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ABSTRACT:

Quantification of vegetation properties plays an indispensable role in assessments of ecosystem function with leaf dry mater content
(LDMC) and specific leaf area (SLA) being two important vegetation properties. Methods for fast, reliable and accurate
measurement of LDMC and SLA are still lacking. In this study, the inversion of the PROSPECT radiative transfer model was used to
estimate these two leaf parameters. Inversion of PROSPECT traditionally aims at quantifying its direct input parameters rather than
identifying the parameters which can be derived indirectly from the input parameters. The technique has been tested here to
indirectly model these parameters for the first time. Biophysical parameters such as leaf area, as well as fresh and dry weights of 137
leaf samples were measured during a field campaign in July 2013 in the mixed mountain forests of the Bavarian Forest National
Park, Germany. Reflectance and transmittance of the leaf samples were measured using an ASD field spec Il equipped with an
integrating sphere. The PROSPECT model was inverted using a look-up table (LUT) approach for the NIR/SWIR region of the
spectrum. The retrieved parameters were evaluated using their calculated R? and normalized root mean square error (\RMSE) values
with the field measurements. Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits
higher R? values (0.83 for LDMC and 0.89 for SLA) were discovered. The results indicate that the leaf traits studied can be
quantified as accurately as the direct input parameters of PROSPECT. The strong correlation between the estimated traits and the
NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy and in the landscape by

using hyperspectral remote sensing data.

1. INTRODUCTION

Researchers gain insights on the spatial and temporal
distribution of biodiversity, ecosystem services and plant
community productivity by quantifying functional diversity in
natural communities (Cadotte et al. 2009, Lavorel et al. 2011).
Better conservation and restoration decisions can be made by
measuring and understanding functional diversity (Cadotte et al.
2011). This realization has underpinned the shift in focus of
biodiversity research from species diversity to functional
diversity (Tilman 2001).

Like species diversity, functional diversity is quantified on the
basis of trait values of organisms (Petchey and Gaston 2006,
Zhang et al. 2012). A trait is any measurable morphological,
physiological or phenological feature of an organism (Violle et
al. 2007). In plants, a trait is called a functional trait when it
affects plant fitness indirectly via its impacts on plant growth,
reproduction, and survival (Violle et al. 2007). It is the
combination of plant functional traits that determines how
plants respond to environmental factors, affect other trophic
levels, and influence ecosystem processes and services (Zhang
et al. 2012). Traits also provide a link between ecosystem
functional diversity and species richness (Carlson et al. 2007,
Gregory 2008). The functional traits are increasingly used to
investigate community structure and ecosystem functioning, as
well as to classify species into functional types (Smith et al.
1997) or for to validate global vegetation models (Albert et al.
2010).

In general, plant traits can be categorized into: 1) whole-plant
traits, 2) stem and belowground traits, 3) regenerative traits and
4) leaf functional traits (Cornelissen et al. 2003). Two
fundamental leaf functional traits that are of central interest for
researchers are Leaf Dry Matter Content (LDMC) and Specific
Leaf Area (SLA) (Wilson et al. 1999, Asner et al. 2011). The
LDMC, sometimes referred to as tissue density, is the dry mass
of a leaf divided by its fresh mass, commonly expressed in mg/g
(Cornelissen et al. 2003). It reflects plant growth rate and
carbon assimilation and is a better predictor of location on an
axis of resource capture, usage and availability (Wilson et al.
1999). The SLA is defined as the leaf area per unit of dry leaf
mass usually expressed in m%kg (Cornelissen et al. 2003). It is
referred to as leaf mass per unit area, as specific leaf mass, as
well as leaf specific mass. SLA links plant carbon and water
cycles, and provides information on the spatial variation of
photosynthetic capacity and leaf nitrogen content (Pierce et al.
1994). According to the latter, “SLA is indicative of plant
physiological processes such as light capture, growth rates and
life strategies of plants”.

Several trait data bases have been established worldwide
through field measurements (e.g. Kleyer et al. 2008, Kattge et
al. 2011). However, acquiring information on such traits purely
on the basis of field measurements is labor-intensive and time-
consuming, and thus expensive. Remotely sensed data can play
a critical role in acquiring such data at broad spatial scales.
Hyperspectral remote sensing has the advantage of providing
detailed and continuous spectral information, which can
potentially be used for measuring these traits. Previous studies
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have focused on wusing hyperspectral data to quantify
biochemical and biophysical variables of vegetation, such as
chlorophyll content, nitrogen and leaf area index (e.g. Knox et
al. 2010, Skidmore et al. 2010, Asner et al. 2011, Laurent et al.
2011). Hyperspectral remote sensing has also been used to map
canopy functional and species diversity (Carlson et al. 2007,
Papes et al. 2010) and to estimate biodiversity (simply as the
number of species) (e.g. Saatchi et al. 2008, Papes et al. 2010,
Ruiliang 2011, Féret and Asner 2014). However, directly
mapping individual species from remote sensing becomes
difficult at larger scales and in ecosystems with very high
species variability. An alternative approach to mapping species
is to estimate plant functional traits, particularly those found in
tree crown leaves, and to use these for assessing and monitoring
biodiversity (Carlson et al. 2007).

The methods applied to retrieve plant traits from remote sensing
data can be grouped into statistical and physical (Darvishzadeh
et al. 2008, le Maire et al. 2008): statistical techniques are used
to find a relation between the plant trait measured in situ and its
spectral reflectance or some transformation of reflectance.
Vegetation indices are widely used in this approach. When
hyperspectral data are utilized, it is possible to select the most
informative narrow spectrum features from the entire
electromagnetic spectrum domain and use them for simple and
fast assessment of vegetation properties (Broge and Mortensen
2002). However, statistical methods are known to be site-
specific and lack generalization. An alternative is to use a
deductive or physical model approach (Radiative Transfer
Model (RTM)) inversion, which is based on physical laws.
Running an RTM in its direct or forward mode enables the
creation of a simulated training database covering a wide range
of situations and configurations. This makes RTM inversion
approaches more powerful than statistical methods. However,
the retrieval of variables through RTMs inversion is ill-posed,
since different combination of the input parameters may
produce the same spectral signature. To overcome the effect of
the ill-posed problem, Combal et al. (2003) recommended the
use of prior information. Several studies have reported
significant improvement to the accuracy of parameter retrieval
after using prior information (e.g. Malenovsky et al. 2006,
Dasgupta et al. 2009); others (Feret et al. 2011, Romero et al.
2012) have tried to exclude unrealistic combinations of input
parameters by applying a linear regression equation derived
from correlating the input parameters.

Leaf RTMs simulate leaf reflectance and transmittance by using
certain input parameters derived from leaves. There are a
number of leaf RTMs and each one requires a different number
of input parameters. One such widely applied leaf radiative
transfer model is PROSPECT (Jacquemoud and Baret 1990)
which stands for PROpriétés SPECTrales (French for Spectral
Properties). It simulates leaf reflectance and transmittance and
is the most popular leaf optical properties model of all those
published since 1990 (Jacquemoud et al. 2009).

Although much work has been done on estimating plant traits
from remote sensing, the estimation of LDMC and SLA at all
scales (i.e. leaf, canopy and landscape) is rare. To our
knowledge, the use of remote sensing techniques to estimate
LDMC has not yet been tested at any scale. Compared to other
biophysical variables, studies conducted on SLA are also
limited and have mainly been conducted using statistical
methods at a canopy scale. Lymburner et al. (2000) tested
several existing vegetation indices in order to estimate SLA
from Landsat TM imagery and found a strong correlation

between average canopy SLA and green, red, NIR and MIR
reflectance of Landsat TM data. A strong correlation between
leaf mass per area and reflectance in the 750 nm to 2,500 nm
wavelength range has been also reported for tropical rainforest
leaf samples (Asner and Martin 2008, Asner et al. 2011).
Normalized indices for leaf mass per area at leaf and canopy
scales have been developed only recently, by le Maire et al.
(2008) and Feret et al. (2011). However, these indices need to
be tested on other images, sites and canopies (le Maire et al.
2008). Physical models, which are supposed to be much more
robust than statistical approaches, have not been tested for
LDMC and SLA estimations. Our study therefore aimed to
investigate how accurately and precisely the LDMC and SLA
can be estimated in heterogeneous forests at leaf level by using
radiative transfer models, so that the application can be
extended to canopy and landscape scales.

2. DATA AND METHODS
2.1. Study area and field data collection

The area chosen for this study was the mixed mountain forest of
the Bavarian Forest National Park. It is located in south-eastern
Germany along the border with the Czech Republic (490 3’ 19”
N, 130 12° 9” E). Elevation varies from 600m to 1473m above
sea level. The climate of the region is temperate, with high
annual precipitation (1200 mm to 1800 mm) and low average
annual temperature (30 to 60 Celsius). Heavy snow cover is
characteristic of the area in winter. The soils in the area are
naturally acidic and low in nutrient content (Heurich et al.
2010).

The natural forest ecosystems of the Bavarian Forest National
Park vary with altitude: there are alluvial spruce forests in the
valleys, mixed mountain forests on the hillsides and mountain
spruce forests in the high areas. The dominant tree species
include European beech (Fagus sylvatica), Norway spruce
(Picea abies) and Fir (Abies alba). In the mixed mountain
forests Sycamore maple ( Acer pseudoplatanus L. ), Mountain
ash ( Sorbus aucuparia L. ) and Goat willow (Salix caprea) are
also found (Heurich and Neufanger 2005).

No. Species No of samples
1. European beech 44
2. Sycamore Maple 4
3. Mountain ash 3
4. Goat willow 2
5. Norway spruce 63
6. Fir 21
Total No. of samples 137

Table 1. Distribution of collected samples, by species.

A field campaign was conducted between 11 July and 23
August 2013. Considering the nature of the forest heterogeneity,
time and cost constraints, 26 plots (8 in broadleaf, 7 in conifer
and 12 in mixed stands) were randomly selected within each
forest category. Each plot was 30 by 30 meters. Leaf samples
were then collected from each tree species found in the plot
(Table 1). As the two traits of interest (SLA and LDMC) tend to
vary as one moves downward from the top of the tree, all the
samples were taken from mature sunlit leaves at the top of the
canopy. A crossbow was used to shoot down branches.
Leaves/shoots were immediately removed from the branch and
SPAD chlorophyll measurements were made for the broadleaf
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samples. The shoots of the conifer needles were classified into
three needle age classes: current growing period (C), second
growing period (C+) and three and more growing periods
(C++). The samples were then placed in a zip-locked plastic bag
together with wet pulp paper and transported to the laboratory
in a portable cooler with frozen icepacks. In the laboratory, the
leaf samples were stored in a cold dark room and processed
within the day of collection.

2.2. Laboratory measurements

2.2.1. Physical variable measurements: The biophysical
characteristics of the samples such as fresh and dry weight and
hemispherical surface area were acquired simultaneously with
the spectra measurements. The fresh weight of each sample was
determined by using a digital scale of high precision. Leaf area
of broadleaf samples was measured using the LI-3000C portable
leaf area meter. In the case of the conifer needles, the surface of
the sample needles was scanned using an HP double lamp
desktop scanner at a resolution of 1200 dpi; the needle
projections were computed from the greyscale images using
ImageJ image processing software (which is freely available
online). Norway spruce needles are cylindrical and therefore
their total surface was first computed as a projected area
multiplied by a universal conversion factor of 2.57 derived
experimentally for Norway spruce needles (Waring 1983).
Then, the total needle surface area was divided by two to
acquire the hemispherical-surface projection of sampled spruce
needles. Finally, the samples were oven-dried at 65°C for 48
hours and their dry biomass was weighed. The leaf traits were
then computed using the sample leaves or needles area, fresh
weight and dry weight. The summary statistics of all the
measured variables are presented in Table 2.

Basic Cn Cw LDMC SLA
statistics ~ (g/cm?)  (g/em®) (mglg) (cm?/g)
Minimum  0.0034 0.0063 337.3 34.36
Maximum  0.0291  0.0337 598.4 294.09
Mean 0.0140  0.017 455.2 93.45
St. dev 0.0030 0.0032 4295 2458

Table 2. Summary statistics of the measured variables in leaf
samples. The leaf dry matter content (LDMC), leaf mass per
area (Cm), Specific leaf area (SLAZ and leaf water content (Cw)

were calculated as LDMC :%, Cm:%, SLA:EL and
Cw= ':wi;,:w:' where W and Wd stand for a given sample’s

fresh weight and dry weight respectively and A is sample leaf
area. Total number of samples is 137.

2.2.2. Spectral measurements: hemispherical reflectance and
transmittance from 350-2500 nm with 1 nm spectral resolution
were measured using a FieldSpec ®3 portable
spectroradiometer equipped with an integrating sphere
manufactured by Analytical Spectral Devices, Inc (ASD), USA.
The spectral measurement for each sample was obtained by
averaging the spectra on 10 randomly selected leaves in the case
of broadleaf species and on 12-16 needles for conifers. Care
was taken to avoid large primary and secondary veins during the
spectral measurement. In order to minimize the effect of signal
variance, two hundred scans were averaged in every spectra
measurement to a single spectrum. A calibrated reference
standard (with approximately 99% reflectance) was used to
convert raw radiance to reflectance.

Whereas the spectral measurement of broadleaf material is
straightforward, the spectral measurement of conifer needles is
not. This is because the conifer needles are very small and do
not cover the sample port of the integrating sphere, which has a
port diameter of 15 mm for reflectance and 13.5 mm for
transmittance. Therefore, the technique first developed by
Daughtry et al. (1989) and later revised by (Mesarch et al.
1999) was applied to measure the spectral property of the
conifer needles. A universal sample holder that could
accommodate all lengths of conifer needles was designed,
following Malenovsky et al. (2006). Needles were detached
from each sample shoot, placed on the sample holder, secured
with scotch tape and leaving a space of approximately one
needle’s width between needles to avoid multiple reflectance
from adjacent needles (Daughtry et al. 1989). The sample
holder was carefully placed at the sample port of the integrating
sphere, and reflectance and transmittance spectra were acquired
following the port configuration procedures of the ASD
integrating sphere.

A black painted paper mask with a 15 mm diameter circular
aperture was precisely superimposed on the samples and
photographs were taken using a 16.1 mega pixel Panasonic
DCM-TZ35 camera. Then the gap fraction (GF) between
illuminated needles was calculated based on the illuminated
area of the sample port, which was 9 mm diameter for both
reflectance and transmittance. The illuminated areas of the
samples were clipped by drawing a circle of 9 mm diameter at
the canter of each picture. The proportion of pixels with gaps
between needles was then determined by dividing the number of
pixels with gaps into the total number of pixels found in the 9
mm circular aperture area using ImageJ software. Then, the
following equations (Eq.1 and 2) were adapted from Mesarch et
al. (1999) for the Field spec ASD spectrometer, to compute
reflectance and transmittance of the sampled needles.

:u—F.dl k]
L1—Rd 4
Reflectance = L—I}E‘Rd 1)
- 1
. — (PwGF) | —=Rr
Transmittance :I(i—ﬂﬂj (P f'-| 1-GF @)

where p and 7t are measured sample reflectance and
transmittance, Rd is stray light (measured in reflectance mode),

Br js reference of sample reflectance, GF is the gap fraction of
the sample, and Pw is the reflectance of the integrating sphere
wall. Stray light (ambient light) inside the integrating sphere
was measured as a radiation flux of the empty illuminated

sample port in reflectance mode. The reflectance of the
Ftn

integrating sphere wall was determined by: PW = i—-Fn"~ where
Ftn and Fn are radiance measurements in transmittance and
reflectance modes with no sample (Daughtry et al. 1989).

Through visual inspection, spectral measurements in the ranges
of 350-400 and 2351-2500 were found to be noisy and were
removed from all spectral datasets. The Savitzky—Golay
smoothing filter (Savitzky and Golay 1964) with a second order
polynomial function and bandwidth of 15 nm was applied, to
eliminate random noise within the reflectance and transmittance
spectral signatures.

2.3. PROSPECT model simulation

To thoroughly test the accuracy and robustness of physical (i.e.
deductive) models, it is necessary to have a large volume of
varied data. Obtaining this data by measuring real leaves, would
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be very laborious. A solution is to use radiative transfer models
(RTM) to generate a large spectral dataset incorporating a wide
range of parameters and variability. Leaf RTMs simulate leaf
reflectance and transmittance properties by using specific input
parameters derived from leaves. The most popular RTM for leaf
parameters is the PROSPECT leaf optical properties model
(Jacquemoud et al. 2009). It idealizes a leaf as a stack of plates
composed of absorbing and diffusing constituents. It simulates
leaf optical properties (i.e. reflectance and transmittance)
parameterized by the following inputs: chlorophyll content (C,,)
in pg/cm?, leaf dry mass per unit area (C,) in mg/cm?, leaf
water mass per unit area (C,,) in mg/cm?, and effective number
of leaf layers (N) (Jacquemoud and Baret 1990). The model has
been widely applied to broadleaf vegetation to estimate
chlorophyll content (Zhang et al. 2008, Ma et al. 2012, Rivera
et al. 2013). It has also been successfully recalibrated and used
to simulate the optical properties of coniferous needles
(Malenovsky et al. 2008, Morsdorf et al. 2009).The model was
revised by Feret et al. (2008) to improve its performance and
applicability.

PROSPECT 4 was used to simulate leaf reflectance and
transmittance. SLA (cm?mg) was computed as 1/Cy,. Since
LDMC is the amount of leaf dry weight per unit of fresh leaf
mass, this parameter was derived from C,, and C,,. Equations
(3)-(6) show the derivation of LDMC from C,, and C,:

Wy

LDMC = (©)
W, —1W,

Ly =—L— )
W,

Com = TA (5)

By reformulating eq.4 and eq. 5 for Wy and Wk

A f—
LDMC = —2— (6)

where LDMC is leaf dry matter content in mg/g, C,, is leaf
water mass per area in mg/cm?, Cp, is leaf dry mass per area in
cm?/mg, Wy and W are leaf dry and fresh weights in mg and g
respectively and A is leaf area in cm?.

Many studies have confirmed that wavelengths in the visible
and near infrared region (400-800nm) are highly sensitive to
leaf pigments such as chlorophylls and carotenoids, while the
shortwave infrared region is the most sensitive region for
retrieving parameters related to dry matter(Jacquemoud et al.
1996, Asner et al. 2009, Asner et al. 2011, Romero et al. 2012).
Therefore, the spectral region from 800 to 2350 nm was used to
retrieve LDMC and SLA.

2.3.1. Generation of look-up tables: Various inversion
algorithms can be used to retrieve a given parameter through
RTMs. One of the most popular and efficient is the Look-Up
Table (LUT) approach (Dasgupta et al. 2009). It involves
performing repeated simulations of spectra by using the model
with all combinations of the input parameters constrained by
reasonable ranges of the input variables. The LUT is then
inverted during retrievals.

We followed the general procedures set by Feret et al. (2008) in
the LUT generation and inversion. The first step was to
determine the structural input parameter N, which was not
collected in the field or measured in laboratory. The
wavelength-independent parameter N was retrieved for each
sample by inverting the model by using simulation at three
wavelengths corresponding to maximum reflectance, maximum

transmittance and minimum absorption (Jacquemoud and Baret
1990, Feret et al. 2008). Although leaf structure parameter N
corresponds to the number of leaf layers and is most plausible
as a whole number, to take account of the subtle variations in
leaf structure, N can be considered as a real number with
continuous values (Jacquemoud et al. 1996). To start the
simulation the maximum and minimum values found in the
literature were used for the range of N. Therefore, N was set
between 0.5 and 3.0 ( Combal et al. (2003), Malenovsky et al.
(2006), Feret et al. (2011)). The structural parameter N was
then retrieved using the simulated spectra which best fit the
measured spectra of each sample. The search for best simulation
was determined by using eq.7 through calculating and finding
the lowest root mean square error of an unconstrained non-
linear multivariate function (Coleman and Li 1996):

||E)_[':pmss— pzim) T+ tmes—tzim) ]

J . 7)

My =

where n is the number of wavelengths selected (three in this
case), pmes and Tmes are measured values of reflectance
and transmittance, and psim and Tsim are simulated values
of the three wavelengths{(4].

Before using the PROSPECT model for simulation, it may be
necessary to calibrate physical and optical constants such as the
refractive index and absorption coefficients of leaf material with
experimental data (Feret et al. 2008). Thus, forward simulations
were first conducted using the retrieved N values and input
parameters corresponding to 38 broadleaf and 56 conifer needle
samples randomly selected from the total sample. The suitability
of the original PROSPECT model had been verified by
calculating the RMSE between measured and simulated spectra
of the selected samples. The RMSE was within the range of
RMSEs documented in the literature. As a result,
PROSPECT_4 was applied directly, without calibration, to
simulate the spectra of the different types of sample leaves and
needles.

To generate the LUTSs, the PROSPECT model was run in the
forward mode. The maximum and minimum values of the input
parameters were set based on prior information (Table 2 and 3).
During all simulations, chlorophyll content was arbitrarily set to
40pg/cm?. All possible combinations of the input variables were
systematically used to generate LUT records.

2.3.2. Model inversion and validation: The PROSPECT input
parameters (N, C,, and C,,) and the two leaf functional traits
(LDMC and SLA) were simultaneously retrieved by searching
the best matches to the measured spectra in the generated LUT.
The LUT was inverted by using the sum of residuals per
variance of the input parameters as a constraint in addition to
measuring the similarities between the observed and simulated
spectra (eq. 8) (Combal et al. 2003, Lauvernet et al. 2008,
Jacquemoud et al. 2009). The estimations of all the variables
except structural parameter N were made using all available
wavelengths in the NIR and SWIR (801-2350).

(b

(pmes— peim)?* [Tmes—TEim)?
My =%; +E1 : +Za

Eﬁ HLZE E’l‘ﬂl &5

— 8
-'_'ﬂ_nms-s ( )
where V; is the estimated value of the simultaneously retrieved
variables such as Cy, C,, LDMC, SLA and N, V" is the
measured prior value of the variable j (means) in Table 2 and
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Table 4, @;me: and ai,.. are the variance of the measured
reflectance and transmittance respectively and trﬁlmgs is the
variance of the measured input variable j. The estimated
parameters were then plotted against the measured leaf trait
concentrations and evaluated by means of root mean square
error (RMSE); normalized RMSE (nRMSE) was calculated as
RMSE divided by the mean of the given variable and coefficient
of determination (R?).

3. RESULTS

3.1. Estimation of the structural parameter N and model
suitability

t Fir

Beech Maple g/l . Norway Spruce
C C+ C++ C

sh C+ C++

Mean 1.42 1.43
Min 1.00 1.20

170 163 1.69 1.89 1.47 1.50 1.56
1.60 1.35 1.45 150 1.00 1.15 1.20
Max 1.80 1.60 1.85 205 200 225 220 210 2.20
St.d 0.16 0.17 0.13 0.23 0.20 0.25 0.28 0.23 0.27

Table 3. Descriptive statistics of the structural parameter N
values for sampled trees as retrieved by inversion of the
PROSPECT-4 model at three selected wavelengths in the
infrared region.

60 60
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Figure 3: comparison of minimum, mean and maximum leaf
reflectance (left) and transmittance (right) of measured (Mes)
and PROSPECT simulated (Sim) spectra for all 137 samples
collected in the mixed mountain forests of the Bavarian Forest
National Park.

The reflectance and transmittance spectral information at three
wavelengths together with corresponding C,, and C,, values
were used to define the unknown structural parameter N for
each sample. The estimated values of N range from 1 to 2.25.
The maximum N value was recorded for the C++ age class of fir
tree, while the minimum values were observed in Norway
spruce C age class needles and European beech leaves. The
average N values were 1.74 for Fir and 1.5 for Norway spruce.
Among the broadleaf species, a higher mean value of N (1.7)
was observed in Mountain ash (Table 3).

In order to evaluate the suitability of the leaf model, we
calculated R? and the RMSE between measured spectra and the
corresponding simulated spectra. The hemispherical reflectance
and transmittance measured in laboratory and simulated using
the PROSPECT-4 leaf model are illustrated in Figure 3. Both
the reflectance and transmittance signatures showed good
matching throughout the NIR-SWIR region. Greater
disagreement (RMSE close to 3.5%) was observed in the
wavelength range from 1900 to 2350 nm (Figure 4) for both
reflectance and transmittance. The mean RMSE for both
reflectance and transmittance was near 2%. Mean spectral

values also showed the resemblance of the simulated spectra to
the measured spectral information. Nevertheless, more
deviations between the measured and simulated mean values
were observed for reflectance than for transmittance.

Figure 4. Root Mean Square
Errors (RMSE) computed
between the measured and
PROSPECT simulated
reflectance and transmittance
for the leaf and needle
samples.

—Reflectance

- Transmittance]

RMSE (%)

1.0
500 1000 1200 1400 1600 1500 2000 2200
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3.2. Retrieval of traits by inversion and evaluation

The LUTs were used to search for the matches of all the input
variables and the two traits (i.e. LDMC and SLA) using
equations 8. In most cases, the lowest nRMSE was observed for
LDMC. Despite over estimation of lower and underestimation
of higher values in some cases, the retrieved values were close
to one to one relationship line with the measured values in the
scatter plots (Figure 5). The lowest nRMSE was observed in all
samples for LDMC (table 4). In most cases, the correlation
coefficient between retrieved and measures SLA was higher
than LDMC, but the forecast precision of LDMC is better than
that of SLA.

Variable RMSE  nRMSE Regression Equation
Cm 0.0033  0.2143  y=0.63x + 0.0047
Cw 0.0036  0.1925 y=0.72x +0.0041
SLA 21.73 02599 y=0.77x+16
LDMC 40.8 0.0899 y=0.65x+ 130

Table 4. Root mean square error (RMSE), normalized RMSE
(nNRMSE) and regression equations between observed and
estimated values of C,,, C,, SLA and LDMC from inversion of

the PROSPECT model.
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Figure 5. Actual vs retrieved C,,, C,,, SLA and LDMC. The
solid line shows thel:1 relation.

4. DISCUSSION AND CONCLUSIONS

This study quantifies and estimates two important leaf
functional traits: SLA and LDMC. These traits, which are not
widely addressed in the field of remote sensing, can be
accurately derived from the input parameters of the PROSPECT
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radiative transfer model. The model’s performance was
evaluated for samples from mixed forest. The results indicate
that the PROSPECT _4 leaf model accurately simulates spectral
information of samples from mixed mountain forests and can be
used to retrieve the biochemical content of leaves/needles
directly and indirectly through inversion. In some cases, we
found higher accuracies for the indirect estimated variables than
for the direct input variables of the model, which further
supports the reliability of the indirect retrieval approach.

The values of the structural parameter N in fir tree needles of
three seasons or older were high compared to the N values of
the younger needles. This can be attributed to the lower water
content in the older leaves and confirms earlier findings by
Jacquemoud et al. (1996), who stated that for the same species,
N estimated on dry leaves is higher than the N estimated for
fresh leaves, due to an increase of multiple scattering resulting
from the loss of water. Our estimated values of the structural
parameter N fit well within the known range (1.0-2.5) for a
wide variety of species (Jacquemoud and Baret 1990).
However, Malenovsky et al. (2006) found higher values (1.72-
2.63) of N for Norway spruce; this might be because of site-
specific nature of the parameter. The mean value of 1.42 for
beech trees also agrees with the results of Demarez et al.
(1999), who studied the seasonal variation of N for selected
broadleaf tree species.

The RMSE and range values for C,, were within the range
reported by Asner et al. (2011), who estimated the C,, for 2871
samples collected from heterogeneous humid tropical rain
forests. However, our estimation of C,, and C,, yielded a
relatively less accurate result (RMSE = 0.0032 and 0.0033) for
conifer needles than the estimates obtained by Malenovsky et
al. (2006), who studied Norway spruce needle samples by using
the spectral range of 450-110nm. This is probably because the
latter study was on mono species while in our samples there are
a couple of conifer species. The high RMSE between the
measured and simulated spectra in the SWIRrange (Figure 3)
might be also the other cause.

Our results also showed remarkable variation in SLA values
between broadleaf and conifer samples. Our estimation of SLA
yielded a RMSE value of 21.7 cm?/g, which is close to the
results reported by Asner and Martin (2008) (RMSE = 15.05
cm?/g for reflectance and 16.01cm?/g for transmittance). The
SLA estimation value of R? (0.89) also agreed with the results
of Lymburner et al. (2000). However, their study was at canopy
scale and they used a few bands of the LANDSAT TM satellite
image in the NIR and SWIR regions. The high value of NRMSE
for SLA, particularly in the unconstrained approach, is
attributable to the accumulation of errors during the inversion
procedures. In general, the leaf trait LDMC was more accurately
estimated than the other variables investigated in this study.
One possible reason for such accurate estimate of LDMC could
be the relatively smaller errors introduced during LDMC field
measurement. It seems to be more challenging to measure C,,
Cy and SLA reliably in the field, partly due to errors related to
measuring the area of samples.

The results of the model inversion highlight the reliability and
feasibility of using remote sensing data for estimation of leaf
traits. The comparison of the spectral-based results of this study
with field measurements indicates the potential of remote
sensing data to estimate leaf traits over a range of vegetation
types. This leaf-level result indicates that leaf traits, especially
SLA and LDMC, are quantitatively represented by leaf spectra.

Previous studies focused on the estimation of some or all of the
direct input variables from PROSPECT model few bands of the
visible and near infrared regions of the spectra. Here we have
shown that model inversion from a wide spectral range can
provide indirect and direct estimates of multiple leaf traits for
mixed mountain forests. Most importantly, this leaf-level
analysis offers a basis to test the possible gains and losses
incurred in scaling up to the canopy and landscape scale.

In this study we have demonstrated the inversion results from
the wavelength range from 801-2350 nm. Inversion based on
selected spectral bands (not shown here) does not improve the
retrieval accuracy. This is because of the informative nature of
the whole shortwave spectral region for estimating variables
related to leaf dry matter and thickness. Similar results have
been reported in the tropical rain forest when using the soil leaf
canopy model (Asner et al. 2009).

The determination of SLA, C, and C,, requires accurate
measurements of leaf area. But the calculation of areas of
irregular shape, particularly conifer needles, is prone to error.
Errors are introduced — particularly when calculating the area of
conifer needle samples — by the shadow effect while scanning
samples, while classifying the scanned images to binary format,
while rounding off pixels, by the correction factor used and by
other procedures. Studies showed that the shape of the Norway
spruce needles vary for different age classes and need different
conversion factors (Homolova et al. 2013). But we simply used
a universal conversion factor from literature which could be
source of error. Although it is not possible to avoid all these
errors, in future studies efforts should be made to develop
simple and fast techniques for computing needle area and for
optical property measurement of narrow leaf samples by using
the integrating sphere.

In general, our results have confirmed that two important leaf
functional traits are measurable with spectral information. This
in turn highlights the potential to extend the study to canopy
and landscape scales by using advanced hyperspectral airborne
and spaceborne sensors.
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