The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-64-1

VESSEL CLASSIFICATION IN COSMO-SKYMED SAR DATA USING HIERARCHICAL
FEATURE SELECTION

A. Makedonas ? C. Theoharatos ™, V. Tsagaris °, V. Anastasopoulos ?, S. Costicoglou ®

# Electronics Laboratory (ELLAB), Physics Department, University of Patras, Patras 26500, Greece — (anmack, vassilis)@upatras.gr
b Computer Vision Systems, IRIDA Labs S.A., Patras Science Park, Stadiou Str., Platani, 26504 Patras, Greece —
(htheohar,tsagaris)@iridalabs.gr
¢ Space Hellas S.A., 312 Messogion Ave., 15341 Athens, Greece — scostic@space.gr

Commission VI, WG VI1/4

KEY WORDS: Ship classification, COSMO-SkyMed data, high resolution SAR imagery, vessel recognition, feature extraction,
hierarchical feature selection.

ABSTRACT:

SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution
SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical
vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and
texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the
utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage
hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three
distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are
utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most
informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high
accuracy. A feature selection procedure that utilizes heuristic measures based on features’ statistical characteristics, followed by an
exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most
appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m
resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were
used in the classification process. The experimental results show that this method has good performance in ship classification, with
an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

1. INTRODUCTION combinations of basic scattering procedures. The geometric

During the past two decades, ocean ship monitoring and
recognition has raised much attention in the remote sensing
community, with applications in maritime management,
fishing law enforcement, illegal immigration monitoring and
rescue, safe shipping and oil spill detection. Conventional
techniques include Automatic Identification Systems (AIS)
and Vessel Traffic Services (VTS), which are functional
mainly at shoreline and for compliant ships. In recent years,
satellite Synthetic Aperture Radar (SAR) systems have raised
much attention in vessel traffic monitoring (Limes, 2006;
Greidanus, 2006), due to their insensitivity to weather and
illumination condition changes, but also due to the need to
provide feedback in cases that AIS or VTS systems are not
adequate or fully functional.

Even though SAR images have been widely used for ship
detection practices, little research has been performed on ship
classification. Early works were devoted to the analysis of
backscattering properties of vessel signatures in inverse
synthetic aperture radar (ISAR) images (Musman, 1996;
Menon, 1993), which have also gained some insights
nowadays (Martorella, 2009). However, the classification
accuracy of these methods is rather limited in low or medium
resolution SAR images, without having the means to be
further improved. Recently, research has shifted to the
exploitation of polarimetric SAR data properties presented by
(Touzi, 2004), (Margarit, 2006) and (Margarit, 2009), which
utilize the composite mechanisms of ships based on

properties of the polarimetric scattering behaviour can act as
a good estimate of the vessel’s category under investigation.
However, this method requires fully polarimetric data and the
adoption from ship recognition systems is rather limited,
mainly due to the increased cost of polarimetric data with
respect to single-pol (or even dual-pol) ones.

Besides research on ISAR and polarimetric data that impose
the limitations addressed previously, various feature
extraction and selection techniques have been proposed for
ship pattern analysis and classification. For example, a
variety of extracted features and different distance metrics
were used in (Cotuk, 2003) to compare the performance of
point-enhanced high range-resolution (HRR) profiles and
successfully recognize oil tankers, ferries and yachts. An
approach to categorize targets using fuzzy logic decision rule
was presented in (Margarit, 2011), based on some macroscale
features such as length, breadth, and radar cross section
profile along the ship signature.

Since 2007 and the successful launch of a series of high-
resolution SAR satellites, new possibilities to ship
recognition and classification emerged. Both Cosmo-SkyMed
and TerraSAR-X missions were able to capture SAR images
with more than 3m pixel size, making feature extraction and
analysis techniques more efficient, and, thereafter, providing
ship recognition systems of higher accuracy and robustness.
For example, Yin (Yin, 2012) extracted several structural
features and estimated different descriptors to perform robust
classification of different types of ships. In another study
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(Zhang, 2013), the orientation of the principal axis is
extracted based on Hough Transform (HT) and the minimum
enclosing rectangle (MER) of ship chips. Both features are
used to classify correctly between three different ship types
on Cosmo-SkyMed SAR data according to the width ratio of
MER between the HT line, the ratio of ship and non-ship
points on the principal axis, as well as the scattering density.
Recognition of civilian vessels based on the ratio of
backscattering and structural features was also performed on
Cosmo-SkyMed images (Jiang, 2012), demonstrating good
classification precision on three different ship types
containing cargos, containers and oil tankers.

However, the extraction of a high number of features and
their utilization in the classification scheme increases
significantly the dimension of the constructed feature space,
not to mention that there exists redundancy among the
various features. Therefore, some researchers have recently
proposed different feature selection methodologies to cope
with these restrictions. In such a study, an abundant of feature
extraction algorithms for ship pattern analysis were proposed
(Chen, 2012), followed by a novel RCS density encoding
feature for ship description and a two-stage feature selection
approach. A novel ship classification scheme based on
analytic hierarchy process (Zhao, 2013) on both feature
selection containing several evaluation measures and
classification decision demonstrated good results on
TerraSAR-X images. Recently (Wang, 2014), a novel
hierarchical ship classifier for COSMO-SkyMed SAR data
was proposed based on the analysis of geometric and
backscattering characteristics of various ship types. The ships
were classified into bulk carriers, container ships, and oil
tankers, with an average accuracy of more than 80%.

In this way, commercial ships can be divided into container
ships, tankers, general cargos, bulk carriers and other types of
ships (e.g. ferries, passenger, etc.) (Zhang, 2013). This
manuscript presents a novel hierarchical vessel classification
procedure for ship classification using COSMO-SkyMed
SAR data with 3-m resolution. In the first stage, four
different types of feature extraction algorithms are
implemented in order to form the utilized feature pool, able to
represent the structure, material, orientation and other vessel
type characteristics. A two-stage hierarchical feature
selection algorithm is utilized next in order to be able to
discriminate effectively civilian vessels into three distinct
types, in COSMO-SkyMed SAR images: cargos, small ships
and tankers. In our analysis, scale and shape features are
utilized in order to discriminate smaller types of vessels
present in the available SAR data, or shape specific vessels.
Then, the most informative texture and intensity features are
incorporated in order to be able to better distinguish the
civilian types with high accuracy. A feature selection
procedure that utilizes heuristic measures based on features’
statistical characteristics, followed by an exhaustive research
with feature sets formed by the most qualified features is
carried out, in order to discriminate the most appropriate
combination of features for the final classification. A total of
111 ships were used in the classification process, while AIS
data were applied to verify the effectiveness of the algorithm.
The experimental results show that this method has good
performance in ship classification, with an overall accuracy
reaching 83%.

The rest of this paper is organized as follows. The experiment
and SAR data description is provided in Section 2. Section 3
provides the general methodology of the approach, consisting
of the data pre-processing algorithms, a short description of
the utilized CFAR-based ship detector, the general feature
extraction methodology, the proposed feature selection

technique and the description of the classification procedure.
Experimental results are analysed in Section 4 and
conclusions are made in Section 5 along with future research
objectives.

2. EXPERIMENT DESCRIPTION

The high resolution SAR scenes used in this study were
acquired on June 17 to June 19, 2013 in the greater area of
Malta, by the Cosmo-SkyMed instrument, having HH
polarization and resolution of 2.2m x 2.2m. The incident
angle was between 34.6° and 37.2°. The experiment area is
located in the yellow rectangle presented in Figure 1. Five
scenes that were situated in the highlighted area and for the
specific dates were used for the experiments. For all the
processed scenes AlS data were also used in order to classify
the detected ships according to the AIS class specifications.

Figure 1. The experiment’s test site (acquired from Google
Earth).

3. METHODOLOGY
The proposed method can be mainly divided into five parts,
which are shown in Figure 2. In the following sections a brief

description of the approaches implemented for the specific
flow chart is given.

SAR Data Pre-processing

}

Ship Detection

}

Feature Extraction

}

Hierarchical Feature Selection

)

Ship Classification

Figure 2. Flow chart of vessel classification.
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3.1 SAR Data Pre-processing

The application of proper pre-processing techniques will not
only reduce the recognition computational burden but also
give the user the opportunity to extract the most useful
information and avoid of the redundant and confusing
patterns in terms of classification. The pre-processing step
consists of the initial scene ortho-rectification, speckle
filtering and land masking, along with the conversion in a
format suitable for the next processing steps.

3.2 Ship Detection

Ship detection from SAR images has been deeply reviewed
during these past three decades. Crisp (Crisp, 2004) compares
a number of ship detection software systems, while the topic
is actively researched until nowadays (Tunaley, 2010; Juan,
2009). Ships must be detected against a background of radar
sea clutter. Different distributions have been proposed in the
literature to describe the intensity statistics of radar sea clutter
(Crisp, 2004; Darymli, 2013). These techniques involve the
specification of a Constant False Alarm Rate (CFAR), which
implies that a threshold of detection is set according to the
local statistics of the clutter at each point in the image plane
in order to avoid increased false alarms.
In this work, the optimal parametric CFAR for Weibull
clutter proposed by Anastassopoulos was utilized
(Anastassopoulos, 1995). The optimal Weibull CFAR (OW-
CFAR) detector is implemented using the maximum
likelihood estimation (MLE) method, which was proven to be
asymptotically efficient estimator of the mean power of the
Weibull clutter.
Prior to feature extraction from the detected ships some basic
pre-processing stages comprising:

e The rotation of ships in such a way that the main

axis is the tangent of the horizontal axis.
e The extraction of the Minimum Enclosing
Rectangle (MER).

A number of the resulting pre-processed detected ships are
illustrated in Figure 3.

tanker cargo cargo fishing fishing

cargo tanker tanker tanker cargo

cargo cargo

cargo cargo

tanker fishing tanker tug tanker

- ‘m . ‘ .

Figure 3. Resulting pre-processed detected ships.

tanker

3.3 Feature Extraction

A huge number of features appropriate for characterizing the
detected vessels are available in the remote sensing literature
(Chen, 2012). In this work, the selected features are grouped
into two main categories.

e  Scale and shape features

e  Textural features

A brief description of the proposed features will be given in
the following section. Nevertheless more features can be used
in order to have a better characterization and discrimination
of the final vessel classes.

3.3.1 Extraction of shape and scale features: After
computing the bounding box that surrounds the detected
vessel a shape feature extraction scheme will be applied. The
shape features initially selected for this purpose are the
following:
e Area: the actual number of pixels of the detected
vessel.
e  Equivalent Diameter: the diameter of a circle with
the same area as the detected vessel body,
computed as:

Equivalent Diameter = |27 1)
T

e  Extent: the ratio of pixels in the region to pixels in
the total bounding box. Computed as the
Area divided by the area of the bounding box.

e  Gamma value: y, is given by

(Perimeter)?
= 4m(Area) (2)
e  Major Axis: the length (in pixels) of the major axis
of the ellipse that has the same normalized second
central moments as the detected vessel body.

e  Perimeter: the distance around the boundary of the
detected vessel body.

e  Sizeratio: is given by

Major Axis

Size ration = — -
Minor Axis

®)

e Solidity: the proportion of the pixels in the convex
hull that are also in the detected vessel body,
computed as:

Area

Solidity = @)

ConvexArea

3.3.2  Extraction of textural features: In order to extract
meaningful texture features, appropriate modification of the
given data must be done. Texture measures like the co-
occurrence matrix have found application in satellite image
processing and analysis. In order to extract texture features
from the detected vessel bounding box, Gray-Level Co-
occurrence Matrices (GLCMs) along with Gray Level Run-
Length Matrices (GLRLM) will be utilized.

Whether considering the intensity or grayscale values of the
image-data or various dimensions of colour, the co-
occurrence matrix can measure the texture of the image-data.
Because co-occurrence matrices are typically large and
sparse, various metrics of the matrix are often taken to get a
more useful set of features. Features, generated using this
technique, are usually called Haralick features (Haralick,
1973).

A Gray-Level Co-occurrence Matrix (GLCM) represents a
matrix that is defined over an image to be the distribution of
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co-occurring values at a given offset. It is formulated over an
n X m image I by:

GLCMAX,Ay(i:j) =
n_ym { 1, ifI(p,q) =i and I(p + Ax,q + Ay) =]
p=14q=1

0, otherwise

where i and j are the image intensity values of the image,
p and q are the spatial positions in the image I, and
(Ax, Ay) represent the given offset.

Given the GLCM, local Haralick texture features (Haralick,
1973) can be now computed, such as:

Energy=2;; GLCM(, i)? (6)

Entropy = — ¥;; GLCM(i, ))log, (GLCM(., ) (7)

(-wG-wWGLCM(,j) (8)

Correlation = };;; p

Inverse Difference Moment=

=Y —— 1+(1 7 GLCM(, j) 9)

Inertia = ¥;(i — j)2GLCM(, ) (10)
Cluster Shade =

=%(G — W + G — ) GLCMG, ) (1)

Cluster Prominence =
. . 4 ..
=Xij(G— W + G — W) GLCM(, )) 12)

%) GLCM(i,j)—p?

Haralick's Correlation = =
t

(13)
where  p, and o, are the mean and the standard deviation

of the row (or column, due to symmetry) sums,
u is the weighed pixel average given by:

u=2;i- GLCM(,j) = X;j - GLCM(, j)

and o is the weighed pixel variance given by:
0= ) (=W GLOMG) = ) ( — W? GLCM(, )
¥ ij

Moreover local higher order statistics texture coefficients
based on the Gray Level Run-Length Matrix (GLRLM) will
be processed (Tang 1998). The GLRLM is a two dimensional
matrix in which each element GLRLM(}, j|0) gives the total
number of occurrences of runs of length j at grey level i, in a
given direction 8. Thus, given the GLRLM we can calculate
the following indices:

Short Run Emphasis = Z,] GLR].“:/[ Ol (14)
Long Run Emphasis = niZi-i j?GLRLM(,j)  (15)

Grey Level Nonuniformity =

= = (% GLRLM(, )’ (16)

Run Length Nonuniformity =

)

= - ;% GLRLM(, ))? (17)

Run Percentage = ? (18)

p

Low Grey Level Run Emphasis =
GLRLM(, ])
21 )

i2

(19)
High Grey Level Run Emphasis = nlzi,j i2GLRLM(,j) (20)

Short Run Low Grey Level Run Emphasis=

GLRLM(i,j)
T (21)

Short Run High Grey Level Run Emphasis=

1 iGLRLM(i,j)
) (22)
Long Run Low Grey Level Run Emphasis=
j2GLRLM(i,j)
= o3 (23)
Long Run High Grey Level Run Emphasis=
= —%;i%2GLRLM(, ) (24)

where  n, is the total number of runs and
n, the total number of pixels of the processed
patch.

3.4 Hierarchical Feature Selection

Various feature selection algorithms are available in the
literature. Those algorithms can be classified into filter-based
and wrapper-based algorithms (Chen, 2012). A feature
selection scheme adopted is presented in Figure 4.

Extracted features

|

Filter-based algorithm

e Stability
e Discriminability

!

Wrapper-based algorithm

e Feature combination
generation
e Kk-NN classifier

|

Optimal feature set

Figure 4. Feature selection procedure scheme.

At first the extracted features are examined for their stability
and discriminability in turn, with some features, which do not
present good results, subtracted from the features that will be
used for the classification. With the remainder features we
form all possible feature set combinations, which are then
applied to ship classification using a k-NN classifier. The
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optimal feature set is the one that presents the maximum
overall classification accuracy.

3.4.1 Stability: For calculating the stability measure, the
normalized variance coefficient is used, given by (Chen,
2012):

@ _ L))

' (RN

where  w denotes the ship class,
i the feature checked for its stability,

”Fl.(“))” is the second norm of feature vector
2

(29)

F, while

E [“Fi(“’) “2] denotes the square of mean value.

(w)

The lower the stability p;™ is, the more stable the feature is

found, and thus this feature will be able to provide better
classification results.

3.4.2 Discriminability: The discriminability of a given
feature is calculated as an inter-intra class distance ratio
defined as (Chen, 2012):

=+ (26)

where Sy, is the average within-class covariance matrix,
while Sg, is the estimation of the average between-
class covariance matrix.

Those values can be estimated from the given data sets by:

Sw,

N 1 «N (o
— n o - [}
T 4w=1Ty (Nm Zs:l (”Fi,s

- (11D )en

and

So, = 2o (7] ] - ))  2m

1 N, w
where Ep, =+ 1 D ||Fl.fs)

vector,

n denotes the number of classes,

N,, the number of ships that belongs to the class w,
and

N the total number of the ships in the dataset.

| is the overall mean
2

The higher the value of J; is, the more discriminative the
feature is, and thus this feature can be able to better
discriminate different types of ships.

3.4.3 Wrapper-based algorithm: Features that present
high stability and discriminability scores can next be checked
thoroughly in every possible combination. The created
feature sets are applied to a training classifier directly with
their performance evaluation based on the classification
results of the training data. K-NN classifier is used in order to
evaluate the aforementioned formed feature sets and the
maximum precision is used for the selection of the most
appropriate feature set. The precision is computed by:

Ne
P=1¢ (29)

where N, is the number of ships which are classified
correctly,
while N is the total number of ships.

The best performance is achieved by the feature set that
presents the maximum precision.

3.5 Vessel Classification

Three main categories were used for the evaluation of the
proposed methodology:

e  Cargo ships (40)

e Small ships (13)

e  Tanker ships (58)
Ships listed in one of the three categories are in most cases
constructed by different materials and their deck is occupied
by different structures, so the backscattering coefficient in
SAR images is different as well. Table 1 shows typical
images of all three kinds of ships forming the given dataset.
The images show that the scattering components can
represent the physical meaning of the ships’ structure in a
Very accurate way.

Ship
type

SAR images of

Optical image of ships ships

Cargo

Small
ships

Tanker

Table 1. Optical images of ships and their associated SAR
images.

Small ships category consists of 7 fishing boats and 6 tug
pilots. For all the ships of the dataset a feature vector of 26
dimensions, as the total number of the aforementioned shape
and texture features is created. The first 8 dimensions refer to
the shape features described in 3.3.1, while the remaining
vector is completed by the texture features derived by the
GLRLM and GLCM respectively.

As can be easily understood, the small ships category, can be
separated from the other two categories easily, so a two-stage
classification can be adopted, where the first stage is carried
out by the separation of small ships class from the other two,
while in the second stage vessels not classified as small ships
are classified as tanker and cargo ships respectively. This
classification could move on a third level, where cargo ships
could be classified into container and general cargo, while the
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category of small ships could be divided into fishing boats
and tugs, as shown in Figure 5.

I I N I I

| 1%stage | 2"stage | 3“stage |

| | | |

| | | |

| | | |

| | | |

b Small ships \ \ :

|

| 1 | .
Detected : ,‘ : :
vessels | |« Tankers | :
| | | |

: Tankers | : :

| Corgo | | |

| | I |

I 1 Cargo | I

| | | |

| | | |

| | | |

Figure 5. Hierarchical classification scheme, utilizing two
distinct classification stages, plus a potential third one.

4. EXPERIMENTAL RESULTS

For a classification scheme, where all extracted features are
taken into count, using a k-NN classifier (k = 5) the overall
accuracy is calculated equal to 74.77% (recall for each
category is 80.00% | 69.23% | 72.41%) for the three
categories. The confusion matrix for the specific
classification scheme is presented in Table 2.

Actual Predicted classes
- Recall
classes cargo | small ships | tanker
cargo 32 0 8 80,00%
small o
ships 2 9 2 69,23%
tanker 12 4 42 72,41%
Precision | 74,47% 69,57% 80,77% | 74,77%

Table 2. Confusion matrix for a classification scheme using
all extracted features.

Although the overall accuracy of the previous classification
scheme, where all the extracted features were used for the
classification, a hierarchical approach is more adequate and,
as we will see in what follows, gives better classification
results.

4.1 Hierarchical-based vessel classification results

For every stage of the hierarchical classification procedure an
exhaustive search between the strongest features for the
specific stage is implemented. The features used for each one
of the two stages of the Hierarchical classification scheme are
shown in Figure 6.

Following the feature extraction procedure, feature stability
and discriminability analysis results are presented in Figure 7
and Figure 8 respectively. From the resulting measurements a
first selection of the stronger features regarding those filter
based algorithms is done, with those features used as an input
to the wrapper based algorithms section, where an exhaustive
search is implemented using all possible combinations of
those features as an input in a k-NN classifier.

Detected vessels

—yes n

Features used: equivalent
diameter, extent size ratio, gray
level non uniformity

\ 4

Small ship
< ) —yes

Features used: extent, gamma
value, major axis, solidity,
\ 4

energy, correlation
( cargo ship ) Tanker ship

Figure 6. Hierarchical classification scheme with the
dominant features used in every stage.

Stability

0.4
03
0.2
Ml mlllalth
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Features

Figure 7. Feature stability results.

0.5
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0.2
0.1 I
! __-—___I—____— _____ - _ I
13 14

1 2 3 4 5 6 7 8 9 1011 12 15 16 17 18 19 20 21 22 23 24 25 26
Features

Discriminability

Figure 8. Feature discriminability results.

Regarding the first stage, where the task is to discriminate
small ships over tanker and cargo ships, four features were
finally selected (Equivalent diameter, Extent, Size ratio and
Gray level non-uniformity). The first three features are shape
features, while the last one is a texture feature derived from
GLRLM. The overall classification accuracy for the first
stage is  96.40% (recall for each category
i597.00% | 90.90%). Table 3 illustrates the confusion matrix
of the classification results for the first stage. Three of the
ships belonging to the small ships category are misclassified
in the tanker/cargo category, while one of the 98 ships of the
tanker/cargo class is classified in the small ships class.
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Actual Predicted classes
- Recall
classes tanker / cargo | small ships
tanker / 97 3 97,00%
cargo
small ships 1 10 90,90%
Precision 99,00% 76,90% 96,40%

Table 3. Confusion matrix for the first stage of the
hierarchical classification.

Moving forward to the second stage, where cargo ships are
separated from tanker ships, the confusion matrix of the
overall Hierarchical classification scheme is presented in
Table 4. The overall accuracy is computed equal to 82,88%
(recall per class is 87,50% | 79,92% | 81,03%) for all three
classes.

Actual Predicted classes
- Recall
classes cargo | small ships | tanker
cargo 35 0 5 87,50%
small o
ships 2 10 1 76,92%
tanker 10 1 47 81,03%
Precision | 74,47% 90,91% 88,68% | 82,88%

Table 4. Confusion matrix for the overall hierarchical
classification scheme.

5. CONCLUSIONS

In this paper, a novel hierarchical vessel classification
procedure for ship classification using COSMO-SkyMed
SAR data with 3-m resolution is presented. Different types of
feature extraction algorithms are implemented in order to
form the utilized feature pool, able to represent the structure,
material, orientation and other vessel type characteristics. A
two-stage hierarchical feature selection algorithm is utilized
next in order to be able to discriminate effectively civilian
vessels into three distinct types, in COSMO-SkyMed SAR
images: cargos, small ships and tankers. In our analysis, scale
and shape features are extracted in order to discriminate
smaller types of vessels present in the available SAR data, or
shape specific vessels. Next, the most informative texture and
intensity features are incorporated in order to be able to better
distinguish the civilian types with high accuracy. A feature
selection procedure that utilizes heuristic measures based on
features’ statistical characteristics, followed by an exhaustive
research with feature sets formed by the most qualified
features is carried out, in order to discriminate the most
appropriate  combination of features for the final
classification. A total of 111 ships were used in the
classification process, while AIS data were applied to verify
the effectiveness of the algorithm. The experimental results
show that this method has good performance in ship
classification, with an overall accuracy reaching 83%.

The fact that various feature combinations achieve similar
classification results might be used in training various
classifiers and combine them in order to have a more accurate
final classification. Several combinations of the strongest
features can provide similar classification results, as the one
presented previously. The feature combination that achieved
the highest classification accuracy and consists of fewer
features is chosen for the evaluation of the proposed

procedure. Nevertheless other feature combination setup
might be used in order to achieve similar results.

Future research objectives include the incorporation of other
feature selection algorithms for the selection of the strongest
features, regarding the classification task and the sensor used.
It is expected that different feature combination will perform
better in other SAR sensors and resolution. In addition,
further investigation of additional features is currently in
progress.
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