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ABSTRACT: 

 

While high-resolution remote sensing images have increased application possibilities for urban studies, the large number of shadow 

areas has created challenges to processing and extracting information from these images. Furthermore, shadows can reduce or omit 

information from the surface as well as degrading the visual quality of images. The pixels of shadows tend to have lower radiance 

response within the spectrum and are often confused with low reflectance targets. In this work, a shadow detection method was 

proposed using a morphological operator for dark pattern identification combined with spectral indices. The aims are to avoid 

misclassification in shadow identification through properties provided by them on color models and, therefore, to improve shadow 

detection accuracy. Experimental results were tested applying the  panchromatic and multispectral band of WorldView-2 image from 

São Paulo city in Brazil, which is a complex urban environment composed by high objects like tall buildings causing large shadow 

areas. Black top-hat with area injunction was applied in PAN image and shadow identification performance has improved with index 

as Normalized Difference Vegetation Index (NDVI) and Normalized Saturation-Value Difference Index (NSDVI) ratio from HSV 

color space obtained from pansharpened multispectral WV-2 image. An increase in distinction between shadows and others objects 

was observed, which was tested for the completeness, correctness and quality measures computed, using a created manual shadow 

mask as reference. Therefore, this method can contribute to overcoming difficulties faced by other techniques that need shadow 

detection as a first necessary preprocessing step, like object recognition, image matching, 3D reconstruction, etc.   
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1. INTRODUCTION 

High spatial resolution satellite images have opened a new era 

in extracting information from the earth’s surface, particularly 

in urban environments, where features such as buildings, roads, 

vehicles and trees become detailed and easier to distinguish. On 

the other hand, a large surface area obscured by shadows cast by 

these tall objects was introduced with the increase in spatial 

resolution, and can reduce useful information from targets. 

 

Although shadows can be a valuable cue to image 

interpretation, since it is possible to make inferences about the 

3D surface and target information, more recently, shadow areas 

have been seen as an unwanted feature in digital image 

processing techniques (Arévalo et al., 2008). For example, 

shadows tend to be classified as part of the foreground and 

decrease results in tracking performance in object detection and 

recognition in video sequence (Sanin et al., 2012). In addition, 

shadows also interfere with tasks like remote sensing (RS) 

image classification, where significant portions of land cover 

remain unknown due to shadow effects.  

 

Therefore, shadow removal is an unavoidable task to be seen as 

preprocessing for many applications. The first step is to identify 

pixels that are affected by shadows. Many algorithms have been 

proposed in the literature on shadow detection. Some model-

based shadow detection can project shadow location from prior 

knowledge about the sensor source of illumination and 3D 

geometry of objects in the scene. While this technique take 

advantage of a solved mathematical problem, there are 

limitations to the availability of this information. Also, models 

must be compatible with high-resolution images (Adeline et al., 

2013). In this case, the accuracy of the shadow identification 

process deteriorates instead of improving.  

 

Fortunately, shadows exhibit singular behaviour on images that 

can be used to separate them from other objects. In property-

based techniques, shadow detection is performed using features 

such as brightness and color space based on some specific 

spectral assumptions. Tsai (2006) compared several invariant 

colour spaces (HIS, HSV, HCV, YIQ, and YCbCr) to detect 

shadows in aerial photos using spectral ratio and automatic 

threshold estimates from Otsu's method. Results showed good 

performance in segmenting shadow regions, but like most 

property-based methods, false detection was observed and 

distorted other objects in the scene. Thus, attributes like an 

extra feature image and variance were applied as an additional 

step in order to avoid misclassification (Dare, 2005; Cai et al., 

2010).  

 

Regarding the importance of shadow identification, in this 

paper we present an alternative semi-automatic shadow 

detection methodology based on shadow properties by 

integrating morphological image processing (MIP) and spectral 

information. We aim to verify, through quality measure rates, 

which spectral index combination improves a proposed shadow 

detection algorithm, in order to minimize misclassification and 

enhance shadow identification reliability.   
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2. SHADOW DETECTION APPROACH 

High-resolution urban RS images are covered by many shadow 

regions, especially in dense and complex urban environments. 

In the case of passive sensors, shadows occur when a fraction of 

direct light from a source of illumination is blocked (Arévalo et 

al., 2008). Thus, responses arriving at the sensor from shadow 

regions tend to have lower sensor radiance across the whole 

spectrum than their lighted neighbouring areas (Adeline et al., 

2013). Based on this principal shadow property, MIP is an 

alternative to detect shadow, since it acts on minimum and 

maximum values, in the case of grey scale images like the RS 

images. We therefore used operators applied to valley detection, 

due to the fact that valleys on topographic surfaces have smaller 

values, as explained in the following.  

 

2.1 Shadow candidates segmentation by MIP 

The concept of point-wise maximum and minimum operators 

(see more details in Soille, 2004) applied by MIP provides tools 

for detectiing dark structures from images. The principal 

characteristic of MIP is the use of a set of known structuring 

elements (SE), usually chosen according to some a priori 

knowledge about the geometry of the relevant structures. In 

shadow detection, we take advantage of adaptive properties 

from area closing morphological operator, since, in this 

operation, the SE adapts to the geometric structure based on the 

area injunction defined in accordance with the size of structures 

to be filtered (Soille, 2004).  

 

An important issue in this case is that shadow areas take on 

distinct shapes due to the different objects that cast them. In 

addition, MIP is capable of modifying the image while, at the 

same time, preserving geometric structures of interest through 

arithmetic differences between images, called top-hats. Shadow 

segmentation can be achieve using filtering by the black top-hat 

with area injunction (Equation 1), where ∅λ(f) is the area 

closing of image f (Soille, 2004).  

 

    BTH   –f f f   (1) 

  

So, ∅λ(f) removes all dark components in the image  that do not  

fit in the connected Structuring Elements (SE), whose size in 

number of pixels equals the area parameter λ. The size of λ was 

empirically set and varies with spatial image resolution. Thus, 

interesting features are eliminated and recovered when 

arithmetic difference with the original image is performed. 

Finally, shadows are detected by automatic binarization with the 

Otsu (1979) method.   

 

Nonetheless, Rayleigh scattering contributes with shadow 

response. This can cause false detection and confusion between 

targets that have low response patterns. Fortunately, shadows 

have others properties for color images that can be exploited as 

a means of improving shadow detection accuracy. Also, other 

targets that may cause confusions must be detected using 

spectral information and elimination from final shadow 

detection results.  

 

2.2 Shadow Spectral Segmentation 

Standard color space such as RGB, contains both radiance and 

chromaticity information in each channel (Adeline et al., 2013). 

Besides having low radiance, shadow presents other properties 

that have been studied in the literature. Polidorio et al. (2003) 

observed that shadows have low luminance, because they do not 

receive a direct flow of luminous energy, and have high 

saturation on violet and blue wavelengths due to the Rayleigh 

scattering effect. Shaded areas were segmented by thresholding 

the results from difference images between the saturation and 

the intensity information on the normalized hue, saturation, and 

intensity (HSI) color space.   

 

Methods that use color features for detecting shadows generally 

choose a colour space that provides better separation between 

chromacity and intensity than the RGB colour space. The hue, 

saturation, and value (HSV) color space also highlights the 

presence of shadows. In the case of the HSV color model, 

shadows tend to have high saturation (Fig. 1c) and low value 

(Fig. 1d). A normalized saturation-value difference index 

(NSVDI), can be constructed by the Equation 2 and applied to 

identify shadows (Ma et al., 2008).  

 

, 
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  (2) 

 

After calculating the NSDVI, a thresholding process is applied, 

once shadows tend to give the positive values, more than zero 

on NSDVI matrix results. Nonetheless, misclassified and false 

detection errors also can occur for shadow invariant methods. 

This is because, in some case, targets can present similar 

behaviour in HSV color space. For example, vegetation areas 

similarly have high saturation (Fig. 1c) and low value (Fig. 1d), 

which can be included on NSDVI results.  

 

Fortunately, vegetation exhibits well known opposite behaviour 

used to highlight these areas in the near-infrared (NIR) and red 

(R) bands. The Normalized Difference Vegetation Index 

(NDVI) defined by Equation 3 (Wang et al., 2005) is one of the 

most widely applied vegetation indices.  

 

  =  
NIR R

NDVI
NIR R





  (3) 

 

The NDVI result matrix can be easily thresholded to separate 

vegetation from other objects since these areas have higher 

values than the rest of the image. Consequently, combination 

with NSDVI allows only the real shadows to be detected, which 

can reflect to improve shadow detection accuracy. 

 

2.3 Shadow Detection Assessment 

Evaluation results of extraction/detection procedures are 

necessary, especially in automatic or semi-automatic methods, 

so users can check the quality of data obtained based on values 

or statistical metrics that allow validation of the process.   

 

Completeness, correctness and quality metrics were adopted in 

this work to verify which approach was best able to improve 

shadow detection and to avoid misclassification,. The process 

consists of comparing the detected result with a reference 

shadow mask, also called ground-truth (GT), pixel by pixel. The 

quality measures proposed by Wiedemann et al. (1998) are 

described in the following.  

 

2.3.1 Completeness 

 

The first quality metric, called completeness (Com), is defined 

by Equation 4 and represents the percentage of shadow pixels in 

the GT image that have been properly detected by the approach. 
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The value can vary in the interval [0:1], where the value 1 is 

considered ideal and shows how complete the approach is. 

 

 TP
Com

TP FN




  (4) 

 

TP being the true positives, i.e., the number of pixels correctly 

detected as shadow, and FN being the false negatives, which are 

shadow pixels not detected as such, in accordance with GT.  

 

2.3.2 Correctness 

 

The correctness (Cor) metric, shown in Equation 5, represents 

the percentage of shadow pixels correctly identified by the 

method, in accordance with GT, being 1 the ideal value.  

 

 TP
Cor

TP FP




  (5) 

 

FP being the false positives, which are pixels falsely detected by 

the approach as shadow, but which, in reality, are not shadows. 

 

2.3.3 Quality 

 

The last metric is the quality (Qua), shown by Equation 6, and 

combines both previous measures, showing how good the 

approach is, 1 being the ideal value to be achieved.  

 

  TP
Qua

TP FP FN


 

 (6) 

 

where the value can describe only, the quality obtained by an 

approach.  

 

3.  METHODOLOGY  

The methodology aiming to detect shadow and improve results 

with spectral information was performed in high-resolution 

WV-2 image dated May 2012. The study area cover a portion of 

São Paulo city characterized as a complex urban area with one 

of the highest urban agglomeration rates in South America. 

Panchromatic (PAN) and 4 Multispectral (MS) bands with 

around 0.5 m and 2 m of spatial resolution respectively were 

applied, where the multispectral bands correspond to traditional 

visible (red, green and blue) and near-infrared NIR.  

 

The principal component (PC) spectral sharpening method was 

used to create new 4 bands with improved spatial resolution 

compatible with PAN to carry out the method. In this fusion 

method, the first PC band (PC1) is replaced by a PAN band, 

which is first stretched to have the same mean and variance as 

PC1. The inverse PCA transform is then performed to obtain a 

new high-resolution multispectral image (Wang et al., 2005) 

without distortions on spectral information, as shown in Fig. 2a.  

 

Experiments were performed with five subimages (PAN and 

MS) with sizes of 300 × 300 pixels from the WV-2 image 

scene. The evaluation of spectral information contribution on 

shadow detection was performed in three approaches illustrated 

in Fig. 1. The first approach consisted of segment shadow in 

PAN band using the black top-hat with area injunction method 

aforementioned. The size parameter was selected empirically, 

and, due to higher WV-2 resolution, this size has to be large to 

extract the shadow areas connected. As all images have the 

same resolution, only one parameter was required. In addition, 

the need for preprocessing was discarded, as the morphological 

operator top-hat applied behaves as a filter of the image 

structures (Azevedo et al., 2013).  

 

In the second approach, spectral information extracted from the 

MS pansharpening image was used to calculate NDVI. 

According to the ratio acquired from NDVI, the behavior of 

vegetation pixels was investigated and a thresholding was easily 

determined to create the vegetation mask. The results were 

subtracted from the first approach to eliminate false shadow 

detection and improve results from the accuracy indices 

calculated.  

 

Finally, the third approach combined the spectral indices NDVI 

and NSDVI calculated from the first approach to verify 

improvement on shadow detection from shadow property 

acquired in HSV invariant space color. Then, conversion of the 

RGB color model to HSV was carried out and results of 

detection rates were compared. 

 

The results analysis consisted of comparing quality measures 

described in Wiedemann (1998) from the results of the three 

approaches. Thus, a reference shadow mask, also called ground-

truth (GT) was obtained manually from these five images by 

selecting shadowed areas in the PAN band. The implementation 

of the semi-automatic methodology was carried out through 

MATLAB software which automatically compares the 

processed images with their respectively GT, calculating the 

detection rates between them.  

 

 

 Figure 1. Diagram of approaches developed in the 

methodology. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

Experiments using the three approaches aforementioned were 

carried out with the five subimages. The PAN band and 

pansharpened MS data from one of the subimages, Image 1, are 

shown on Fig. 2 (a) and (b), respectively. PCA fusion technique 

was applied to provide spatial improvement with the same PAN 

band spatial resolution and was able to preserve spectral 

characteristics, as we can see on the false color composite for 

the pansharpened WV-2. Furthermore, there were no 

indications of distortion by using the PC pansharpened method, 

and both data could be applied together in the study. Results of 

the normalized saturation and value component from image 1, 

are shown on Fig. 2 (c) and (d), respectively.    

 

Fig.3 shows binary results from the approaches. It can be seen 

from visual analysis that the first approach (Fig. 3a) detected 
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most shadow areas present, compared with original or false 

color composition of image 1 already shown in Fig 2, for 

example. We can also observe that a great part of the vegetation 

areas detected on NDVI mask results (Fig. 3b), did not appear 

on the result of the first approach. On the other hand, the binary 

result of NSDVI image (Fig. 3c) showed confusion with 

vegetation. This was expected since, as previously discussed, 

they have similar behaviour in S and V components (see Fig. 

2(c) and (d)).   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Examples of input image 1. (a)WV-2 Pan; (b) 

Pansharpened WV-2; (c) Component of S; (d)Component of V.      

 

Table 1 summarizes measurements computed for the set of 

images in order to compare the performance approaches. 

Considering the Quality measure, which is a combination of 

completeness and correctness, good results were achieved. The 

first approach should be highlighted, because it has shown the 

possibility of shadowing segmentation with morphological 

operators by itself, in terms of all measure values. 

 

Although, Fig. 3 (f) shows some vegetation areas at the top of 

the image that appear in red, which were incorrectly detected as 

shadow in the first approach. The performances obtained with 

the second approach did not present quality rates different from 

the previous one, probably because the first approach was able 

to deal with mostly vegetation areas. 

 

Improvements were observed when subsequent approaches 

were applied, mainly with the third approach. Although average 

quality percentage has not shown expressive growth, an 

important role of this procedure was to diminish FP values, 

which is directly observed with the increasing of correctness. 

All tested images achieved better correctness rates with the third 

approach, for example, image 1 climbed from 90.7% to 98.9%.  

 

Fig. 4 shows comparison results for the others four images. Red 

areas representing FP, i.e., pixels incorrectly detected as shadow  

in the first approach. The pixels correctly identified as shadow 

are in green, i.e. TP, whereas the areas that have not been 

identified by these methods (FN) are in blue in accordance with 

the GT. As we can see, FP was reduced by the NSDVI spectral 

index, proved by improved correctness values. The sparse 

amount of blue areas shows that the method was adequate for 

detecting most shadow areas from urban images. In addition, a 

few small shadow areas were not labelled by GT, for example, 

some shadows cast by vehicles at the bottom of the third image. 

These areas did not achieve the effectiveness of the method. 

However, they contribute to FP presence. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3. Image 1 binary results for comparison.  (a) First 

approach result; (b) NDVI mask; (c) NSDVI results; (d) Third 

approach result; (e) GT; (f) Comparison between (a, d, e).  

 

 

 Approach 1 Approach 2 Approach 3 

Tested 

Images 

C 

o 

m 
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o 

r 

Q 

u 

a 

C 

o 

m 

C 

o 

r 

Q 

u 

a 

C 

o 

m 

C 

o 

r 

Q 

u 

a 

Image 

1 
0.902 0.907 0.826 0.897 0.911 0.825 0.888 0.989 0.880 

Image 

2 
0.952 0.916 0.876 0.939 0.916 0.865 0.910 0.982 0.896 

Image 

3 
0.990 0.832 0.825 0.987 0.836 0.827 0.967 0.915 0.888 

Image 

4 
0.989 0.964 0.955 0.988 0.965 0.954 0.973 0.980 0.954 

Image 

5 
0.985 0.937 0.924 0.977 0.942 0.922 0.960 0.968 0.931 

Mean 0.963 0.911 0.881 0.957 0.914 0.878 0.939 0.966 0.896 

Table 1. Comparison of Completeness (Com), Correctness 

(Cor) and Quality (Qua) index for the three approaches.  
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Image 2 

  
Image 3 

  
Image 4 

  
Image 5 

Figure 4. Comparison results for Image 2, 3, 4 and 5, 

respectively. (a) Original image; (b) Compared output results.  

 

5. CONCLUSIONS 

This paper presented a semi-automatic shadow detection 

methodology aimed at enhancing performance index through 

the properties provided for shadow in multispectral images. The 

first approach applied MIP to identify areas of interest in the 

WV-2 panchromatic band from São Paulo city images. The 

results from the five images tested showed that the method 

succeeded in identifying most shadows areas, which was proved 

by completeness rates. This demonstrated property-based 

shadow detection using black top-hat, taking advantage of 

contextual information provided MIP to segment the image into 

shadow and nonshadow regions.   

 

The advantage of this approach lies in the fact that only the 

input image was necessary to carry out the method. However, 

an improvement was noted when spectral information was 

available. Thus, from pansharpening four WV-2 MS bands 

(visible and NIR), the NDVI and NSDVI ratio map could be 

obtained and combined to enhance shadow discrimination, once 

they present more properties on other color model spaces.  

  

The evaluation of the approaches was performed through 

completeness, correctness and quality rates. Results showed 

that, even though a significant increase in mean quality 

percentage rate was not observed, the decrease of FP pixels 

erroneously detected as shadows in the first method resulted in 

an increase in the reliability of the method through higher 

correctness rates observed after applying combined spectral 

indices. The methodology must be tested with aerial imagery 

and we also intend to automate the method with the use of a 

single area parameter for any spatial resolution input image. 
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