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ABSTRACT: 

 

Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice 

production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and 

planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping 

and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used to map and monitor rice 

growing areas in selected three sites in TamilNadu, India to determine rice cropping extent, track rice growth and estimate yields. A 

simple, robust, rule-based classification for mapping rice area with multi-temporal, X-band, HH polarized SAR imagery from 

COSMO Skymed and TerraSAR X and site specific parameters were used. The robustness of the approach is demonstrated on a very 

large dataset involving 30 images across 3 footprints obtained during 2013-14. A total of 318 in-season site visits were conducted 

across 60 monitoring locations for rice classification and 432 field observations were made for accuracy assessment. Rice area and 

Start of Season (SoS) maps were generated with classification accuracies ranging from 87- 92 per cent. Using ORYZA2000, a 

weather driven process based crop growth simulation model; yield estimates were made with the inclusion of rice crop parameters 

derived from the remote sensing products viz., seasonal rice area, SoS and backscatter time series. Yield Simulation accuracy levels 

of 87 per cent at district level and 85- 96 per cent at block level demonstrated the suitability of remote sensing products for policy 

decisions ensuring food security and reducing vulnerability of farmers in India. 

 

 

1.INTRODUCTION 

1.1. Synthetic Aperture Radar for Mapping Rice Area 

Rice is the most staple cereal food crop for ensuring 

food security in Asia (Maclean et al., 2013). Rice still accounts 

for 31% of the calorific intake being the largest single source of 

calories for more than 3.7 billion people in Asian countries even 

with rapid urbanization and diversification in consumption 

patterns, (FAOSTAT, 2014 and Timmer et al., 2010). Accurate 

and consistent information on the area under production is 

necessary for national planning in many countries, but 

conventional statistical methods cannot always meet the 

requirements of food security research and policy (Xiao et al., 

2006 and Gumma et al., 2014). This information is vital to the 

policy decisions related to imports, exports and prices, which 

directly influence food security, especially amongst the poor 

(Balagtas et al., 2014, Mittal et al., 2009 and Dawe et al., 2012).    

Remote sensing has the scope for cost effective precise 

estimates of rice area to support, augment, improve or even 

replace survey and statistical methods (Gumma et al., 2014). 

But the technical challenges are many in the development of 

large scale dynamic remote sensing-based rice crop information 

systems. Rice cultivation during the monsoon season (Huke and 

Huke, 1997) which has wide cloud cover (NASA, 2014), wide 

range of conditions and environments, small land holdings and 

diverse and mixed cropping systems (Nguyen et al., 2012) are 

the most challenging factors in limiting the use of remote 

sensing as tool for rice crop monitoring.   

Synthetic Aperture Radar (SAR) imagery is a promising option 

to overcome the issue of cloud cover and substantial research 

evidences are available on the suitability of SAR for rice crop 

mapping in the region. Optical images can complement SAR, 

but they cannot be relied upon as the main information source. 

The wide distribution of rice as a major food crop across India 

envisages large coverage to perfectly capture rice area and 

requires automated less supervised processing. Rice detection 

algorithms should be general and robust to suit wide range of 

practices and environments (Boschetti et al., 2014) ranging 

from irrigated to rainfed rice with different maturities (Maclean 

et al., 2013) and establishment practices, such as direct seeding 

or transplanting.  The complex rice environments require high-

resolution imageries and high-frequency acquisitions. Recent 

and planned launches of SAR sensors coupled with state-of-the-

art automated processing can provide sustainable solutions to 

this challenge to map and monitor one of the world‘s most 

important crop. The objective of this study is to test a method of 

rice area mapping using a rule-based classification and 

parameter selection approach across multiple sites based on the 

agronomic knowledge on temporal development of rice crop 

under different conditions and its management in relation to 

backscatter. The far-reaching goal is to demonstrate that SAR-

based operational mapping of rice crops across a diverse range 

of environments with multi-temporal SAR data and yield 

estimation by integrating these products into the ORYZA crop 

growth model.  
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1.2. Background of SAR Research and Applications for Rice 

Mapping 

SAR data have a proven ability to detect lowland rice 

systems (both irrigated and rainfed) through the unique 

temporal signature of the backscatter coefficient (also termed 

sigma naught or σ°) exhibited by the crop. In the past years, a 

large number of publications have been dedicated to better 

understanding this relationship and applying it to rice detection 

and rice monitoring (Le Toan et al., 1997, Inoue et al., 2002, 

Suga and Konishi, 2008, and Bouvet et al., 2009). In summary, 

these studies have shown that lower frequencies (L- and C-

band) penetrate deeper into the rice plant than higher 

frequencies,   while only higher frequencies (X-band) interact 

with grain water content and grain weight   sufficiently to show 

a dual-peak signal in σ° during the rice season (Inoue et al., 

2002, Suga and Konishi, 2008, Oh et al., 2009 and Kim et al., 

2009). Further, short   wavelengths (X-, Ka-, Ku-band), 

especially at large incident angles, are sensitive enough to   

detect even very small rice seedlings just after transplanting. 

The correlation between σ° and rice biophysical parameters 

shows that lower frequencies are   more closely related to total 

fresh weight, leaf area index (LAI) and plant height than   other 

parameters (Inoue et al., 2009 and Kim et al., 2009). 

Although σ° from X-band is poorly correlated with 

LAI, it is best correlated with panicle biomass indicating the 

suitability for a direct assessment of rice grain yield (Inoue and 

Sakaiya, 2013 and Inoue et al., 2014). On the other hand, σ° 

derived from C-band can provide information   on par with the 

normalized difference vegetation index (NDVI) (Inoue et al., 

2014). For X-band, the HH/VV polarization ratio continuously 

changes as a function of phenology   during the vegetative and 

reproductive stages (Lopez-Sanchez et al., 2011). For X-band, 

the HH-VV phase difference is sensitive to early rice plant 

emergence. Moreover,   the use of four polarimetric features 

derived from coherence coplanar dual-polarization X-band   

enables the estimation of five phenological stages from a single 

date scene (Inoue et al., 2002, Lopez-Sanchez et al., 2011 and 

Lopez-Sanchez et al., 2012). 

   It is clear from the literature that well-understood 

relationships exist between rice crop characteristics and 

backscatter coefficients from different wavelengths, and these 

relationships have been used to derive different types of 

algorithms for estimating rice crop characteristics from SAR 

data. Another approach for sparse time series is to extract 

temporal features from the data and relate those to the known 

temporal dynamics of the rice crop and use that knowledge to 

classify areas as rice or non-rice (Holecz et al., 2013). All of 

these approaches have been demonstrated successfully in the 

literature. Supervised classifiers rely on a substantial set of 

good-quality training data to ensure a good classification, and 

there is a risk of over-fitting the classification.  

For this reason, a rule-based classification approach is 

tested for rice area mapping that is based on a small number of 

rules and parameters that can be quickly fine-tuned from site to 

site and season to season. Conceptually, the classification 

approach is based on rules that are agronomically meaningful 

and, thus, easily understood and easily fine-tuned based on the 

local knowledge of the rice-growing environment and the key 

rice-growing stages.  

1.3. Rice Growing Stages and Key Characteristics for SAR 

Based Detection 

Rice in subtropical India is mainly cultivated in 

irrigated or lowland semidry conditions. Rice varieties range in 

duration from 90 to more than 150 days and with three main 

crop stages: vegetative (from germination to panicle initiation, 

from 45 to 100 days), reproductive (from panicle initiation to 

flowering, around 35 days) and maturity (from flowering to 

mature grain, around 30 days) (Figure 1). The following aspects 

contribute to the change in space occupied by the rice plants 

within a three-dimensional space: (1) appearances and growth 

of leaves from the main stem (culm) and tillers; (2) stem 

development and elongation; (3) tillering, defined as the 

production of stems from rice plants; (4) leaf senescence; and 

(5) panicle and grain development.Prior to transplanting, the 

rice field is flooded with water at depths ranging from 2 to 15 

cm (Le Toan et al., 1997). This deliberate agronomic flooding is 

a key element of most remote-sensing rice detection algorithms 

(Boschetti et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Rice crop stages. Image from the International Rice 

Research Institute (IRRI)-Rice Knowledge Bank. 

 

2. SAR DATA, FIELD DATA AND STUDY SITES 

The RIICE project—Remote sensing-based Information and 

Insurance for Crops in Emerging economies—tested SAR-based 

mapping of rice area across three sites in India (Cuddalore, 

Thanjavur ans Sivaganga) between late 2012 and early 2014 

(RIICE, 2014). In this studyMulti-year and seasonal Synthetic 

Aperture Radar (SAR) data are acquired from all existing 

operational space borne systems which overcomes the spatial-

temporal problem, hence assuring an appropriate temporal 

repetition at an adequate scale (i.e. spatial resolution) even over 

large areas and provides sensor independent operational 

monitoring with sufficient data redundancy to ensure 

information delivery. The crop growth simulation model 

ORYZA estimates yield and hence production using dedicated 

remote sensing products in addition to the usual meteorological, 

soil, and plant parameters. This remote sensing-crop model 

approach to yield estimation uses relevant remote sensing 

derived information on rice seasonal dynamic to initialize the 

model on the correct date and uses parameters derived from 

remote sensing as measurements of the crop‘s response to the 

environment and management thus reducing the reliance on 

other input data to the model that would be impossible to obtain 

over wide geographic areas. Further this approach considers the 
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spatial distribution of rice fields and improves the yield 

estimation figures by forcing the model towards actual rather 

than attainable yields. 

2.1. SAR Data 

Multi-temporal X-band SAR Single Look Complex 

(SLC) data were obtained from the Italian Space Agency 

(ASI/e-GEOS) for COSMO-SkyMed (CSK) data and from 

InfoTerra GmbH for TerraSAR-X (TSX) data. In both the cases, 

data were obtained in HH polarization with consistent incidence 

angles in each multi-temporal stack, ranging from 41 to 44 

degrees across sites. A large incidence angle is preferred, 

because (i) wind effects on water (in particular, during land 

preparation prior to transplanting) are significantly decreased, 

(ii) the dynamic of the radar backscatter is larger and (iii) the 

spatial resolution is higher. The image acquisition dates, 

locations, mode, pixel size, polarization and incidence angles 

are shown in Table 1. Image mode, extent, pixel size, 

polarization and incidence angles were constant for each 

footprint. CSK data are available from four X-band HH-SAR 

satellites with a 3.12-cm wavelength and a 16-day revisit period 

for the same satellite with the same observation angle. CSK data 

on Stripmap mode (3-m resolution) was used at two sites with a 

footprint of 40 × 40 km. Acquisition plans were made using one 

primary satellite from the constellation for each site with 

backup plans in place for the second, third and fourth satellites 

in the constellation in the event of a cancellation.TSX is 

provided by one X-band HH SAR satellite with a 3.11-cm 

wavelength and 11-day revisit period with the same observation 

angle. TSX data on Stripmap mode (3 m resolution) was used at 

one site with a footprint of 30 × 50 km.  

 

Site 

No. 

Study 

site 

Start and 

end dates 

# of 

images 

Satellite Scene center,  

area (sq km) 

Mode, 

resolution 

(m) 

Polarizat

ion, 

angle (°) 

1 Tamil 

Nadu, 

Cuddalore 

16-08-

13 07-

01-14 

10 CSK 11.74°N-

79.56°E, 

1,600 

Stripmap

, 3 

HH, 

44 

2 Tamil 

Nadu, 

Thanjavur 

16-08-

13 26-

12-13 

9 CSK 10.87°N-

79.25°E, 

1,600 

Stripmap

, 3 

HH, 

41 

3 Tamil 

Nadu, 

Sivaganga 

18-08-

13 19-

01-14 

13 TSX 9.86°N-

78.50°E, 

1,800 

Stripmap

, 3 

HH, 

44 

Total No. of images and 

footprint area 

32  5,000    

Table 1. SAR data acquisition summary: locations, dates and 

modes used for 2013 Samba season. 

 

2.2. Field Observations for Calibration of the Rice Detection 

Algorithm and Map Validation 

Field observations were performed throughout the 

season in up to 20 paddy fields within each footprint. These 

fields were selected, with the farmers‘ consent, prior to the start 

of the rice season and the image acquisition schedule. 

Observations were made on or as close to the image acquisition 

date as possible. Observations included latitude and longitude 

from handheld GPS receivers, descriptions and photos of the 

status of the field, plant height, water depth, weather conditions, 

crop stage and leaf area index (LAI). The same field data 

collection protocols were used at all sites. LAI measurements 

were taken only during visits between seedling and flowering 

stages, and these were recorded non-destructively using 

AccuPAR LP-80 Ceptometer (Decagon Devices, Inc., Pullman, 

WA, USA). At the end of the season, the farmer was 

interviewed to collect information on the rice variety, water 

source, crop management and establishment practices, as well 

as inputs, such as pesticide and fertilizer. 

In total, 58 locations were regularly monitored across 

the three footprints, with 432 separate visits made to these 

locations to collect in-season information on the status of the 

rice crop. A validation exercise was conducted for each 

footprint to assess the accuracy of the rice classification. A 

rapid land cover appraisal method was adopted to collect land 

cover information at approximately 100 locations throughout 

each footprint with these points split 50/50 between non-rice 

points and rice points. This conforms to the minimum number 

of samples per land cover class accounting. These map 

validation assessments were generally conducted in-season, in 

the reproductive or ripening stage before harvesting, but in 

some cases, the assessment was conducted post-season. 

Locations were chosen such that the land cover was 

homogeneous in a 15-m radius around each GPS point for sites 

using 3-m resolution imagery and a 50-m radius for sites using 

10-m or 15-m resolution imagery.  

2.3. Study Site Characteristics 

Rice is the dominant crop among the three RIICE 

sites in India. In Cuddalore District, the samba season from 

mid-July 2013 to the first week of January 2014 was monitored. 

Rice fields in this district are predominantly under a well 

irrigation system; hence, most of the chosen locations were 

irrigated. The popular rice varieties grown were CR1009, 

BPT5204 and White Ponni, with maturity duration ranging 

from 135 to 160 days. Both transplanting and direct seeding of 

rice are common in this district, with the former establishment 

method being more dominant. In Sivaganga, the samba season 

lasted from September 2013 to January 2014, with rice 

cultivated on 86% of the total cropped area. Rice cultivation 

was broadly grouped into three types: transplanted, semi-dry 

and direct seeded. The transplanted system was practiced in the 

blocks of Thirupuvanam, Sivaganga, Manamadurai, 

Singampunari, Thirupattur, S. Pudur, Sakkottai, Kallal and 

Illayangudi. In the semi-dry rice system, seeds are pre-monsoon 

sown and are under rainfed conditions for 30-45 days. Later, the 

fields were converted into wet fields by irrigating from tanks 

and this type of cultivation was practiced in the blocks of 

Sakkottai, Kannankudi, Devakkottai, Kallal, Kalayarkovil, 

Sivagangai, Manamadurai, Illayangudi and Thirupathur. Direct-

seeded rice cultivation mainly depends on rainfall and is mostly 

practiced in Illayangudi, Devakkotai, Kannankudi and 

Kalaiyarkovil blocks. Short-duration rice varieties such as 

ADT36, ADT45 and JGL were popularly grown in the 

monitoring locations. Thanjavur is popularly known as the 

―Rice Bowl‖ of Tamil Nadu and ―Granary of South India‖ as it 

is the major district contributing to the food grain supply of the 

state. Most of the monitored locations were irrigated and 

farmers practiced transplanting and direct seeding as their crop 

establishment method. Medium- and long-duration varieties 
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such as CR1009, BPT5204 and ADT (R) 50 were mainly 

grown, with duration from 135 to 150 days.  

 

3. METHODS 

The SAR time-series data underwent a series of basic 

processing steps to generate terrain-geocoded σ° values suitable 

for analysis. This multi-temporal stack was analyzed using a 

rule-based classifier to detect rice areas. The rules for the 

classifier were based on a small number of parameters that must 

be selected by the operator or user. Temporal feature descriptors 

were derived from temporal signatures in the monitored fields 

and used to guide the user in setting these parameters for each 

site. Finally, the accuracy of the rice area maps is assessed 

against field data.in the second stage the crop parameters 

derived from remote sensing were integrated into the ORYZA 

crop growth model and the rice yields were estimated and the 

yield maps were generated.  

Table 2.Summary of site visits and observed rice crop 

  characteristics during the monitored seasons. 

 

3.1. Basic Processing of SAR Data for Multi-Temporal 

Analysis 

A fully automated processing chain was developed to 

convert the multi-temporal space-borne SAR SLC data into 

terrain-geocoded σ° values. The processing chain is a module 

within the MAPscape-RICE software (Holecz et al., 2013). The 

basic processing chain included  strip mosaicking , co-

registration of Images acquired with the same observation 

geometry and mode and, Time-series speckle filtering to 

balance differences in reflectivity between images at different 

times (De Grandi et al., 1997) and terrain geocoding, 

radiometric calibration and normalization. Further 

Anisotropic non-linear diffusion (ANLD) filtering was done to 

smoothen homogeneous targets, while enhancing the difference 

between neighbouring areas. The filter uses the diffusion 

equation, in which the diffusion coefficient, instead of being a 

constant scalar, is a function of image position and assumes a 

tensor value (Aspert et al., 2007).   

3.2. Multi-Temporal σ° Rule-Based Rice Detection 

 The multi-temporal stack of terrain-geocoded σ° 

images was put into a rule-based rice detection algorithm in 

MAPscape-RICE. The temporal evolution of σ° was analyzed 

from an agronomic perspective, based on prior knowledge of 

rice maturity, calendar and duration and crop practices from 

field information and knowledge of the study location. The 

temporal signature was frequency and polarization dependent 

and also relied on the crop establishment method and, to some 

extent, on crop maturity. The general rules were applied to 

detect rice, but that the parameters for these rules were adapted 

according to the agro-ecological zone, crop practices and rice 

calendar.  

 The choice of parameters was guided by a 

simple statistical analysis of the temporal signature of σ° values 

in the monitored fields. The mean, minimum, maximum and 

range of σ° were computed for the temporal signature of each 

monitored field. Further, (i) minima and (ii) maxima of those 

mean σ° values across fields; the (iii) maxima of the minimum 

σ° values across fields; the (iv) minima of the maximum.  σ° 

value across fields; and the (v) minimum and (vi) maximum of 

the range of σ° values across fields were calculated. These six 

statistics, called as temporal features, concisely characterized 

the key information in the rice signatures of the observed fields, 

and each one related directly to one parameter. Hence, the value 

of the six temporal features from the monitoring locations at 

each site were used to guide the choice of the six parameter 

values based on which the rice pixels were classified and the 

rice area maps were generated.  

3.3. Rice Map Accuracy Assessment 

A standard confusion matrix was applied to the 

rice/non-rice validation points collected at each site. The overall 

accuracy of the rice/non-rice classification and the kappa value 

were recorded. The accuracy assessment was a comparison of 

the classified rice map against ground-truth data. The spatial 

resolution of the rice maps ranged from 3 m to 15 m. However, 

the ANLD filtering processes reduced the effective resolution 

by performing locally adaptive smoothing and edge detection. 

To account for this lower resolution and the horizontal accuracy 

of the handheld GPS units relative to the pixel size, the 

validation data were collected in areas that had homogeneous 

land cover in a 15m radius the around each GPS point for sites 

considering  3m resolution of the imagery.  

3.4. Rice yield estimation 

 The yield was estimated using ORYZA2000, a 

crop growth simulation model developed by IRRI (Boumman et 

al., 2001).  The  simulations  account  for  water  and  nitrogen  

dynamics  based  on  climatic,  soil conditions  and  

management practices. Irrigation and nitrogen fertilizer inputs 

are assumed as recommended  for  achieving  attainable  yield. 

LAI values at 50  days  after emergence provided by the SoS 

product are inferred  from radar backscatter using cloud 

vegetation  model  (Attema  and  Ulaby,  1978)  with  

parameters  calibrated  with  in  situ  LAI measurements. 

Inferred  LAI  are  finally  used  to  calibrate  the  relative  leaf  

growth  rates parameters in  ORYZA2000. For processing 

efficiency, the spatial units for yield simulation are aggregated 

to 150 meter resolution. 

4. RESULTS AND DISCUSSION 

4.1. Rice Area Maps 

Figure 2 shows rice area maps derived from multi-

temporal X-band SAR imagery for Sivaganga,Cuddalore and 

Thanjavur. Late rice and early rice were combined into one 

class and distinguished them from rice in the maps. Map 

accuracy considers any of the three rice subclasses as rice.  

Site 

No. 

Study site Season Period 

covere

d 

Number 

of fields, 

visits 

Crop 

establishment 

Variety and 

maturity (days) 

1 Tamil 

Nadu, 

Cuddalore 

Samba  mid

-Jul 

to 

Jan 

20 

fields, 

160 

visits 

Transplanting 

Irrigated 

CR1009 (160), 

BPT5204 

(135), White 

Ponni (130), 

Co 50 (160) 

2 Tamil 

Nadu, 

Thanjavur 

Samba  Aug 

to 

Dec 

20 

fields, 

162 

visits 

Transplanting/  

direct seeding 

Irrigated 

CR1009 (160), 

BPT5204 

(135), ADT 

(R) 50 (160) 

3 Tamil 

Nadu, 

Sivaganga 

Samba  Sep 

to 

Jan 

18 

fields, 

110 

visits 

Transplanting 

and direct 

seeding/ 

Semi-dry rice 

ADT45 (110), 

JGL (100-

110), ADT36 

(110) 
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Figure 2. Rice Area map of Sivaganga,Cuddalore and Thanjavur 

2013 

 

In the rice area map generated for Cuddalore, 

variability in rice crop establishment date was due to the 

uncertainty in the date of water availability. The clearly 

demarcated patches in the rice crop in the northern part are 

water tanks that were successfully excluded from the 

classification.  

4.2. Rice Map Accuracy Assessment 

The accuracy assessment for the rice maps was 

conducted on a rice/non-rice basis, where all other land cover 

types were grouped into a single non-rice class. Table 3 shows a 

summary of the validation data, rice area and rice classification 

accuracy. The total classified rice area across the 3 sites is more 

than 1.5 lakh hectares but the proportion of the footprint area 

that was classified as rice varied from 16% to 52% across 

footprints. The overall classification accuracy was consistently 

high (87% to 92%), with Kappa scores from 0.73 to 0.85. There 

was no relationship between the classification accuracy and 

either the rice area or the proportion of the footprint classified 

as rice. Large, homogeneous and landscape-dominating rice 

areas and small, fragmented, heterogeneous rice areas were all 

classified equally well. This rich non-rice dataset can be further 

exploited in the future to assess the SAR signatures of other 

land cover types commonly found in rice-growing areas. The 

same signatures can also be used to generate new bounding 

limits (based on the temporal signatures for other crops and 

urban and water surfaces, for example) to further guide 

parameter selection in the rule-based classifier.  

Site 

No. 

Study site Validation 

points and  

date(s) of 

validation 

Rice area 

(ha) and 

as % of 

footprint  

Accuracy 

and 

Kappa 

1 Tamil Nadu, 

Cuddalore 

111,  

12-02-2014 and  

03-03-2014 

26,015, 

16% 

92%, 

 0.85 

2 Tamil Nadu, 

Thanjavur 

102, 

31-01-2014 and 

 01-02-2014 

83,871, 

52% 

91%, 

 0.82 

3 Tamil Nadu, 

Sivaganga 

110,  

14-02-2014 and  

21-02-2014 

 41,825,  

24% 

87% 

0.73 

 Points and area (ha) 323 1,51,711  

Table 3.Summary of site validation visits, rice area and 

accuracy assessments. 

4.3. Rice yield estimation 

 The yield was estimated using ORYZA2000, a 

crop growth simulation model. The model estimated yield based 

on input data such as daily weather data, soil properties, rice 

variety, water availability and crop management practices.  The 

model was a ‗point based‘ model and was run once for each 

location where a yield estimate was required. This resulted in 

many thousands of runs for an area covered by a typical remote 

sensing image. The ability of model to accurately estimate yield 

was improved by the inclusion of rice crop parameters derived 

from the remote sensing products viz., seasonal rice area, and 

start of season and rice growth rate information - extracted from 

the time series of images. With this information, the model can 

generate a rice yield estimate for each hectare where rice was 

grown in the season. These yield estimates were aggregated to 

get a yield estimate per block.  In turn these estimates were 

compared against the average CCE yield per block to determine 
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the accuracy of the yield. In 2013 Samba season, District level, 

block level and field level rice yields were estimated and yield 

maps were generated across all the three sites.  

District 
RIICE estimate 

 (kg/ha) 

Cuddalore 3816 

Viluppuram 3786 

Thiruvarur 4866 

Thanjavur 4918 

Ariyalur 4932 

Sivaganga 4079 

Madurai 4010 

Table 4. Summary of rice yield estimates at district level. 

 

 

 

Figure.6.Rice yield map of Thanjavur and Sivaganga 2013 

At district level an accuracy of 99% was achieved in 

Cuddalore followed Sivaganga and Thanjavur respectively with 

88 and 86.7%. At block level it was interesting to come across 

an accuracy of 85-96% indicating the suitability of these 

products for policy decisions. At field level also, significantly 

higher accuracy was recorded for yield estimates derived using 

ORYZA model with Remote sensing based products indicating 

the scientific validation as compared to other methods of yield 

prediction.  

The study demonstrated that rice area could be 

accurately classified with X-band HH polarization SAR images 

across multiple environments and management conditions and 

rice yields could be estimated by integrating ORYZA model 

with Remote sensing based products. With the Current and 

forthcoming SAR systems, such as CSK, TSX, RADARSAT-2, 

RISAT-1, Sentinel-1 and ALOS-2, there exists a vast scope for 

rice crop monitoring and yield estimation at national level. 

Block District RIICE 

estimate 

(kg/ha) 

Block District RIICE 

estimate 

(kg/ha) 

Cuddalore Cuddalore 4064 
Kumbakona

n 
Thanjavur 4892 

Virudhachalam Cuddalore 3542 Thanjavur Thanjavur 5092 

Panruti Cuddalore 3763 Thiruvaiyaru Thanjavur 4615 

Kurinjipadi Cuddalore 3667 Orattanadu Thanjavur 5123 

Viluppuram Viluppuram 3911 
Udaiyarpalai

yam 
Ariyalur 5054 

Tirukkoyilur Viluppuram 3407 Ariyalur Ariyalur 4881 

Ulundurpettai Viluppuram 3736 Karaikkudi Sivaganga 4173 

Pondicherry Pondicherry 4063 Tiruppattur Sivaganga 4132 

Mannargudi Thiruvarur 4943 Sivaganga Sivaganga 4070 

Valangaiman Thiruvarur 4937 
Manamadur

ai 
Sivaganga 4066 

Needamangalam Thiruvarur 4630 Ilaiyankudi Sivaganga 4002 

Papanasam Thanjavur 4844 Melur Madurai 4010 

Table 5. Rice yield estimates at block level. 
 

Sl.

No 

District RIICE 

estimate 

(Kg/ha) 

CCE 

(Kg/ha) 

RMSE 

(Kg/ha) 

NRM

SE 

(%) 

Accura

cy (%) 

1 Sivaganga 4079 4635 555 12.0 88.0 

2 Thanjavur 4918 5676 758 13.3 86.7 

3 Cuddalore 3816 3854 38167 1.0 99.0 

4 Thiruvarur 4866 5512 646 11.7 88.3 

Table 6. RIICE CCE data vs. ORYZA2000 yield estimates at 

District level 

 
Sl.No Block RIICE 

estimate 

(Kg/ha) 

CCE 

(Kg/ha) 

RMSE 

(Kg/ha) 

NRM

SE 

(%) 

Accuracy 

(%) 

1 Mannargudi 4943 5512 569 10.3 89.7 

2 Papanasam 4844 5060 215 4.3 95.7 

3 Kumbakonan 4892 5742 850 14.8 85.2 

4 Cuddalore 4064 3854 209433 5.4 94.6 

5 Tiruppattur 4132 4635 503 10.8 89.2 

Table 7. RIICE CCE data vs. ORYZA2000 yield estimates at 

block level 

5. CONCLUSIONS 

The study demonstrates that regularly acquired X-

band HH SAR imagery is suitable for rice crop monitoring 

across the major rice environments of South and Southeast 

Asia. The consistently high accuracy of the rice area 

classification across these sites demonstrates that the 

methodology is appropriate for rice detection across the most 

common rice agro-ecologies. The classification is based on a 

temporal analysis of the spectral signature, including a detection 

of agronomic flooding at the land preparation and/or seedling 

stage followed by a rapid increase in biomass relative to the 

duration of the vegetative stage of the varieties in the footprint. 

Yield Simulation accuracy of more than 87% at district level 

and 85-96% at block level from the study means that simulated 

yield matched observed yield perfectly indicating the suitability 

of these products for policy decisions ensuring food security 

besides reducing the vulnerability of smallholder rice farmers in 

India. 

With the Current and forthcoming SAR systems, such 

as CSK, TSX, RADARSAT-2, RISAT-1, Sentinel-1 and 

ALOS-2, there exists a vast scope for rice crop monitoring and 

yield estimation at national level. 
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