The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-711-1

RICE CROP MONITORING AND YIELD ESTIMATION THROUGH COSMO SKYMED
AND TERRASAR-X: A SAR-BASED EXPERIENCE IN INDIA

S. Pazhanivelan® *, P. Kannan?, P.Christy Nirmala Mary?, E.Subramanian®, S. Jeyaraman®, Andrew Nelson®, Tri setiyono®,
Francesco Holecz®,Massimo barbieri¢and Manoj Yadav*

*Tamil Nadu Agricultural University, Coimbatore, Tamilnadu, India- pazhanivelans@gmail.com
pandian.kannan@gmail.com, chrismary@rediffmail.com, selvisubbug@yahoo.co.in, sjtnau@gmail.com
PInternational Rice Research Institute (IRRI), Los Banos 4031, Philippines - a.nelson@irri.org, t.setiyono@irri.org
°Sarmap, Purasca 6989, Switzerland - tholecz@sarmap.ch, mbarbieri@sarmap.ch
9Deutsche Gesellschaft fiir Internationale Zusammenarbeit (G1Z) GmbH, New Delhi 110029, India - manoj.yadav@giz.de

KEY WORDS: Rice, Food Security, SAR, Yield Estimation, ORYZA, COSMO Skymed, TerraSAR-X

ABSTRACT:

Rice is the most important cereal crop governing food security in Asia. Reliable and regular information on the area under rice
production is the basis of policy decisions related to imports, exports and prices which directly affect food security. Recent and
planned launches of SAR sensors coupled with automated processing can provide sustainable solutions to the challenges on mapping
and monitoring rice systems. High resolution (3m) Synthetic Aperture Radar (SAR) imageries were used to map and monitor rice
growing areas in selected three sites in TamilNadu, India to determine rice cropping extent, track rice growth and estimate yields. A
simple, robust, rule-based classification for mapping rice area with multi-temporal, X-band, HH polarized SAR imagery from
COSMO Skymed and TerraSAR X and site specific parameters were used. The robustness of the approach is demonstrated on a very
large dataset involving 30 images across 3 footprints obtained during 2013-14. A total of 318 in-season site visits were conducted
across 60 monitoring locations for rice classification and 432 field observations were made for accuracy assessment. Rice area and
Start of Season (SoS) maps were generated with classification accuracies ranging from 87- 92 per cent. Using ORYZA2000, a
weather driven process based crop growth simulation model; yield estimates were made with the inclusion of rice crop parameters
derived from the remote sensing products viz., seasonal rice area, SoS and backscatter time series. Yield Simulation accuracy levels
of 87 per cent at district level and 85- 96 per cent at block level demonstrated the suitability of remote sensing products for policy

decisions ensuring food security and reducing vulnerability of farmers in India.

1.INTRODUCTION

1.1. Synthetic Aperture Radar for Mapping Rice Area

Rice is the most staple cereal food crop for ensuring
food security in Asia (Maclean et al., 2013). Rice still accounts
for 31% of the calorific intake being the largest single source of
calories for more than 3.7 billion people in Asian countries even
with rapid urbanization and diversification in consumption
patterns, (FAOSTAT, 2014 and Timmer et al., 2010). Accurate
and consistent information on the area under production is
necessary for national planning in many countries, but
conventional statistical methods cannot always meet the
requirements of food security research and policy (Xiao et al.,
2006 and Gumma et al., 2014). This information is vital to the
policy decisions related to imports, exports and prices, which
directly influence food security, especially amongst the poor
(Balagtas et al., 2014, Mittal et al., 2009 and Dawe et al., 2012).
Remote sensing has the scope for cost effective precise
estimates of rice area to support, augment, improve or even
replace survey and statistical methods (Gumma et al., 2014).
But the technical challenges are many in the development of
large scale dynamic remote sensing-based rice crop information
systems. Rice cultivation during the monsoon season (Huke and
Huke, 1997) which has wide cloud cover (NASA, 2014), wide
range of conditions and environments, small land holdings and
diverse and mixed cropping systems (Nguyen et al., 2012) are
the most challenging factors in limiting the use of remote
sensing as tool for rice crop monitoring.

Synthetic Aperture Radar (SAR) imagery is a promising option
to overcome the issue of cloud cover and substantial research
evidences are available on the suitability of SAR for rice crop
mapping in the region. Optical images can complement SAR,
but they cannot be relied upon as the main information source.
The wide distribution of rice as a major food crop across India
envisages large coverage to perfectly capture rice area and
requires automated less supervised processing. Rice detection
algorithms should be general and robust to suit wide range of
practices and environments (Boschetti et al., 2014) ranging
from irrigated to rainfed rice with different maturities (Maclean
et al., 2013) and establishment practices, such as direct seeding
or transplanting. The complex rice environments require high-
resolution imageries and high-frequency acquisitions. Recent
and planned launches of SAR sensors coupled with state-of-the-
art automated processing can provide sustainable solutions to
this challenge to map and monitor one of the world’s most
important crop. The objective of this study is to test a method of
rice area mapping using a rule-based classification and
parameter selection approach across multiple sites based on the
agronomic knowledge on temporal development of rice crop
under different conditions and its management in relation to
backscatter. The far-reaching goal is to demonstrate that SAR-
based operational mapping of rice crops across a diverse range
of environments with multi-temporal SAR data and yield
estimation by integrating these products into the ORYZA crop
growth model.

* Corresponding author



The 36th International Symposium on Remote Sensing of Environment,
11 — 15 May 2015, Berlin, Germany, ISRSE36-711-1

1.2. Background of SAR Research and Applications for Rice
Mapping

SAR data have a proven ability to detect lowland rice
systems (both irrigated and rainfed) through the unique
temporal signature of the backscatter coefficient (also termed
sigma naught or ¢°) exhibited by the crop. In the past years, a
large number of publications have been dedicated to better
understanding this relationship and applying it to rice detection
and rice monitoring (Le Toan et al., 1997, Inoue et al., 2002,
Suga and Konishi, 2008, and Bouvet et al., 2009). In summary,
these studies have shown that lower frequencies (L- and C-
band) penetrate deeper into the rice plant than higher
frequencies, while only higher frequencies (X-band) interact
with grain water content and grain weight sufficiently to show
a dual-peak signal in ¢° during the rice season (Inoue et al.,
2002, Suga and Konishi, 2008, Oh et al., 2009 and Kim et al.,
2009). Further, short wavelengths (X-, Ka-, Ku-band),
especially at large incident angles, are sensitive enough to
detect even very small rice seedlings just after transplanting.
The correlation between c° and rice biophysical parameters
shows that lower frequencies are more closely related to total
fresh weight, leaf area index (LAI) and plant height than other
parameters (Inoue et al., 2009 and Kim et al., 2009).

Although ¢° from X-band is poorly correlated with
LAl it is best correlated with panicle biomass indicating the
suitability for a direct assessment of rice grain yield (Inoue and
Sakaiya, 2013 and Inoue et al., 2014). On the other hand, c°
derived from C-band can provide information on par with the
normalized difference vegetation index (NDVI) (Inoue et al.,
2014). For X-band, the HH/VV polarization ratio continuously
changes as a function of phenology during the vegetative and
reproductive stages (Lopez-Sanchez et al., 2011). For X-band,
the HH-VV phase difference is sensitive to early rice plant
emergence. Moreover, the use of four polarimetric features
derived from coherence coplanar dual-polarization X-band
enables the estimation of five phenological stages from a single
date scene (Inoue et al., 2002, Lopez-Sanchez et al., 2011 and
Lopez-Sanchez et al., 2012).

It is clear from the literature that well-understood
relationships exist between rice crop characteristics and
backscatter coefficients from different wavelengths, and these
relationships have been used to derive different types of
algorithms for estimating rice crop characteristics from SAR
data. Another approach for sparse time series is to extract
temporal features from the data and relate those to the known
temporal dynamics of the rice crop and use that knowledge to
classify areas as rice or non-rice (Holecz et al., 2013). All of
these approaches have been demonstrated successfully in the
literature. Supervised classifiers rely on a substantial set of
good-quality training data to ensure a good classification, and
there is a risk of over-fitting the classification.

For this reason, a rule-based classification approach is
tested for rice area mapping that is based on a small number of
rules and parameters that can be quickly fine-tuned from site to
site and season to season. Conceptually, the classification
approach is based on rules that are agronomically meaningful
and, thus, easily understood and easily fine-tuned based on the

local knowledge of the rice-growing environment and the key
rice-growing stages.
1.3. Rice Growing Stages and Key Characteristics for SAR
Based Detection

Rice in subtropical India is mainly cultivated in
irrigated or lowland semidry conditions. Rice varieties range in
duration from 90 to more than 150 days and with three main
crop stages: vegetative (from germination to panicle initiation,
from 45 to 100 days), reproductive (from panicle initiation to
flowering, around 35 days) and maturity (from flowering to
mature grain, around 30 days) (Figure 1). The following aspects
contribute to the change in space occupied by the rice plants
within a three-dimensional space: (1) appearances and growth
of leaves from the main stem (culm) and tillers; (2) stem
development and elongation; (3) tillering, defined as the
production of stems from rice plants; (4) leaf senescence; and
(5) panicle and grain development.Prior to transplanting, the
rice field is flooded with water at depths ranging from 2 to 15
cm (Le Toan et al., 1997). This deliberate agronomic flooding is
a key element of most remote-sensing rice detection algorithms
(Boschetti et al., 2014).

3
Seeding Transplanting

Figure 1. Rice crop stages. Image from the International Rice
Research Institute (IRRI)-Rice Knowledge Bank.

2. SAR DATA, FIELD DATA AND STUDY SITES

The RIICE project—Remote sensing-based Information and
Insurance for Crops in Emerging economies—tested SAR-based
mapping of rice area across three sites in India (Cuddalore,
Thanjavur ans Sivaganga) between late 2012 and early 2014
(RIICE, 2014). In this studyMulti-year and seasonal Synthetic
Aperture Radar (SAR) data are acquired from all existing
operational space borne systems which overcomes the spatial-
temporal problem, hence assuring an appropriate temporal
repetition at an adequate scale (i.e. spatial resolution) even over
large areas and provides sensor independent operational
monitoring with sufficient data redundancy to ensure
information delivery. The crop growth simulation model
ORYZA estimates yield and hence production using dedicated
remote sensing products in addition to the usual meteorological,
soil, and plant parameters. This remote sensing-crop model
approach to yield estimation uses relevant remote sensing
derived information on rice seasonal dynamic to initialize the
model on the correct date and uses parameters derived from
remote sensing as measurements of the crop’s response to the
environment and management thus reducing the reliance on
other input data to the model that would be impossible to obtain
over wide geographic areas. Further this approach considers the
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spatial distribution of rice fields and improves the yield
estimation figures by forcing the model towards actual rather
than attainable yields.
2.1. SAR Data

Multi-temporal X-band SAR Single Look Complex
(SLC) data were obtained from the Italian Space Agency
(ASl/e-GEOS) for COSMO-SkyMed (CSK) data and from
InfoTerra GmbH for TerraSAR-X (TSX) data. In both the cases,
data were obtained in HH polarization with consistent incidence
angles in each multi-temporal stack, ranging from 41 to 44
degrees across sites. A large incidence angle is preferred,
because (i) wind effects on water (in particular, during land
preparation prior to transplanting) are significantly decreased,
(ii) the dynamic of the radar backscatter is larger and (iii) the
spatial resolution is higher. The image acquisition dates,
locations, mode, pixel size, polarization and incidence angles
are shown in Table 1. Image mode, extent, pixel size,
polarization and incidence angles were constant for each
footprint. CSK data are available from four X-band HH-SAR
satellites with a 3.12-cm wavelength and a 16-day revisit period
for the same satellite with the same observation angle. CSK data
on Stripmap mode (3-m resolution) was used at two sites with a
footprint of 40 x 40 km. Acquisition plans were made using one
primary satellite from the constellation for each site with
backup plans in place for the second, third and fourth satellites
in the constellation in the event of a cancellation.TSX is
provided by one X-band HH SAR satellite with a 3.11-cm
wavelength and 11-day revisit period with the same observation
angle. TSX data on Stripmap mode (3 m resolution) was used at
one site with a footprint of 30 x 50 km.

Site Study Startand | #of |Satellite| Scene center,| Mode, |Polarizat
No. site end dates [images area (sq km) | resolution | N,
(m) angle (°)

1 | Tamil 16-08- 10 CSK | 11.74°N- Stripmap | HH,
Nadu, 13 07- 79.56°E, ,3 44
Cuddalore 01-14 1,600

2 | Tamil 16-08- 9 CSK | 10.87°N- Stripmap | HH,
Nadu, 13 26- 79.25°E, ,3 41
Thanjavur 12-13 1,600

3 | Tamil 18-08- 13 TSX | 9.86°N- Stripmap | HH,
Nadu, 13 19- 78.50°E, ,3 44
Sivaganga | 01-14 1,800

Total No. of images and | 32 5,000

footprint area

Table 1. SAR data acquisition summary: locations, dates and
modes used for 2013 Samba season.

2.2. Field Observations for Calibration of the Rice Detection
Algorithm and Map Validation

Field observations were performed throughout the
season in up to 20 paddy fields within each footprint. These
fields were selected, with the farmers’ consent, prior to the start
of the rice season and the image acquisition schedule.
Observations were made on or as close to the image acquisition
date as possible. Observations included latitude and longitude
from handheld GPS receivers, descriptions and photos of the
status of the field, plant height, water depth, weather conditions,
crop stage and leaf area index (LAI). The same field data
collection protocols were used at all sites. LAl measurements
were taken only during visits between seedling and flowering

stages, and these were recorded non-destructively using
AccuPAR LP-80 Ceptometer (Decagon Devices, Inc., Pullman,
WA, USA). At the end of the season, the farmer was
interviewed to collect information on the rice variety, water
source, crop management and establishment practices, as well
as inputs, such as pesticide and fertilizer.

In total, 58 locations were regularly monitored across
the three footprints, with 432 separate visits made to these
locations to collect in-season information on the status of the
rice crop. A validation exercise was conducted for each
footprint to assess the accuracy of the rice classification. A
rapid land cover appraisal method was adopted to collect land
cover information at approximately 100 locations throughout
each footprint with these points split 50/50 between non-rice
points and rice points. This conforms to the minimum number
of samples per land cover class accounting. These map
validation assessments were generally conducted in-season, in
the reproductive or ripening stage before harvesting, but in
some cases, the assessment was conducted post-season.
Locations were chosen such that the land cover was
homogeneous in a 15-m radius around each GPS point for sites
using 3-m resolution imagery and a 50-m radius for sites using
10-m or 15-m resolution imagery.

2.3. Study Site Characteristics

Rice is the dominant crop among the three RIICE
sites in India. In Cuddalore District, the samba season from
mid-July 2013 to the first week of January 2014 was monitored.
Rice fields in this district are predominantly under a well
irrigation system; hence, most of the chosen locations were
irrigated. The popular rice varieties grown were CR1009,
BPT5204 and White Ponni, with maturity duration ranging
from 135 to 160 days. Both transplanting and direct seeding of
rice are common in this district, with the former establishment
method being more dominant. In Sivaganga, the samba season
lasted from September 2013 to January 2014, with rice
cultivated on 86% of the total cropped area. Rice cultivation
was broadly grouped into three types: transplanted, semi-dry
and direct seeded. The transplanted system was practiced in the
blocks of  Thirupuvanam, Sivaganga, Manamadurali,
Singampunari, Thirupattur, S. Pudur, Sakkottai, Kallal and
Illayangudi. In the semi-dry rice system, seeds are pre-monsoon
sown and are under rainfed conditions for 30-45 days. Later, the
fields were converted into wet fields by irrigating from tanks
and this type of cultivation was practiced in the blocks of
Sakkottai, Kannankudi, Devakkottai, Kallal, Kalayarkovil,
Sivagangai, Manamadurai, lllayangudi and Thirupathur. Direct-
seeded rice cultivation mainly depends on rainfall and is mostly
practiced in Illayangudi, Devakkotai, Kannankudi and
Kalaiyarkovil blocks. Short-duration rice varieties such as
ADT36, ADT45 and JGL were popularly grown in the
monitoring locations. Thanjavur is popularly known as the
“Rice Bowl” of Tamil Nadu and “Granary of South India” as it
is the major district contributing to the food grain supply of the
state. Most of the monitored locations were irrigated and
farmers practiced transplanting and direct seeding as their crop
establishment method. Medium- and long-duration varieties
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such as CR1009, BPT5204 and ADT (R) 50 were mainly
grown, with duration from 135 to 150 days.

3. METHODS

The SAR time-series data underwent a series of basic
processing steps to generate terrain-geocoded c° values suitable
for analysis. This multi-temporal stack was analyzed using a
rule-based classifier to detect rice areas. The rules for the
classifier were based on a small number of parameters that must
be selected by the operator or user. Temporal feature descriptors
were derived from temporal signatures in the monitored fields
and used to guide the user in setting these parameters for each
site. Finally, the accuracy of the rice area maps is assessed
against field data.in the second stage the crop parameters
derived from remote sensing were integrated into the ORYZA
crop growth model and the rice yields were estimated and the
yield maps were generated.

Site | Study site| Season | Period | Number Crop Variety and
No. covere | of fields, | establishment maturity (days)
d visits

1 [Tamil Samba mid 20 Transplanting CR1009 (160),
Nadu, -Jul | fields, | Irrigated BPT5204
Cuddalore to 160 (135), White

Jan visits Ponni  (130),
Co 50 (160)

2 |Tamil Samba | Aug | 20 Transplanting/ | CR1009 (160),
Nadu, to fields, direct seeding | BPT5204
Thanjavur Dec | 162 Irrigated (135), ADT

visits (R) 50 (160)

3 [Tamil Samba | Sep | 18 Transplanting ADT45 (110),
Nadu, to fields, | and direct | JGL (100-
Sivaganga Jan 110 seeding/ 110), ADT36

Visits Semi-dry rice (110)

Table 2.Summary of site visits and observed rice crop
characteristics during the monitored seasons.

3.1. Basic Processing of SAR Data for Multi-Temporal
Analysis

A fully automated processing chain was developed to
convert the multi-temporal space-borne SAR SLC data into
terrain-geocoded ©° values. The processing chain is a module
within the MAPscape-RICE software (Holecz et al., 2013). The
basic processing chain included strip mosaicking , co-
registration of Images acquired with the same observation
geometry and mode and, Time-series speckle filtering to
balance differences in reflectivity between images at different
times (De Grandi et al., 1997) and terrain geocoding,
radiometric calibration and normalization. Further
Anisotropic non-linear diffusion (ANLD) filtering was done to
smoothen homogeneous targets, while enhancing the difference
between neighbouring areas. The filter uses the diffusion
equation, in which the diffusion coefficient, instead of being a
constant scalar, is a function of image position and assumes a
tensor value (Aspert et al., 2007).
3.2. Multi-Temporal ¢° Rule-Based Rice Detection

The multi-temporal stack of terrain-geocoded ¢°

images was put into a rule-based rice detection algorithm in
MAPscape-RICE. The temporal evolution of ¢° was analyzed
from an agronomic perspective, based on prior knowledge of
rice maturity, calendar and duration and crop practices from

field information and knowledge of the study location. The
temporal signature was frequency and polarization dependent
and also relied on the crop establishment method and, to some
extent, on crop maturity. The general rules were applied to
detect rice, but that the parameters for these rules were adapted
according to the agro-ecological zone, crop practices and rice
calendar.

The choice of parameters was guided by a
simple statistical analysis of the temporal signature of ¢° values
in the monitored fields. The mean, minimum, maximum and
range of ¢° were computed for the temporal signature of each
monitored field. Further, (i) minima and (ii) maxima of those
mean o° values across fields; the (iii) maxima of the minimum
c° values across fields; the (iv) minima of the maximum. o°
value across fields; and the (v) minimum and (vi) maximum of
the range of ¢° values across fields were calculated. These six
statistics, called as temporal features, concisely characterized
the key information in the rice signatures of the observed fields,
and each one related directly to one parameter. Hence, the value
of the six temporal features from the monitoring locations at
each site were used to guide the choice of the six parameter
values based on which the rice pixels were classified and the
rice area maps were generated.

3.3. Rice Map Accuracy Assessment

A standard confusion matrix was applied to the
rice/non-rice validation points collected at each site. The overall
accuracy of the rice/non-rice classification and the kappa value
were recorded. The accuracy assessment was a comparison of
the classified rice map against ground-truth data. The spatial
resolution of the rice maps ranged from 3 m to 15 m. However,
the ANLD filtering processes reduced the effective resolution
by performing locally adaptive smoothing and edge detection.
To account for this lower resolution and the horizontal accuracy
of the handheld GPS units relative to the pixel size, the
validation data were collected in areas that had homogeneous
land cover in a 15m radius the around each GPS point for sites
considering 3m resolution of the imagery.
3.4. Rice yield estimation

The yield was estimated using ORYZA2000, a
crop growth simulation model developed by IRRI (Boumman et
al., 2001). The simulations account for water and nitrogen
dynamics based on climatic, soil conditions and
management practices. Irrigation and nitrogen fertilizer inputs
are assumed as recommended for achieving attainable yield.
LAI values at 50 days after emergence provided by the SoS
product are inferred from radar backscatter using cloud
vegetation model (Attema and Ulaby, 1978) with
parameters calibrated with in situ LAl measurements.
Inferred LAI are finally used to calibrate the relative leaf
growth rates parameters in ORYZA2000. For processing
efficiency, the spatial units for yield simulation are aggregated
to 150 meter resolution.

4. RESULTS AND DISCUSSION
4.1. Rice Area Maps
Figure 2 shows rice area maps derived from multi-
temporal X-band SAR imagery for Sivaganga,Cuddalore and
Thanjavur. Late rice and early rice were combined into one
class and distinguished them from rice in the maps. Map
accuracy considers any of the three rice subclasses as rice.
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In the rice area map generated for Cuddalore,
variability in rice crop establishment date was due to the
uncertainty in the date of water availability. The clearly
demarcated patches in the rice crop in the northern part are
water tanks that were successfully excluded from the
classification.

4.2. Rice Map Accuracy Assessment

The accuracy assessment for the rice maps was
conducted on a rice/non-rice basis, where all other land cover
types were grouped into a single non-rice class. Table 3 shows a
summary of the validation data, rice area and rice classification
accuracy. The total classified rice area across the 3 sites is more
than 1.5 lakh hectares but the proportion of the footprint area
that was classified as rice varied from 16% to 52% across
footprints. The overall classification accuracy was consistently
high (87% to 92%), with Kappa scores from 0.73 to 0.85. There
was no relationship between the classification accuracy and
either the rice area or the proportion of the footprint classified
as rice. Large, homogeneous and landscape-dominating rice
areas and small, fragmented, heterogeneous rice areas were all
classified equally well. This rich non-rice dataset can be further
exploited in the future to assess the SAR signatures of other
land cover types commonly found in rice-growing areas. The
same signatures can also be used to generate new bounding
limits (based on the temporal signatures for other crops and
urban and water surfaces, for example) to further guide
parameter selection in the rule-based classifier.
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Site | Study site Validation Rice area Accuracy
No. points and (ha) and and
date(s) of as % of Kappa
validation footprint
1 Tamil Nadu, 111, 26,015, 92%,
Cuddalore 12-02-2014 and | 16% 0.85
03-03-2014
2 Tamil Nadu, 102, 83,871, 91%,
Thanjavur 31-01-2014 and | 52% 0.82
01-02-2014
3 Tamil Nadu, 110, 41,825, 87%
Sivaganga 14-02-2014 and | 24% 0.73
21-02-2014
Points and area (ha) | 323 151,711

Figure 2. Rice Area map of Sivaganga,Cuddalore and Thanjavur
2013

Table 3.Summary of site validation visits, rice area and
accuracy assessments.

4.3. Rice yield estimation

The yield was estimated using ORYZA2000, a
crop growth simulation model. The model estimated yield based
on input data such as daily weather data, soil properties, rice
variety, water availability and crop management practices. The
model was a ‘point based’ model and was run once for each
location where a yield estimate was required. This resulted in
many thousands of runs for an area covered by a typical remote
sensing image. The ability of model to accurately estimate yield
was improved by the inclusion of rice crop parameters derived
from the remote sensing products viz., seasonal rice area, and
start of season and rice growth rate information - extracted from
the time series of images. With this information, the model can
generate a rice yield estimate for each hectare where rice was
grown in the season. These yield estimates were aggregated to
get a yield estimate per block. In turn these estimates were
compared against the average CCE vyield per block to determine
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the accuracy of the yield. In 2013 Samba season, District level,
block level and field level rice yields were estimated and yield

RISAT-1, Sentinel-1 and ALOS-2, there exists a vast scope for
rice crop monitoring and yield estimation at national level.

maps were generated across all the three sites. Block District RIICE Block District RIICE
. RIICE estimate estimate estimate
District (kg/ha) (kg/ha) (kg/ha)
Cuddalore 3816 Cuddalore Cuddalore 4064 Kumbnakona Thanjavur 4892
Viluppuram 3786
Virudhachalam Cuddalore 3542 Thanjavur Thanjavur 5092
Thiruvarur 4866
Panruti Cuddalore 3763 Thiruvaiyaru Thanjavur 4615
Thanjavur 4918
Kurinjipadi Cuddalore 3667 Orattanadu Thanjavur 5123
Ariyalur 4932
. " Udaiyarpalai .
Sivaganga 4079 Viluppuram Viluppuram 3911 yam Avriyalur 5054
Madurai 4010 Tirukkoyilur Viluppuram 3407 Avriyalur Avriyalur 4881
Table 4. Summary of rice yield estimates at district level. Ulundurpettai Viluppuram 3736 Karaikkudi | Sivaganga 4173
Pondicherry Pondicherry 4063 Tiruppattur Sivaganga 4132
Mannargudi Thiruvarur 4943 Sivaganga Sivaganga 4070
. 2 . . Manamadur .
o Valangaiman Thiruvarur 4937 ai Sivaganga 4066
:1::: = Needamangalam Thiruvarur 4630 laiyankudi Sivaganga 4002
Papanasam Thanjavur 4844 Melur Madurai 4010
Table 5. Rice yield estimates at block level.
Sl District RIICE CCE RMSE NRM | Accura
No estimate (Kg/ha) (Kg/ha) SE cy (%)
(Kg/ha) (%)
1 | Sivaganga 4079 4635 555 12.0 88.0
2 | Thanjavur 4918 5676 758 13.3 86.7
3 | Cuddalore 3816 3854 38167 1.0 99.0
4 | Thiruvarur 4866 5512 646 11.7 88.3

f\;‘_,-a’m e it ®

Figure.6.Rice yield map of Thanjavur and Sivaganga 2013

At district level an accuracy of 99% was achieved in
Cuddalore followed Sivaganga and Thanjavur respectively with
88 and 86.7%. At block level it was interesting to come across
an accuracy of 85-96% indicating the suitability of these
products for policy decisions. At field level also, significantly
higher accuracy was recorded for yield estimates derived using
ORYZA model with Remote sensing based products indicating
the scientific validation as compared to other methods of yield
prediction.

The study demonstrated that rice area could be
accurately classified with X-band HH polarization SAR images
across multiple environments and management conditions and
rice yields could be estimated by integrating ORYZA model
with Remote sensing based products. With the Current and
forthcoming SAR systems, such as CSK, TSX, RADARSAT-2,

Table 6. RIICE CCE data vs. ORYZA2000 yield estimates at
District level

SI.No Block RIICE CCE RMSE NRM Accuracy
estimate (Kg/ha) (Kg/ha) SE (%)
(Kg/ha) (%)
1 Mannargudi 4943 5512 569 10.3 89.7
2 Papanasam 4844 5060 215 4.3 95.7
3 Kumbakonan 4892 5742 850 14.8 85.2
4 Cuddalore 4064 3854 209433 5.4 94.6
5 Tiruppattur 4132 4635 503 10.8 89.2
Table 7. RIICE CCE data vs. ORYZA2000 yield estimates at
block level

5. CONCLUSIONS

The study demonstrates that regularly acquired X-
band HH SAR imagery is suitable for rice crop monitoring
across the major rice environments of South and Southeast
Asia. The consistently high accuracy of the rice area
classification across these sites demonstrates that the
methodology is appropriate for rice detection across the most
common rice agro-ecologies. The classification is based on a
temporal analysis of the spectral signature, including a detection
of agronomic flooding at the land preparation and/or seedling
stage followed by a rapid increase in biomass relative to the
duration of the vegetative stage of the varieties in the footprint.
Yield Simulation accuracy of more than 87% at district level
and 85-96% at block level from the study means that simulated
yield matched observed yield perfectly indicating the suitability
of these products for policy decisions ensuring food security
besides reducing the vulnerability of smallholder rice farmers in
India.

With the Current and forthcoming SAR systems, such
as CSK, TSX, RADARSAT-2, RISAT-1, Sentinel-1 and
ALOS-2, there exists a vast scope for rice crop monitoring and
yield estimation at national level.
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