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ABSTRACT:

In this paper, a multi-layered multi-scale backsratg model for a lossy medium and a neural nétvioversion procedure has
been presented.

We have used a bi-dimensional multi-scale (2D Mtdélghness description where the surface is coresddas a superposition of a
finite number of one-dimensional Gaussian processeh one having a spatial scale using the wat@esform and the Mallat
algorithm to describe natural surface roughness.

An adapted three layers 2D MLS small perturbati@RM) model has been used to describe radar bdtseg response of semi-
arid sub-surfaces. The total reflection coefficienf the natural soil are computed using the naykit model, and volumetric
scattering is approximated by the internal reftatsi between layers. The original multi-scale SPMiehdncludes only the surface
scattering of the natural bare soil, while the ftayter soil modified 2D MLS SPM model includes bdtte surface scattering and
the volumetric scattering within the soil. This tihyered model has been used to calculate tta sotface reflection coefficients

of a natural soil surface for both horizontal amdtical co-polarizations.

A parametric analysis presents the dependencedfabkscattering coefficient on multi scale rougisrend soil.

The overall objective of this work is to retriev@lssurfaces parameters namely roughness and sistume related to the dielectric
constant by inverting the radar backscattered sfgma natural soil surfaces.

To perform the inversion of the modified three imy2D MLS SPM model, we used a multilayer neurawoek (NN) architecture

trained by a back-propagation learning rule.

1. INTRODUCTION

Over the last two decades, microwave remote senbig
become an efficient tool for indirectly estimatingil moisture
and soil properties in the top few centimetersaifssat different
spatial and temporal scales. Soil moisture afféegartitioning
of rainfall into infiltration and runoff and modués soil-
atmosphere feedback interactions and it also affgrctundwater
recharge, crop growth.

In that context, modeling radar backscattering ubgto natural
surfaces has become an important theme of reseacthactive
remote sensing and has shown its utility for mappliaations in
hydrology, geology, astrophysics, etc

The characterization of soil surface roughness iskey
requirement for the correct analysis of radar beattering
behavior. Many previous works have been devotedthi
analysis of the backscattering characteristics are bsoils and
several backscattering models (theoretical, sempigcal and
empirical) were developed ([1] [2] [6] [9]). Theysed the
classical statistical description of natural suefac and
characterized roughness by statistical parametesmely
correlation length and standard deviation.

However, the weakness of the classical descriptibmatural
surfaces is the large spatial variability which eaf6 the
correlation function and makes classical roughrggameters
very variable. Several works have proposed varapgoaches
for the improvement of roughness descriptions {{][5] [7]

[11]) and have suggested that natural surfaces beter
described as self-affine random processes (1/fggs®s) than as
stationary processes. In previous works, we haetyaed radar
backscattering on multi-scale bi-dimensional sw$ag3][7][10]
which description does not depend on classical hoags
parameters standard deviation and correlation tkebgt on new
parameters related to multi-scale surfaces pragserti

Extracting soil moisture and roughness parametéraatural
surfaces from this data has been problematic farynmeasons
and many researchers have encountered many probleibe
lack of information about the characteristics ofunal surface
roughness. In addition, the relation-ship betweehne t
backscattering coefficients is non-linear and threbfem of
retrieving parameters is frequently ill-posed andmay be
impossible to separate the contributions from diffie
mechanisms making the retrieval of several paramete
simultaneously necessary.

The objective of this paper is to develop and sestinversion
algorithm for soil moisture and multi-scale rougbn@arameters
retrieval from radar backscattering coefficientagiated by the
modified SPM model using a neural network inversion
procedure based on a multilayer neural network (NN)
architecture trained by a back propagation learnire

This paper is organized into five sections. Thetfisection
describes the two dimensional multi-scale desaniptf natural
rough surfaces. Section 2 presents the multi-lajtS SPM
model. The third section discusses the influencenolfti-scale
roughness and the dielectric constant related itavsmsture on
the backscattering simulations using our threertayeulti-scale
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bi-dimensional small perturbation model (SPM). he tnext
section the neural network based inversion proeedhe results
and their accuracy are presented. Finally, ourclesions are
presented in the last section.

2. AMULTISCALE DESCRIPTION OF NATURAL
SOILS ROUGHNESS

In this section, we present the multi-scale surfacelel used in
the SPM model.

Natural roughness is described as a multi-scalegssohaving a
1/f spectrum with a finite range of spatial scadeéng from a
few millimeters b b < %)) to several meters @esolution cell)

[3][7]. We have considered the surface as a supéipo of a
finite number of one-dimensional Gaussian processes one
having a spatial scale [1] characterized by:

Py +00
Z,@= ) Y mwr

m=—P; n=—c0

@

WhereZ™ is a collection of gaussian random independer
variables with variangg2™™, x a normalized distance with
respect to an arbitrary length L2 B and¥™ a collection of
orthonormal wavelet (4th Daubechies). The roughnadtiscale
parameterv is related to the fractal dimension=6-2D for
mono-dimensional Euclidean surfaces awnd7-2D for bi-
dimensional surfaces [7]) and is related to the standard
deviation and the number of spatial scales is etud. In a
previous work [4][5], to describe more adequatelgtunal
surfaced, we have used the separable dyadic neghikrtion
analysis introduced by Mallat [8] to extend the wlat theory
from one-dimensional to two-dimensional case.

Using the bi-dimensional wavelet transform, we hab¢ained
respectively the vertical wavelet component, theizootal
wavelet component (3) and the diagonal wavelet acorapt (4)
of the height}, (where i=Vertical, Horizontal or Diagonal.

14 14
m 2my

LEEDIDWD Z e (rn)elryn o)
sen=3 3 5 3 maelyen) ®)
Z2(x,y) = Z Z Z Z Z;ZXZ:y‘P(—xfn )w o, 4)

Their autocorrelation function (ACF) is given by:

Py, x+ &y +n) =L{Zy,NZ5(x + &y + 1)) (5)

And the standard deviation can be written as:

s? = rH(0,0) = r2(0,0) = v/ (0,0) (6)
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Figure 1. Vertical component of a MLS two-dimensionh
ACF for vx=2.1,vy=1.1,yx=0.2cm angy=0.8cm
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Figure 2. Diagonal component of a MLS two-dimensioria
ACF for v,=2.1v,=1.1,yx=0.2cm andyy=0.8cm

In figure 1 and figure 2 the vertical, diagonal amarizontal
component of a multi-scale two dimensional ACF siefare
represented.

We have simulated the 3D representation of the MuBaces
for two different spatial scales, with P=5 in figu8 and P=10 in
figure 4.

Figure 3. 3D representation of a multi-scale surfazusing
Daubechies wavelet with multi-scale parameters
(vi=1.3;v,=1.3;y=0.2cm) P=5
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Figure 4. 3D representation of a multi-scale surfazusing
Daubechies wavelet with multi-scale parameters
(vi=1.3;v,=1.3;y=0.2 cm) P=10

3. AMULTILAYER MULTISCALE BI-DIMENSIONAL
SPM MODEL

3.1 MLS SPM Model

In this study, we modeled radar backscatteringr @vehree

layer model [10] by taking into account volume gmidng. Each

layer is described as a multi-scale bi-dimensi@aface using

our multi-scale description.

In this study the small perturbation model SPM sgdifor the

simulation of backscattering coefficients.

SPM input parameters are the dielectric constaedyded from
the surface volumetric moisture content), the &bhgarameter
and the standard deviation of surface height. Atirschle

correlation function was therefore used in thisgtutb remain
within the domain of validity of the SPM used sada with

ks< 0.3 (k: wave number, s: rms height).

o= Zexp(-zkz)(co§ )5 oW(-2ksiNG0)  (7)

Where is the incident angle a+bqp‘ is given by given by Fung
[6] and

wn -l e o

r i(: (O!O)

The natural soil is composed by a dense media ceetpby
multiple species of particles [10] and water, ofdicrete
dielectric soil component

We considered the half-space below the ground seife<0) as
a three-layer medium (figure 5), where D is the arad
penetration depth. This multilayer soil model irdgs three
uniform layers [10]:

- The medium 1 with thicknes$, and permittivityy,,
represents the mixture of soil particles and liquid
water contents;

- The medium 2 with thicknes$, and permittivitye,
represents the air in soil;

The medium 3 represents the soil layer below tdarra
penetration depth Di¢, d,), with permittivitye,. It is semi-
infinite and has no thickness.
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Figure 5. Multilayer reflection model soil [10]

We consider the reflection of an electromagnetivevrom
each layer. The incident wave is from layerl, asdager3 is
semi-infinite there is no electromagnetic waveagtibn from
the bottom of layer3.

The incidence and reflected radar signal betweediume O
(air) and medium 1 can be expressed as:

Where W” is the Fourier transform of the nth power of the

multi-scale autocorrelation function given by Matth [7] with

n=1 for the SPM model [3][4][5][7]. Surfaces areachcterized
by the dielectric constant related to soil moisttine albedo, the
optical depth and surface roughness. Previous wared

classical statistical parameters namely correlafiemgth and
standard deviation in the expression of the autetation

function W. The principal aim of this study is tseuthe multi-
scale surface description in the backscatteringficmant.

3.2 Multilayer modified SPM model
In this section we present the multilayer reflestimodel given

by Fung [6] and Song [10] using our multi-scale @&cription
of surface roughness.

E; = Eyekizz ©)
Epy = RoEqe /Xz2=R,E; (10)
Egy = Tio ARsATo1E; = TioTo1A*RE; (11)
Erq = T10AT21RqT12ATo1
Ei = Ty, T12T21A*R,E;

(12)

We have to take into account these equalities simsdium 2 is

Rs; = —Rq (13)
Tor = T21 (14)
Ti; = Tho (15)



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-707-5

The total surface reflection coefficient of the tialer soil can
be expressed from the incident and reflected radgal at air-
medium 1 interface as

Ro = Rq+ RoTo1T10A*(To1Tio + 1) (16)

where R, is the surface scattering of the soil (the specula

surface reflection termR,To1T10A%(To1T1o + 1) is the internal

reflections between layers (the equivalent voluinetcattering
ke dq

term), with A= ecosée, 6, the refraction angle at the air medium
1 interface,R, the specular reflection coefficient of air at air-
mediumT,,,, the transmission coefficient from medium m to

medium n (n=0, 1, 2, 3)K.the extinction coefficient of the
medium 1 ([7], [10]) d; the thickness of the medium 1.

The total reflection coefficients of the naturail e computed
using the multilayer model, and volumetric scattgriis
approximated by the internal reflections betweeyeids. The
surface reflection terms in the modified SPM modek
replaced by the total reflection coefficients frolme multilayer
soil surface. The original multi-scale SPM modellirdes only
the surface scattering of the natural bare soiljlentthe
multilayer soil modified 2D MLS SPM model includbsth the
surface scattering and the volumetric scatteringiwithe soil.
This multilayered model has been used to calcufagetotal
surface reflection coefficients of a natural seitface for both
horizontal and vertical co-polarizations.

Each layer is described as a multi-scale bi dinwevadisurface
using our multi-scale description ([4] [5] [10]) duthe modified
SPM.

4. SENSITIVITY ANALYSIS OF THE THREE LAYERS
MULTISCALE BI-DIMENSIONAL SPM MODEL

4.1 Sensitivity to multi-scale roughness parameters

We have considered the VV and HH polarizations studied
the sensitivity of radar backscattering and angtidands for
different multi-scale roughness and for differentlectric
constants of each layer.

We have simulated the angular trends of the thagers multi-
scale backscattering coefficient from 20 to 80 degr for
different roughness parameters.

As a first step, we fixed the parameter relatethtoRoot Mean
Square at 0.0031cm in VV and HH polarizations fee Epatial
scales to find out the effect of fractal dimensim the radar
backscattered signal (Figure 6 and figure 7).

The impact of fractal dimension v on the radar backscatter signal cw
with ¥ =0.0031 (cm), P=5etf=0.5
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Figure 6. Backscattering coefficient angular trendsn
fractal parameter v at VV polarization

The impact of fractal dimension v on the radar backscatter signal chh
with ¥=0.0031 (cm),P=5etf=0.5
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Figure 7. Backscattering coefficient dependence dractal
parameter v at HH polarization

When v, the parameter related to the fractal dimension,
increases the backscattering coefficient decreases.

As surfaces withv between 1.5 and 2.3 are considered as
smooth, we set, as a second step, this paramegf an VV
polarization and 1.9 in HH polarization for fiveatjal scales
(Figure 8 and figure 9).

The impact of standard deviation y on the radar backscatter signal cw
with v=2.1,P=5andf=5 (Ghz)
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Figure 8. Backscattering coefficient dependence astandard
deviation y at VV polarization

The impact of standard deviation y on the radar backscatter signal chh
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Figure 9. Backscattering coefficient dependence atandard
deviation y at HH polarization
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When vy, the parameter related to the fractal dimension The effect of £'1 on the radar backscatter signal ow (dB)

increases the backscattering coefficient increases.

The backscattered signal in VV polarization is leigthan the

backscattered signal in HH polarization.

For all the simulations, the backscattering codfit decreases

with the incidence angle.

4.2 Sensitivity to Soil Moisture

Soil moisture is related to the complex dielectamstants. In
Figure 10, figure 11, figure 12 and figure 13, wavé
represented radar backscattering as angular tfendtfferent
values of the complex permittivity of the secongklain the two

polarizations VV and HH.

The effect of £'1 on the radar backscatter signal cvv (dB)
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Figure 10. Backscattering coefficient dependence aifil at
VV polarization

The effect of £'1 on the radar backscatter signal chh (dB)
withe'2 =10 (cm), v=1.3,7v=0.0011 (cm) and f = 0.5 (Ghz)
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Figure 11. Backscattering coefficient dependence aifil at
HH polarization
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Figure 12.Backscattering coefficient dependence ar, at
VV polarization
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Figure 13. Backscattering coefficient dependence ay, at
HH polarization

The backscattering coefficient decreases &sgncreases,
whereas it increases wheggincreases also. Indeed when the
layers are dry corresponding to a lower humiditd aas a
consequence a lower dielectric constant, the petiatr of the
signal is more important and the backscatteredasigriower.

As the dielectric constant increases, the surfanéssubsurface
become wetter and the backscattered signal in@daseause
the penetration is lower.

5. METHODOLOGY OF THE RETRIEVAL
PROCEDURE

5.1 Inversion procedure

We present in this section, an algorithm to retriewlti-scale
roughness parameters and soil moisture parametthisl study,
the direct problem is represented by the SPM motels, a
sensitivity analysis of the SPM model has beengperéd and
presented in the section 5.3 to examine the deperdef the
output of the scattering model to the inputs patamse When
the outputs of the scattering model became satlrate
insensitive to a parameter, the parameter inversimge was
narrowed.

The method consists of inverting the SPM direct ehagsing
multilayer perceptron architecture [4] and [6]. Timversion
consists in retrieving roughness and soil moispmeameters
v1, y2,v1,v2, €l ete2 by using as input parameters the radar
backscattering coefficientsHH,, aVV and the incident angle
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8 varied from 30 to 60 degrees. The NN is traineddayning 1151 6 R 5
rules using the back propagation method. A
Simulated data sets based on the SPM surface riogtieodel s /
are used to train the neural network. 115 i
To illustrate the inversion techniques we propose ¢ 2 11495 O 4
. . g 0 / LS
methodology given by figure 14. -
"E 11,49
& 11,485
Activation function 11,48 O : o i 7o)
pammeters
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| Number of hidden layers I
Back ing data of the
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Figure 15.The retrieving soil moisture parameterg;

/ after the inversion by the NN function of its orighal value
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Figure 16. Theretrieving roughness parametery, after

Outputs of NN K X N ! .
the inversion by the NN function of its original vdue

0,7

05 /
04 /
02 /—__./

Relative error of retrieval
data is lower than threshold

Retrieval values

Figure 14. The proposed methodology

01
5.2 Neural Network Training
0 T T T T
The first step in the inversion procedure is theegation of a 021 021 031 041 051 061
set of training patterns. orkiind wees

In this study, a total of 35390 training patternsrevgenerated

by using each of the signal modelsf the SPM backscattering
coefficient. The parameters of interestused to generate the
training patterns were randomly selected from witthie range

of parameters given by the sensitivity analysis.

Figure 17. Theretrieving roughness parameterv; after
the inversion by the NN function of its original vdue

5.3 Inversion Algorithm Results

To illustrate the inversion techniques describethi previous
section, we apply them to the data simulated bys#.
Before using the NN for the inversion, we have tlodate the
mean rms error of the network. It converges wellatwalue
smaller than 0.05 after 6000 iterations so thatNheis ready
for the inversion procedure.
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In figure 18 we present the sum squared networkr efor
35390 epochs.The inversion has given quite sat@facesults
as the original values were retrieved with an eofd.75%.

Sum-Squared Network Error for 35390 Epochs

Sum-Squared Error

Figure 18. The sum squared network error

6. CONCLUSION

In this paper, we have presented a lossy 2D meéties
multilayered medium backscattering model.

We replaced the surface reflection coefficientstlie SPM
model, which was obtained from a single-layer mptgl the
total reflection coefficients obtained from the dérlayered
model. We have studied angular trends and thresrdaylLS
SPM backscattering behavior in both HH and VV paktion
for different roughness and dielectric parameters.

Atfter this sensitivity study we performed the insien using a
neural network technique witch leaded to quite séatiory
results with a mean error of 2.75 %.

Future work will be dedicated to the study of radar
backscattering on n layered media.
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