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ABSTRACT: 
 
Remote sensing data are nowadays being acquired within short intervals and made available at a low cost or for free. This opens up 
opportunities for new remote sensing applications, such as the characterization of entire regions to identify most suitable areas for 
technology targeting. Increasing population growth and changing dietary habits in South Asia call for higher cereal production to 
ensure future food security. In the Delta area of Bangladesh, surface water is considered to be available in quantities large enough to 
support intensification by adding an irrigated dry season crop. Fuel-efficient, low lift axial flow pumps have shown to be suitable to 
carry water to fields that are within a buffer of four hundred meters of the rivers. However, information on how and where to target 
surface water irrigation efforts is currently lacking. We describe the opportunities and constraints encountered in developing a 
procedure to identify cropland for which axial flow pumps could be successfully deployed upon in a 43’000 km2 area. First, we 
isolated cropland and waterways using Landsat 5 and 7 scenes using image segmentation followed by classification with the random 
forest algorithm. Based on Landsat 7 and 8 scenes, we extracted maximum dry season enhanced vegetation index (EVI) values, 
which we classified into fallow, low-, and high-intensity cropland for the last three years. Last, we investigated the potential for 
surface water irrigation on fallow and low-intensity land by applying a cropping risk matrix to address the twin threats of soil and 
water salinity. Our analysis indicates that there are at least 20,000 ha of fallow land under the low-risk category, while more than 
100,000 ha of low-intensity cropland can be brought into intensified production. This information will aid in technology targeting for 
the efficient deployment of surface water irrigation as a tool for intensification. 
 
 

1. INTRODUCTION 

1.1 General Instructions 

Population growth projections and increases in per capita 
income indicate that global food requirements will continue to 
expand for at least four more decades before they plateau, with 
estimates indicating that a doubling of current staple crop 
production is required by 2050 (Godfray, et al., 2010, Tilman, et 
al., 2011). 
 
Cereals production could be boosted by expanding the land area 
devoted to cropping, rather than by raising yield potential alone, 
though this will entail negative environmental externalities (e.g. 
reduced biodiversity) that should be avoided (Tilman, et al., 
2011). Sustainable agricultural intensification, defined as use of 
sound agronomy and purposeful manipulation of ecological 
processes to achieve increased productivity, while minimizing 
land expansion and environmental degradation, has been 
proposed as a potential solution to these issues (Garnett, et al., 
2013, Godfray, et al., 2010). A key strategy for sustainable 
intensification is multiple cropping, whereby at least two crops 
are grown per year on the same piece of land. Currently, 59, 39, 
47, and 93% of the arable land in the Indo-Gangetic Plains of 
Bangladesh, India, the Nepali Terai, and Pakistan are irrigated 
(AQUASTAT, 2013). Combined with the predominance of 
flooded rice as the stable crop, these figures have led to the 
perception that most potentially irrigable land in South Asia has 
already been brought into intensified production (see for 
example de Fraiture and Wichelns, 2010, Godfray, et al., 2010).  

This situation raises the question: What agricultural 
environments of South Asia offer the greatest opportunities for 
sustainable intensification? Rather than focusing on already 
irrigated environments, the answer may lie in more “game-
changing” strategies to transform agricultural productivity in the 
remaining rainfed or partially irrigated environments where 
water resources are available yet land-use intensity is currently 
low, and where low-cost investments in surface water irrigation 
(SWI) could enable the move from single to double cropping. In 
these marginal environments, many of which lie in the under-
developed eastern Indo-Gangetic (IGP) plain states of coastal 
Bangladesh and West Bengal in India, water resources 
development is low, and farmers typically grow only one 
rainfed monsoon season rice crop per year. Access to shallow 
groundwater is limited because upper aquifers are saline and 
may be restricted due to silty-clay in upper soil strata (MOA 
and FAO, 2012). Moreover, increases in salinity of existing 
aquifers can be expected as sea levels will rise in the future due 
to climate change. This will further threaten food security. Deep 
tube well expansion is similarly problematic because of the 
potential for salinization resulting from the draw-down of upper 
water layers by industrial and domestic users (Brammer, 2010), 
in addition to concerns arising from the natural contamination 
of ground water with ground rock derived arsenic (Hossain, 
2006). Conversely, SWI could help to ameliorate these 
problems.  
 
New low-lift SWI pumps that increase the efficiency of water 
delivery per unit of fuel have recently become available, which 
could help to lower costs and potentially encourage 
intensification (Santos Valle, et al., 2014). However, where 
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SWI is unplanned and poorly targeted, less than optimal 
performance may also be expected, and social and 
environmental problems may arise from over-extraction and 
water competition. It is therefore important to approach 
decentralized SWI development intelligently, by identifying and 
targeting appropriate blocks of low-intensity cropping and 
fallow land for irrigation that can benefit from irrigation, and by 
assuring that sufficient water supply is available to sustain 
adequate crop growth without undesirable levels of surface 
water depletion. What is lacking, however, is up-to-date and 
precise information on how and where to target SWI efforts, 
while making the best use of available freshwater resources 
without exhausting supply or degrading water quality.  
 
Southwestern Bangladesh hosts two of the country’s three 
administrative divisions with the most people living below the 
poverty line (World Bank, 2010), with only 50% of the region’s 
3.4 million farming households growing more than one Aman 
rice crop per year (MOA and FAO, 2012). These farmers 
typically fallow their land during the dry season, while those 
that do manage a crop usually cultivate low-input and -output 
legumes such as grasspea (Lathyrus sativus), lentil (Lens 
culinaris), and mungbean (Vigna radiata) using residual soil 
moisture. Only 15% of the region’s farmers have access to 
groundwater to grow dry season Boro rice (MOA and FAO, 
2012).  
 
Using the southwest of Bangladesh (Fig. 1) as a case study, this 
paper shows how remote sensing and GIS technologies can be 
used to assess land suitability for intensification through 
decentralized SWI in deltaic environments. Because of the 
regional specificity of the agronomic constraints that farmers 
face in southwestern Bangladesh, additional information on soil 
and water salinity, and dry season planting dates were also 
employed. The basic analytical steps described in this paper can 
be modified and adapted to assess similar questions pertaining 
to fallow or low-productivity land intensification and SWI in 
similar deltaic environments, thereby providing a tool for more 
effective technology targeting to mobilize sustainable 
intensification and SWI development interventions.  
 

 
Figure 1. Overview of study area, located in the south-west of 
Bangladesh. It contains two hydrological zones, south-central 
and south-west. Most of the land near the coast is enclosed by 

polders. 

 
 

2. MATERIAL AND METHODS 

2.1 Data Sources 

This analysis is based on Landsat 5, 7 and 8 satellite imagery 
(Level 1T), available for free from http://earthexplorer.usgs.gov. 
We used the blue, green, red, near infrared (NIR) and both short 
wave infrared (SWIR) bands, all of which have a resolution of 
30 m. The western side of the study area is covered by Landsat 
path 138, row 44 and the eastern side is covered by path 137, 
rows 44 and 45. The Landsat 5 and 7 scenes had already been 
calibrated to surface reflectance by the United States Geological 
Survey (USGS), while we calibrated the Landsat 8 images to 
reflectance using the TOA-DOS approach (Chavez, 1996). The 
NIR band of Landsat 8 has different spectral properties than 
Landsat 7, which can result in different results when calculating 
indices. We therefore cross-calibrated Landsat 8 images using 
Landsat 7 imagery acquired within eight days before and after 
of the respective scene analyzed.  
 
Data on surface water salinity covering the period from 2002–
2012 had been obtained from the Bangladesh Water 
Development Board. Shape files of the most recent and reliable 
land elevation and soil salinity classes were collected from the 
Bangladesh Country Almanac (BCA; 2006) and Soil Resource 
Development Institute (SRDI; 2000), respectively. The BCA 
landtype shape file contains inundation classes including 
Highland, Medium-Highland 1, Medium-Highland 2, Medium-
Lowland, Lowland, and Very Lowland, corresponding to the 
depths at which flood water is encountered during the monsoon 
season, as a marker for elevation class, i.e., no consistent 
floodwater, <90 cm, 90-180 cm, 180-275 cm, and more. 
 
2.2 Cropland Identification 

Cropland was identified using a set of Landsat 5 scenes 
acquired on either January 21 or 31, 2010. In late January, 
cropland could be easily separated from forest, since vegetation 
cover on cropland is generally low at that time. The images 
were classified into two categories: cropland and “other” which 
included water, forest, urban areas and land used for 
aquaculture. In order to avoid potential misclassification due to 
calibration errors, raw images from the 2 Landsat paths were 
classified separately. We first created segments with eCognition 
9 (Trimble Navigation Ltd., Westminster, CO). Segments are 
image regions that are more homogeneous within themselves 
than with nearby regions and represent discrete objects or areas 
in the image. Each image region then becomes a unit analysis 
for which a number of attributes, on top of spectral attributes, 
can be measured and used during the classification (Carleer et 
al., 2005).  
 
The entire study area measured more than 3 million ha and 
systematic sampling of ground truth data for the cropland 
identification would have been a big endeavor. We therefore 
relied on high resolution background satellite imagery available 
in ArcGIS 10.1 (ESRI, Redlands, CA) and visually classified 
more than 250 segments for each of the two classes to create a 
training data set. High resolution satellite imagery contains 
much more detailed information than 30 m Landsat images or 
segments. Therefore, we chose those segments for training for 
which the corresponding pixels in the high resolution images 
showed uniformity. This was eased by the fact that we had to 
identify just two classes, cropland and non-cropland.  
 
For each segment, the following attributes were used for 
classification: mean of the digital numbers of bands 1–5, as well 
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as texture (all directions) (Haralick, 1973) and the normalized 
difference vegetation index (NDVI). Additionally, we 
calculated the ratio of the NIR band to the visible ones 
(Equation 1) as follows: 
 
RatioNIR_Visible = ρband4 / (ρband1 + ρband2 + ρband3)                        (1) 
 
Subsequently, the Random Forest Classifier algorithm in 
WEKA (see Hall, et al., 2009) was used to generate the 
classification rules. Machine learning algorithms do not depend 
on normal data distribution assumptions and allow for lumping 
together distinct classes such as forest, water, urban etc. This 
reduces the effort needed to create distinct training classes. It 
also automatically chooses the relevant variables and discards 
the other ones. Once the classifier had been trained, it was used 
to classify the remaining segments. Subsequently, a visual 
quality control of the automatically classified segments was 
conducted, again using high resolution background imagery as a 
reference. Wrongly classified segments were manually assigned 
to the other class. 
 
2.3 Identification of Waterways and Surface Water 
Duration 

We used Landsat 5 images acquired on October 26, 2009 and 
November 8, 2011, coinciding roughly with the end of the 
monsoon when waterways are at their maximum extent, to 
identify them. The same methodological approach as for the 
classification of cropland was used. Some waterways in the 
study area are ephemeral. We therefore checked for the 
presences of water in rivers, canals, and creeks using the 
Automated Water Extraction Index (AWEI; Feyisa, et al., 2014) 
with atmospherically corrected Landsat 8 images from March 
21 and 30, 2014. AWEIsh was chosen because of its 
effectiveness in improving water extraction accuracy despite the 
presence of shadow resulting from trees lining rivers, canals, 
and water bodies. Using the same threshold as described in the 
Feyisa et al., (2014) paper, AWEIsh values above 0 were 
assumed to be water pixels and values below 0 nonwater pixels. 
 
2.4 Assessment of Land-use Intensity 

Land-use intensity was determined on the base of a total of 44 
Landsat 7 and 8 images acquired between 31 December and 
April 10 of 2011-12, 2012-13, and 2013-14.  
 
Crop productivity mainly depends on the amount of light that is 
intercepted by a crop during its life cycle (Monteith and Moss, 
1977). The enhanced vegetation index (EVI), as described by 
Huete et al. (2002), is a direct measure of the quantity of light 
intercepted for photosynthesis. It was successfully used by  
(Schulthess, et al., 2012) to predict maize yield at the field level 
in Bangladesh.  
 
We therefore measured the intensity of crop productivity by 
quantifying the maximum EVI reached by the most widely 
grown field crops in the study area, including lathyrus, fallow, 
wheat, mustard, mung bean, Boro rice, and maize. We extracted 
EVI trends from 10 or more known fields for each of the above 
crops in each of the 3 years. The use of repetitive and sequential 
observations is critical to capture maximum EVI because of the 
heterogeneous nature of agriculture in the study region, 
resulting in divergent crop phenology both within and across 
crop species.  
 
Following extraction, EVI values for each of the main crop 
types were plotted (Fig. 2) as a function of the number of days 

before or after January 1, until the 100th day of the year upon 
which the observation in question was made, corresponding 
roughly to the first two thirds of the Rabi dry season. We 
grouped each of the cropland types into three intensity classes, 
including (1) fallow land (2) low-intensity cropland, comprised 
of lathyrus, lentil, and mungbean, neither of which are typically 
fertilized, weeded, or irrigated, and which are broadcasted 
resulting in sub-optimal crop stands and poor yields (Dalgliesh 
and Poulton, 2011), and (3) high-intensity cropland, including 
wheat, Boro rice, maize, and mustard, all of which are more 
intensively grown with higher levels of fertilizer application, 
weeding, pest management, and irrigation than in the case of the 
first two.  
 

 
Figure 2. Dynamices of the Enhanced Vegetation Index (EVI) 
derived from Landsat 7 and 8 images collected over 3 winter 
seasons in southern Bangladesh for high- (α; wheat, maize, 

mustard, and Boro rice), low-intensity crops (β; lathyrus, lentil, 
and mungbean),  and fallow land (γ).   

 
After checking for normality and homoscedasticity following 
Sokal and Rohlf (1995), we subjected data from the date upon 
which the maximum EVI value (corresponding to maximum 
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LAI as a measure of peak productivity) was observed in each 
class to a one-way ANOVA using JMP 8.0.2 (SAS Institute 
Inc., Cary, NC) for the 2011-12, 2012-13, and 2013-14 dry 
seasons. The F-test indicated significance (P<0.001) between 
classes in each of the three seasons analyzed. Separation of 
means with the Tukey-Kramer’s range test at α = 0.05 showed 
that the fallow, low-intensity, and high-intensity classes were 
consistently different and independent in each season.  
 
Because of the significant differences between cropland use 
intensity classes, we then set thresholds to separate classes to be 
used for all subsequent EVI analyses. Thresholds were set as the 
mid-distance point between the lower boundary for the standard 
deviation of the lowest maximum EVI observation for the high-
intensity cropland types, and the uppermost boundary of the 
standard error for the highest EVI observation for the low-
intensity crop types. For example, in the 2012-13 season, maize 
exhibited the lowest maximum EVI within the high-intensity 
crop use class at 83 days after January 1, while the EVI of 
lathyrus peaked as the highest observation within the low-
intensity class at 27 days. The threshold between high- and low-
intensity crop was therefore set as the mid-distance between the 
lower and upper boundaries for the standard deviations of these 
observations, respectively. This conservative process was used 
to distinguish the low-intensity and fallow crop classes for each 
season studied. The last step in this analysis consisted of the 
extraction of the maximum EVI value for each pixel of the 
calibrated Landsat scenes for the entire study area in order to 
broadly map the three land-use intensity classes for cropland 
(Fig. 3). 
 
2.5 Creation of a buffer area around rivers, canals, and 
creeks 

Since the efficiency of axial flow pumps decreases with lift 
height, and because they can only push water horizontally 
without gravity feed within a limited distance (Santos Valle et 
al., 2014), we created a 400 m buffer around those waterways in 
which water was present in late March. The 400 m width of the 
buffer was chosen as an empirical value, assumed reachable 
under most circumstances given feedback from irrigation 
service providers using the pumps in tandem with flexible hose 
piping. Intensive agricultural practices can result in 
sedimentation and nutrient loading of watercourses. Riparian 
buffers planted with species capable of ameliorating these 
problems could aid in mitigating the negative effects of crop 
intensification. We consequently reduced the 400 m buffer 
further excluding a 15 m strip adjacent to rivers and canals from 
cropping. This resulted in a 385 m wide buffer, which we 
deemed potentially suitable for SWI. 

 
2.6 Interpolation and Temporal Evolution of Surface 
Water Salinity Dynamics 

Salinity concentrations in the Bangladesh tidal estuary vary in 
time, with salinity typically increasing as the dry season 
progresses. This results from the gradual reduction of southward 
river, canal, and creek water flow following the monsoon 
season (Brammer, 2013), with important ramifications for 
irrigation water quality. To account for temporal changes in 
water salinity, we created four data sets based on the median of 
the observed data from the second halves of the months January 
to April over the 11-year period (2002–2012). Each data set was 
interpolated using Indicator Kriging to create a surface map of 
salinity. Salinity of river water is being measured at stations on 
the main rivers only. No data exist for the other water bodies. 
Hence, kriging was deemed to give a good approximation of the 

salinity levels of smaller rivers, canals and creeks. Those maps 
were then classified into three water salinity classes, including 
0–2 dS m–1 (high–quality), 2–4 dS m–1 (medium–quality), and 
>4 dS m–1 (low–quality). Water salinity tolerance varies greatly 
among crops. While maize is rather sensitive, wheat is much 
more tolerant. In Australia, a 10% yield reduction for maize at 
1.7 dS m–1 was reported, while for wheat, that threshold was 4.7 
dS m–1 (Evans, 2006). 
 
2.7 Reclassification and Application of Soil Salinity and 
Inundation Land Types Shape Files 

The publically available soil salinity map provided by SRDI 
(2000) comes with various classes, some of them being 
“mixed”, i.e., a polygon may belong predominantly to one class, 
but may also contain data from another class. To simplify the 
analysis, we reclassified all data into three classes including <2, 
2–4, and >4 dS m–1 by assigning the highest reported value in 
each class as the identifier for the new class. 
 
2.8 Matrix of Land Suitability Based on Soil Surface Water 
Salinity 

Since either high soil and/or surface water salinity are severe 
constraints for crop production, we created a matrix as shown in 
Table 1 as a heuristic tool to simplify the analysis. These 
thresholds take into account crops that are rather salt intolerant, 
such as maize. Crop species and even cultivars within a crop 
species can vary greatly in their ability to withstand soil salinity 
(Ayers and Westcot, 1989). 
 
  Water Salinity (dS m-1) 
  0 - 2 2 - 4 > 4 
 
Soil 
Salinity 
(dS m-1) 

0 - 2 Highly 
suitability 

Medium 
suitability 

Non 
suitable 

2 - 4 Medium 
suitability 

Low 
suitability 

Non 
suitable 

> 4 Non 
suitable 

Non 
suitable 

Non 
suitable 

Table 1. Salinity thresholds of soil and surface water used to 
determine the suitability classes for agricultural intensification 

and surface water irrigation. 
 
2.9 Intersection of the Layers and Suitability Analysis 

Cropland, EVI, surface water salinity, soil salinity, hydrozone, 
and landtype layers were intersected to assess the suitability of 
cropland for sustainable intensification. Lastly, a subset of the 
land within the 385 m buffer was created. This resulted in a 
geospatial database that can be queried for extraction of 
descriptive statistics.  
 
In order to better visualize and summarize the data, we also 
calculated the percentage of land that could be addressed within 
grid cells measuring 20 by 20 km. All land that was classified as 
“Non suitable” due to high salinity levels (Table 1) or belonged 
to the elevation classes Lowland or Very Low Land was 
excluded, together with cropland belonging to the class High-
intensity. The latter was excluded, since the aim of this paper 
was to identify areas suitable for intensification.  
 
 

3. RESULTS AND DISCUSSION 

 
The study area covered 3.375 million ha, of which 57% or 1.926 
million ha were identified as cropland. Cropland coverage was 
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rather evenly distributed, except for the south-west, where large 
tracks of land with high surface water and soil salinity levels are 
being used for aquaculture. The network of waterways is much 
denser in the south-central than in the south-west hydrozone. 
Most waterways in the latter hydrozone carry no or relatively 
small amounts of water in the dry season. Water recharge in that 
part of Bangladesh has been drastically reduced since the 1976 
completion of the Faraka Dam in West Bengal and the plume of 
saline water in the Khulna – Sathkira region grows steadily in 
the winter months. Intermediate soil salinity is an issue in the 
coastal zones of the south, where salinity can range from 2-4 dS 
m-1, and sometimes can be even higher. Unfortunately, there 
are no regularly reported surface water salinity data available 
for the stretch of land south of Amtali to the coastline. Hence, 
actual water salinity levels for that area are not known and the 
interpolated data may not be entirely representative for this 
region.  
 
Land-use intensity levels for all cropland in the study area are 
summarized in Table 2. Our analysis revealed that in the three 
years analyzed, fallow land area ranged between 219,000 and 
271,000 ha or between 11 and 14% of the total cropland area. 
The Ministry of Agriculture and FAO (2012) placed the number 
for fallow land at 136,000 ha, while the Bangladesh Bureau of 
Statistics estimated 240,000 ha (2011). Hence, our numbers are 
largely in agreement with the Bangladesh Bureau of Statistics, 
but are about double as high as those of the Ministry of 
Agriculture and FAO. Different definitions of what constitutes 
fallow land, and slight differences in the land area assessed, 
may contribute to this discrepancy.  
 
Land-use intensity 2012 2013 2014 
Fallow land 271,078 218,806 230,824 
Low-intensity 779,095 915,548 906,382 
High-intensity 876,338 790,732 789,735 

Total 1,926,511 1,925,086 1,926,941 
Table 2. Land-use intensity levels of cropland during the Rabi 

season in the south of Bangladesh in ha. Data were derived 
based on an analysis of Landsat 7 and 8 images and ground 

truth data collected by agronomists. 

 
Other estimates of fallow land and land that is suitable for 
intensification are higher. Using both remotely sensed and 
administrative data, Rawson et al. (2011) estimated that 800,000 
ha of Rabi season fallow or underutilized land suitable to 
cropping were available in southwestern and southeastern 
Bangladesh. The Bangladesh Agricultural Development 
Corporation estimated that 634,000 hectares are regularly 
fallowed or under low levels of productivity in Khulna and 
Barisal divisions during the Rabi season (2010), exclusively in 
the south-west. Taking the average of 2012-2014, we estimate 
that about 867,000 ha are under low-intensity cropping. Our 
results are slightly higher than those other estimates. 
 
Noticeable are the intensive production levels of crops grown in 
the northern half of the study area (Fig. 3). Presumably, most of 
these fields are planted with Boro rice, wheat or maize, and 
irrigated with ground water. In the south-central hydrozone, a 
clear gradient of declining production intensity from the north 
to the south can be noticed. Ground water in that region has 
high salinity levels, hence irrigation in the winter months is not 
commonly practiced. The large tracks of land being cropped at 
the intermediate and low intensity levels indicate that there is 
substantial potential to increase food production in the southern 
part of the south-central hydrozone. Most of that land is actually 

enclosed by polders. Hence, with an appropriate management of 
the sluice gates, it might be possible to “harvest” water with low 
salinity levels for irrigation. 
 

 
Figure 3: Land use intensity of cropland during the 2014 Rabi 
season in southern Bangladesh. The analysis was based on a 
series of Landsat 8 images acquired between December 31, 

2013 and late March, 2014. At the lower right, a detailed view 
of the cropping intensity levels within a 385 m buffer is given. 

 
Since our main objective was to identify areas suitable for 
technology targeting with axial flow and similar low-lift, 
surface water pumps, we created a 385 m wide buffer within a 
15 m distance adjacent to the waterbodies for which water could 
be detected with Landsat images. They have a resolution of 30 
m, and therefore, a large portion of waterways went undetected. 
But we might also have included false positives, i.e., land that is 
adjacent to shallow surface water bodies which are shallow or 
have a low flow rate and therefore are not a reliable source for 
irrigation water: We could only detect whether surface water is 
present or not. When comparing surface water maps of the 
months of January to April, we noticed a remarkable reduction 
in the south-west hydrological zone. Hence, due to limited 
availability of water, it may not be possible to address large 
tracks of land with SWI in that hydrological zone (see Fig. 1). 
Hence, the data reported in Table 3 are preliminary indication 
only of the area of land that might be addressed.  

 
 
Land-use 
intensity 

Highly 
suitable 

Medium 
suitability 

Low 
suitability 

Non 
suitable 

Fallow land 14,403  6,866  2,144  23,653  
Low-intensity 86,159  17,262  6,640  22,049  
High-intensity 66,562 6,524 999 7,382 
Total 167,124 30,652 9,783 53,084 

Table 3: Current land-use intensity of cropland and its 
suitability for surface water irrigation in the delta region of 

Bangladesh. Suitability classes are the result of an intersection 
of soil and water salinity levels as defined in Table 1. Numbers 

indicate the area in ha of land that are within a 385 m buffer 
adjacent to water bodies on which water was detectable in late 

March of 2014. Land in the Lowland and Very Lowland classes 
were excluded from these statistics. 
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Figure 4 shows the relative area of land as a percentage of the 
total area within each of the 20 by 20 km grid of polygons that 
potentially could be addressed for sustainable intensification. 
The most promising region for intensification is in the south-
east of the study area. It contains many rivers that are being fed 
with fresh water from the Padma river even in the dry season, 
while in the north-west, most water ways tend to dry up in the 
winter months. However, it is questionable whether the very tip 
of the south-east area has access to fresh water. As indicated 
earlier, no measured river salinity data are available for that 
part. High surface water salinity may pose a severe limitation to 
intensification in the very south. A more detailed study 
especially for the South Central hydrological zone, which 
contains most of the fallow and low-intensity land, is needed to 
accurately determine the potential for SWI.  
 
 

 
Figure 4: Addressable land suited for sustainable intensification 

in the delta region of Bangladesh expressed as percentage of 
total land area in each grid cell. Land belonging to the Non-

suitable class due to high salinity levels or belonging to the Low 
and Very Low Land classes was excluded.  

 
 
Almost 80% of the land within the 385 m buffer zone next to 
water ways carrying water in March is in areas where soil and 
water salinity are below 2 dS/m, whereas only 13 % is in areas 
that are not suitable. In addition to salinity levels, land elevation 
is another constraint limiting usability of land. However, we 
determined that when analyzing the land types of the buffer 
land, a total of only 3% of the land is in areas that are either 
Lowland or Very Low Land. Hence, land elevation is not a 
major constraint. Based on these constraints, our initial data in 
this hydrological zone point to approximately 15,300 of fallow 
and 62,600 hectares of low-intensity land in the South Central 
zone addressable with quality surface water irrigation, on land 
which should not be too saline for cropping. 
 

 
4. CONCLUSIONS AND RECOMMENDATIONS 

In order to assess the potential of using surface water irrigation 
in the delta area of Bangladesh, we used a series of Landsat 
images to analyze current cropping intensities and assess the 
potential for sustainable intensification through surface water 

irrigation, considering various constraints such as surface water 
availability, land elevation, and salinity. In the western 
hydrological zone, there is only very limited potential for 
intensification due to a lack of good quality surface water. 
However, in the southern part of the south-central hydrological 
zone, there is a lot of land that is currently cropped at low-
intensity levels or left fallow. The detailed maps derived in this 
study will allow for a targeted introduction of axial flow pumps 
into the delta area of Bangladesh. Field trials will be required to 
determine optimal irrigation schedules for various crops that can 
be grown in these areas. 
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