargo 
97 3 97,00% 

small ships 1 10 90,90% 

Precision 99,00% 76,90% 96,40% 

Table 3. Confusion matrix for the first stage of the 

hierarchical classification.  

 

Moving forward to the second stage, where cargo ships are 

separated from tanker ships, the confusion matrix of the 

overall Hierarchical classification scheme is presented in 

Table 4. The overall accuracy is computed equal to 82,88% 

(recall per class is 87,50% | 79,92% | 81,03%) for all three 

classes. 

 

Actual 

classes 

Predicted classes 
Recall 

cargo small ships tanker 

cargo 35 0 5 87,50% 

small 

ships 
2 10 1 76,92% 

tanker 10 1 47 81,03% 

Precision 74,47% 90,91% 88,68% 82,88% 

Table 4. Confusion matrix for the overall hierarchical 

classification scheme.  

 

5. CONCLUSIONS 

In this paper, a novel hierarchical vessel classification 

procedure for ship classification using COSMO-SkyMed 

SAR data with 3-m resolution is presented. Different types of 

feature extraction algorithms are implemented in order to 

form the utilized feature pool, able to represent the structure, 

material, orientation and other vessel type characteristics. A 

two-stage hierarchical feature selection algorithm is utilized 

next in order to be able to discriminate effectively civilian 

vessels into three distinct types, in COSMO-SkyMed SAR 

images: cargos, small ships and tankers. In our analysis, scale 

and shape features are extracted in order to discriminate 

smaller types of vessels present in the available SAR data, or 

shape specific vessels. Next, the most informative texture and 

intensity features are incorporated in order to be able to better 

distinguish the civilian types with high accuracy. A feature 

selection procedure that utilizes heuristic measures based on 

features’ statistical characteristics, followed by an exhaustive 

research with feature sets formed by the most qualified 

features is carried out, in order to discriminate the most 

appropriate combination of features for the final 

classification. A total of 111 ships were used in the 

classification process, while AIS data were applied to verify 

the effectiveness of the algorithm. The experimental results 

show that this method has good performance in ship 

classification, with an overall accuracy reaching 83%. 

The fact that various feature combinations achieve similar 

classification results might be used in training various 

classifiers and combine them in order to have a more accurate 

final classification. Several combinations of the strongest 

features can provide similar classification results, as the one 

presented previously. The feature combination that achieved 

the highest classification accuracy and consists of fewer 

features is chosen for the evaluation of the proposed 

procedure. Nevertheless other feature combination setup 

might be used in order to achieve similar results. 

Future research objectives include the incorporation of other 

feature selection algorithms for the selection of the strongest 

features, regarding the classification task and the sensor used. 

It is expected that different feature combination will perform 

better in other SAR sensors and resolution. In addition, 

further investigation of additional features is currently in 

progress. 
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