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ABSTRACT: 
 
In this paper, a multi-layered multi-scale backscattering model for a lossy medium and a neural network inversion procedure has 
been presented. 

We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a 
finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat 
algorithm to describe natural surface roughness.  

An adapted three layers 2D MLS small perturbations (SPM) model has been used to describe radar backscattering response of semi-
arid sub-surfaces. The total reflection coefficients of the natural soil are computed using the multilayer model, and volumetric 
scattering is approximated by the internal reflections between layers. The original multi-scale SPM model includes only the surface 
scattering of the natural bare soil, while the multilayer soil modified 2D MLS SPM model includes both the surface scattering and 
the volumetric scattering within the soil. This multi-layered model has been used to calculate the total surface reflection coefficients 
of a natural soil surface for both horizontal and vertical co-polarizations. 

A parametric analysis presents the dependence of the backscattering coefficient on multi scale roughness and soil. 

The overall objective of this work is to retrieve soil surfaces parameters namely roughness and soil moisture related to the dielectric 
constant by inverting the radar backscattered signal from natural soil surfaces.  

To perform the inversion of the modified three layers 2D MLS SPM model, we used a multilayer neural network (NN) architecture 
trained by a back-propagation learning rule. 

 
 

1. INTRODUCTION 
 
Over the last two decades, microwave remote sensing has 
become an efficient tool for indirectly estimating soil moisture 
and soil properties in the top few centimeters of soils at different 
spatial and temporal scales. Soil moisture affects the partitioning 
of rainfall into infiltration and runoff and modulates soil-
atmosphere feedback interactions and it also affects groundwater 
recharge, crop growth.  

In that context, modeling radar backscattering through natural 
surfaces has become an important theme of research and active 
remote sensing and has shown its utility for many applications in 
hydrology, geology, astrophysics, etc 

The characterization of soil surface roughness is a key 
requirement for the correct analysis of radar backscattering 
behavior. Many previous works have been devoted to the 
analysis of the backscattering characteristics of bare soils and 
several backscattering models (theoretical, semi- empirical and 
empirical) were developed ([1] [2] [6] [9]). They used the 
classical statistical description of natural surfaces and 
characterized roughness by statistical parameters namely 
correlation length and standard deviation. 

However, the weakness of the classical description of natural 
surfaces is the large spatial variability which affects the 
correlation function and makes classical roughness parameters 
very variable. Several works have proposed various approaches 
for the improvement of roughness descriptions ([3] [4] [5] [7] 

[11]) and have suggested that natural surfaces are better 
described as self-affine random processes (1/f processes) than as 
stationary processes. In previous works, we have analyzed radar 
backscattering on multi-scale bi-dimensional surfaces [3][7][10] 
which description does not depend on classical roughness 
parameters standard deviation and correlation length but on new 
parameters related to multi-scale surfaces properties.  

Extracting soil moisture and roughness parameters of natural 
surfaces from this data has been problematic for many reasons 
and many researchers have encountered many problems like the 
lack of information about the characteristics of natural surface 
roughness. In addition, the relation-ship between the 
backscattering coefficients is non-linear and the problem of 
retrieving parameters is frequently ill-posed and it may be 
impossible to separate the contributions from different 
mechanisms making the retrieval of several parameters 
simultaneously necessary. 

The objective of this paper is to develop and test an inversion 
algorithm for soil moisture and multi-scale roughness parameters 
retrieval from radar backscattering coefficients simulated by the 
modified SPM model using a neural network inversion 
procedure based on a multilayer neural network (NN) 
architecture trained by a back propagation learning rule. 

This paper is organized into five sections. The first section 
describes the two dimensional multi-scale description of natural 
rough surfaces. Section 2 presents the multi-layers MLS SPM 
model. The third section discusses the influence of multi-scale 
roughness and the dielectric constant related to soil moisture on 
the backscattering simulations using our three layers multi-scale 
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bi-dimensional small perturbation model (SPM). In the next 
section the neural network based inversion procedure, the results 
and their accuracy are presented.  Finally, our conclusions are 
presented in the last section. 
 
 

2. A MULTISCALE DESCRIPTION OF NATURAL 
SOILS ROUGHNESS 

 
In this section, we present the multi-scale surface model used in 
the SPM model. 

Natural roughness is described as a multi-scale process having a 
1/f spectrum with a finite range of spatial scales going from a 

few millimeters b (� � �
���) to several meters (B�resolution cell) 

[3][7]. We have considered the surface as a superposition of a 
finite number of one-dimensional Gaussian processes each one 
having a spatial scale [1] characterized by: 
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Where��� is a collection of gaussian random independent 
variables with variance
��2��, x a normalized distance with 
respect to an arbitrary length L= 2b b and Ѱ�� a collection of 
orthonormal wavelet (4th Daubechies). The roughness multiscale 
parameter ν is related to the fractal dimension (ν=5-2D for 
mono-dimensional Euclidean surfaces and ν=7-2D for bi-
dimensional surfaces [7]) and γ is related to the standard 
deviation and the number of spatial scales is equal to P. In a 
previous work [4][5], to describe more adequately natural 
surfaced, we have used the separable dyadic multi-resolution 
analysis introduced by Mallat [8] to extend the wavelet theory 
from one-dimensional to two-dimensional case. 
Using the bi-dimensional wavelet transform, we have obtained 
respectively the vertical wavelet component, the horizontal 
wavelet component (3) and the diagonal wavelet component (4) 
of the height��� , (where i=Vertical, Horizontal or Diagonal. 
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Their autocorrelation function (ACF) is given by: 
 
����, �, � � 	�, � � �� � 〈��� ��, ����� �� � �, � � ��〉 (5) 
 
And the standard deviation can be written as: 
 
��		 �	 � !�0,0� � 	 � "�0,0� � 	 � #�0,0� (6) 

 
 

Figure 1. Vertical component of a MLS two-dimensional 
ACF for ννννx=2.1;ννννy=1.1, γγγγx=0.2cm andγγγγy=0.8cm 

 

 
 

Figure 2. Diagonal component of a MLS two-dimensional 
ACF for ννννx=2.1;ννννy=1.1, γγγγx=0.2cm and γγγγy=0.8cm 

 
In figure 1 and figure 2 the vertical, diagonal and horizontal 
component of a multi-scale two dimensional ACF surface are 
represented. 
We have simulated the 3D representation of the MLS surfaces 
for two different spatial scales, with P=5 in figure 3 and P=10 in 
figure 4. 
 

 
 

Figure 3. 3D representation of a multi-scale surface using 
Daubechies wavelet with multi-scale parameters 

(v1 = 1.3; v 2 = 1.3; γ = 0.2 cm) P=5 
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Figure 4. 3D representation of a multi-scale surface using 
Daubechies wavelet with multi-scale parameters 

(v1 = 1.3; v 2 = 1.3; γ = 0.2 cm) P=10 
 
 

3. A MULTILAYER MULTISCALE BI-DIMENSIONAL 
SPM MODEL  

 
3.1 MLS SPM Model 
 
 In this study, we modeled radar backscattering over a three 
layer model [10] by taking into account volume scattering. Each 
layer is described as a multi-scale bi-dimensional surface using 
our multi-scale description. 
In this study the small perturbation model SPM is used for the 
simulation of backscattering coefficients.  
SPM input parameters are the dielectric constant (deduced from 
the surface volumetric moisture content), the fractal parameter 
and the standard deviation of surface height. A multi-scale 
correlation function was therefore used in thisstudy. To remain 
within the domain of validity of the SPM used surfaces with   
ks< 0.3 (k: wave number, s: rms height). 
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Where W(n) is the Fourier transform of the nth power of the 
multi-scale autocorrelation function given by Mattia in [7] with 
n=1 for the SPM model [3][4][5][7]. Surfaces are characterized 
by the dielectric constant related to soil moisture, the albedo, the 
optical depth and surface roughness. Previous works used 
classical statistical parameters namely correlation length and 
standard deviation in the expression of the autocorrelation 
function W. The principal aim of this study is to use the multi-
scale surface description in the backscattering coefficient. 
 
3.2 Multilayer modified SPM model 
 
In this section we present the multilayer reflection model given 
by Fung [6] and Song [10] using our multi-scale 2D description 
of surface roughness. 

The natural soil is composed by a dense media composed by 
multiple species of particles [10] and water, of a discrete 
dielectric soil componentε.  
We considered the half-space below the ground surface (z<0) as 
a three-layer medium (figure 5), where D is the radar 
penetration depth. This multilayer soil model includes three 
uniform layers [10]:  

- The medium 1 with thickness �� and permittivity�$% 
represents the mixture of soil particles and liquid 
water contents; 

- The medium 2 with thickness d� and permittivity ε� 
represents the air in soil; 

The medium 3 represents the soil layer below the radar 
penetration depth D (d�		��), with permittivity	ε&. It is semi-
infinite and has no thickness. 
 

 
 

Figure 5. Multilayer reflection model soil [10] 
 

We consider the reflection of an electromagnetic wave from 
each layer. The incident wave is from layer1, and as layer3 is 
semi-infinite there is no electromagnetic wave reflection from 
the bottom of layer3. 
The incidence and reflected radar signal between medium 0 
(air) and medium 1 can be expressed as: 
 
��	 �	��	��'(���  
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We have to take into account these equalities since medium 2 is 
air: 
 
 $ �	$ * 
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The total surface reflection coefficient of the multilayer soil can 
be expressed from the incident and reflected radar signal at air-
medium 1 interface as 
 
 %* �	 * �	 *!��!��"��!��!�� � 1� (16) 
 
where  * is the surface scattering of the soil (the specular 
surface reflection term),  *!��!��"��!��!�� � 1� is the internal 
reflections between layers (the equivalent volumetric scattering 

term), with A� �
��	��

�	
��, ', the refraction angle at the air medium 
1 interface, R- the specular reflection coefficient of air at air-
medium,!�� the transmission coefficient from medium m to 
medium n (n=0, 1, 2, 3), ).the extinction coefficient of the 
medium 1 ([7], [10])  �� the thickness of the medium 1. 
The total reflection coefficients of the natural soil are computed 
using the multilayer model, and volumetric scattering is 
approximated by the internal reflections between layers. The 
surface reflection terms in the modified SPM model are 
replaced by the total reflection coefficients from the multilayer 
soil surface. The original multi-scale SPM model includes only 
the surface scattering of the natural bare soil, while the 
multilayer soil modified 2D MLS SPM model includes both the 
surface scattering and the volumetric scattering within the soil. 
This multilayered model has been used to calculate the total 
surface reflection coefficients of a natural soil surface for both 
horizontal and vertical co-polarizations. 
Each layer is described as a multi-scale bi dimensional surface 
using our multi-scale description ([4] [5] [10]) and the modified 
SPM.  
 
 
4. SENSITIVITY ANALYSIS OF THE THREE LAYERS 

MULTISCALE BI-DIMENSIONAL SPM MODEL 
 
4.1 Sensitivity to multi-scale roughness parameters 
 
We have considered the VV and HH polarizations and studied 
the sensitivity of radar backscattering and angular trends for 
different multi-scale roughness and for different dielectric 
constants of each layer.  
We have simulated the angular trends of the three layers multi-
scale backscattering coefficient from 20 to 80 degrees for 
different roughness parameters. 
As a first step, we fixed the parameter related to the Root Mean 
Square at 0.0031cm in VV and HH polarizations for five spatial 
scales to find out the effect of fractal dimension on the radar 
backscattered signal (Figure 6 and figure 7).  
 

 
 

Figure 6. Backscattering coefficient angular trends on 
fractal parameter ν at VV polarization 

 

 
 

Figure 7. Backscattering coefficient dependence on fractal 
parameter ν at HH polarization 

 
When ν, the parameter related to the fractal dimension, 
increases the backscattering coefficient decreases.  
As surfaces with ν between 1.5 and 2.3 are considered as 
smooth, we set, as a second step, this parameter at 2.1 in VV 
polarization and 1.9 in HH polarization for five spatial scales 
(Figure 8 and figure 9). 
 

 
 

Figure 8. Backscattering coefficient dependence on standard 
deviation γ at VV polarization  

 

 
 

Figure 9. Backscattering coefficient dependence on standard 
deviation γ at HH polarization  
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When γ, the parameter related to the fractal dimension, 
increases the backscattering coefficient increases.  
The backscattered signal in VV polarization is higher than the 
backscattered signal in HH polarization. 
For all the simulations, the backscattering coefficient decreases 
with the incidence angle. 
 
4.2 Sensitivity to Soil Moisture 
 
Soil moisture is related to the complex dielectric constant ε. In 
Figure 10, figure 11, figure 12 and figure 13, we have 
represented radar backscattering as angular trends for different 
values of the complex permittivity of the second layer in the two 
polarizations VV and HH.  
 

 
 

Figure 10. Backscattering coefficient dependence on ε’1 at 
VV polarization 

 

 
 

Figure 11. Backscattering coefficient dependence on ε’1 at 
HH polarization 

 

 
 

Figure 12.Backscattering coefficient dependence on ε’ 2 at 
VV polarization 

 

 
 

Figure 13. Backscattering coefficient dependence on ε’ 2 at 
HH polarization 

 
The backscattering coefficient decreases as �/1increases, 
whereas it increases where �/1increases also. Indeed when the 
layers are dry corresponding to a lower humidity and as a 
consequence a lower dielectric constant, the penetration of the 
signal is more important and the backscattered signal is lower.  
As the dielectric constant increases, the surfaces and subsurface 
become wetter and the backscattered signal increases because 
the penetration is lower. 
 
 

5. METHODOLOGY OF THE RETRIEVAL 
PROCEDURE 

 
5.1 Inversion procedure 
 
We present in this section, an algorithm to retrieve multi-scale 
roughness parameters and soil moisture parameter. In this study, 
the direct problem is represented by the SPM model. Thus, a 
sensitivity analysis of the SPM model has been performed and 
presented in the section 5.3 to examine the dependence of the 
output of the scattering model to the inputs parameters. When 
the outputs of the scattering model became saturated or 
insensitive to a parameter, the parameter inversion range was 
narrowed.  
The method consists of inverting the SPM direct model using 
multilayer perceptron architecture [4] and [6]. The inversion 
consists in retrieving roughness and soil moisture parameters 
γ1, γ2, ν1, ν2, ε1 et ε2 by using as input parameters the radar 
backscattering coefficients σHH,, σVV  and the incident angle 
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θ varied from 30 to 60 degrees. The NN is trained by learning 
rules using the back propagation method. 

Simulated data sets based on the SPM surface scattering model 
are used to train the neural network. 

To illustrate the inversion techniques we propose a 
methodology given by figure 14. 

 

 
 

Figure 14. The proposed methodology 
 

5.2 Neural Network Training 
 
The first step in the inversion procedure is the generation of a 
set of training patterns.  
In this study, a total of 35390 training patterns were generated 
by using each of the signal models σ of the SPM backscattering 
coefficient. The parameters of interest σ used to generate the 
training patterns were randomly selected from within the range 
of parameters given by the sensitivity analysis.  
 

 
 

Figure 15. The retrieving soil moisture parameter εεεε1   
after the inversion by the NN function of its original value  

 

 
 

Figure 16. The retrieving roughness parameter γγγγ1 after 
the inversion by the NN function of its original value  

 

 
 

Figure 17. The retrieving roughness parameter νννν1 after 
the inversion by the NN function of its original value  

 
5.3 Inversion Algorithm Results 
 
To illustrate the inversion techniques described in the previous 
section, we apply them to the data simulated by the SPM. 
Before using the NN for the inversion, we have to calculate the 
mean rms error of the network. It converges well to a value 
smaller than 0.05 after 6000 iterations so that the NN is ready 
for the inversion procedure.  
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In figure 18 we present the sum squared network error for 
35390 epochs.The inversion has given quite satisfactory results 
as the original values were retrieved with an error of 2.75%. 
 

 
 

Figure 18. The sum squared network error 
 
 

6. CONCLUSION 
 
In this paper, we have presented a lossy 2D multi-scale 
multilayered medium backscattering model.  
We replaced the surface reflection coefficients in the SPM 
model, which was obtained from a single-layer model, by the 
total reflection coefficients obtained from the three layered 
model. We have studied angular trends and three layers MLS 
SPM backscattering behavior in both HH and VV polarization 
for different roughness and dielectric parameters. 
After this sensitivity study we performed the inversion using a 
neural network technique witch leaded to quite satisfactory 
results with a mean error of 2.75 %. 
Future work will be dedicated to the study of radar 
backscattering on n layered media. 
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