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Abstract 
How long a river remembers its past is still an open question. Perturbations occurring in 
large catchments may impact the flow regime for several weeks and months, therefore 
providing a physical explanation for the occasional tendency of floods to occur in 
clusters. The research question explored in this paper may be stated as follows: can 
higher than usual river discharges in the low flow season be associated to a higher 
probability of floods in the subsequent high flow season? The physical explanation for 
such association may be related to the presence of higher soil moisture storage at the 
beginning of the high flow season, which may induce lower infiltration rates and 
therefore higher river runoff. Another possible explanation is persistence of climate, due 
to presence of long-term properties in atmospheric circulation. We focus on the Po 
River at Pontelagoscuro, whose catchment area amounts to 71000 km2. We look at the 
stochastic connection between average river flows in the pre-flood season and the peak 
flows in the flood season by using a bivariate probability distribution. We found that the 
shape of the flood frequency distribution is significantly impacted by the river flow 
regime in the low flow season. The proposed technique, which can be classified as a 
data assimilation approach, may allow one to reduce the uncertainty associated to the 
estimation of the flood probability. 
 
 
Introduction 

Perturbations occurring in large catchments may impact the flow regime for several 
weeks and months, therefore providing a physical explanation for the occasional 
tendency of floods to occur in clusters (Montanari, 2012). In the Po river, for instance, it 
has been observed that some flood events have been preceded by long lasting average 
flows. The physical explanation for such association may be related to the presence of 
higher than usual soil moisture storage, which may induce lower infiltration rates and 
therefore higher river runoff. Another possible explanation is persistence of climate, due 
to presence of long-term properties in atmospheric circulation.  

It is well known that river flows are affected by forms of persistence that are not 
fully understood yet (O’Connell et al., 2015). These are referred to as the “Hurst 
Phenomenon”, or the “Hurst Effect”. The Hurst Effect has been physically explained as 
an implication of the principle of maximum entropy (Koutsoyiannis 2011, 2014) and 
implies the presence of long-term cycles over a multitude of time scales. Therefore, the 
presence of long memory is connected to the possible occurrence of long-term cycles 
that imply the persistence of high and extreme flows. 
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With the idea that extreme floods may be induced by long term stress, rather than a 
short sequence of extreme rainfall, this paper explores the following research question: 
can higher than usual river discharges in the low flow season be associated to a higher 
probability of floods in the subsequent high flow season?. An application in the Po 
River is carried out in order to set up a methodology to update the uncertainty 
associated to the estimation of flood occurrence probability. 
 
Study site and data sources 

The Po River whose catchment has an area of about 71 000 km2 is the longest river 
entirely flowing in the Italian Peninsula (Fig. 1). The average annual precipitation in the 
catchment is 78 km3, of which 60% reaches the closure river cross-section at 
Pontelagoscuro where the mean annual flow is about 1470 m3s-1. An intense 
exploitation of water resources for irrigation, hydro-power production, civil and 
industrial use is found in the catchment. Even though the situation is currently 
sustainable on average, it might be problematic during drought periods (Montanari, 
2012). The hydrological behavior of the Po River is described in detail in recent studies 
(Zanchettin et al., 2008; Montanari, 2012; Zampieri et al., 2015).  

Daily discharge time series for the Po River Basin in Pontelagoscuro were analyzed 
in this study. The observation period of the complete series was 1920-2009. The 
discharge pattern shows a typical pluvial regime and thus a strong seasonality with two 
flood seasons in spring and autumn (Fig. 2). 
 

 

 
Figure 1. Po River Basin. Location (left), drainage network and closure section at Pontelagoscuro (right). 
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Figure 2. Daily mean value µQ (m3s-1) and daily standard deviation σQ (m3s-1) of the daily flows in the 
observation period (1920-2009) at Pontelagoscuro  

 
 
Bivariate probability distribution fitting 

In order to look at the stochastic connection between the average river flows in the pre-
flood season and the peak flows in the flood season a bivariate probability distribution 
function is fitted to observed datasets. In what follows, random variables and their 
outcomes are identified with bold and un-bold characters, respectively. The yearly 
random variables included in the analysis were: 

- Monthly mean flow in the pre-flood season, Qm. 
- Peak flow in the flood season, Qp. 

First, the time series Qm(t) and Qp(t) with sample size n, where n is the number of 
years in the observation period, are extracted from the observed datasets. Then, the 
Normal Quantile Transform (NQT) is applied in order to make their marginal 
probability distributions Gaussian, therefore obtaining the normalized observations 
NQm(t) and NQp(t). A detailed description of the application of the NQT in hydrological 
studies can be found in the literature (e.g. Moran, 1970; Montanari and Brath, 2004; 
Montanari, 2005; Montanari and Grossi, 2008; Bogner et al., 2012). 

Finally, a bivariate Gaussian distribution function between both canonical Gaussian 
random variables is fitted. The parameters of the distribution are the mean µ(NQm)=0 
and µ(NQp)=0) and the standard deviation σ(NQm)=1 and σ(NQp)=1) of the normalized 
series, and the Pearson’s cross correlation coefficient between both normalized series, 
ρ(NQm, NQp). In the presence of dependence between NQm and NQp, the correlation 
coefficient will be significantly different from zero. The bivariate Gaussian distribution 
implies that, for an arbitrary (observed) NQm(t), the probability distribution of NQp is 
Gaussian, with parameters (Eq. 1 and 2): 

µ (NQp) = ρ(NQm, NQp)⋅NQm(t)    (Eq. 1) 
σ (NQp) = (1-ρ2(NQm, NQp)) 0.5    (Eq. 2) 

Then, by taking the inverse of the NQT one can infer the updated probability 
distribution of Qp conditioned to the observed outcome Qm(t). Therefore, once the 
parameters of the distribution are computed, the probability distribution of the peak 
flow can be updated after observing the average flow in the considered low flow season. 

The following two main assumptions are applied in this study. 1) The peak flows 
season covers the months of October and November in the Po River. Thus, the low flow 
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season is assessed in the previous months to the peak flows season (July-September). 
Nevertheless, the methodology allows the user to select the seasons arbitrarily so that it 
can be applied to any other study site or hydrological regime. 2) For the sake of 
comparison, peak flows can be adequately modeled through the EV1 distribution. 

In order to infer the actual impact of the dependence between peak flows and average 
flow in the low flow season, the unconditioned flood frequency distribution and the 
updated distributions inferred for several levels higher-than-average values of mean 
flow (e.g. 70%, 80% and 95% quantiles) in the pre-flood season were compared. 
 
Results 

The correlation coefficient between NQp and NQm was calculated by considering 
different observation periods for Qm. In detail, we assumed that Qm is given by the 
monthly mean flow in each of the 9 months preceding the high flow season (from 
September to January). Table 1 shows the decrease in the correlation coefficient as the 
considered low flow period moves backward, as one would expect. 
 

ρ(NQm, NQp) 
September August July June May April March February January 

0.24 0.18 0.06 0.02 -0.06 -0.13 -0.18 -0.04 -0.07 
Table 1. Correlation coefficient between NQp and NQm for varying low flow season in the abscissa  
 

The effect of the identified dependence on peak flow estimation, for an assigned 
return period, is shown in Fig. 3 for three different levels of mean flow (70%, 80% and 
95% quantiles) in the considered pre-flood season. The probability distribution 
functions (pdf) of the normalized observed variable, NQp, with mean zero and standard 
deviation 1 is also displayed for the sake of comparison and denoted as unconditioned 
in Fig. 3. We can appreciate that the higher the cross correlation value, the lower the 
variability in the distribution of the normalized dependent variable and the higher the 
mean value. For example, when estimating the probability distribution of NQp 
conditioned to the occurrence of the 95th quantile value in the normalized mean flow in 
September, the pdf is centered around a mean vaue of 0.4 and presents a standard 
deviation of 0.97. In contrast, if one attempts to estimate the probability distribution of 
NQp conditioned to the occurrence of the 95th quantile of the normalized mean flow in 
June, no significant change is found in the estimate with respect to the unconditioned 
distribution. In fact, the resulting probability density function (pdf) for NQp is centered 
around a mean value of 0.03 with a standard deviation of 0.998. In what follows, 
September was selected as the pre-flood season in the study site. 

Once a pre-flood season was identified it is possible to update the flood frequency 
distribution after the observation of Qm(t). Figure 4 shows the comparison between the 
unconditioned flood frequency distribution and the simulated updated distributions 
when the flow in September is higher than usual (70%, 80% and 95% quantile). For 
example, the unconditioned expected flood for a return period of 200 years, 12507 m3s-

1, increases up to 13790 m3s-1 when the mean flow in September corresponds to its 95% 
quantile). 
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Figure 3. Probability distribution functions of the normalized dependent variable (NQp) conditioned to 
the occurrence of the 70th, 80th and 95th percentiles of the normalized variables in the pre-flood season. 
 
 

 
Figure 4. Peak flows in the flood season (Oct-Nov) vs return period modeled through the EV1 
distribution function.  

 
 
Conclusions 

We found that the peak flow of the Po River is dependent on the average flow of the 
pre-flood season. Thus, we conclude that it is possible to update the flood frequency 
distribution basing on discharge observations during the low flow season. To this end, 
we use a bivariate Gaussian distribution function to model the above dependence. The 
methodology herein proposed can be applied to any other study site once the flood 
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season is identified and the parameters of the bivariate distribution confirm the presence 
of the above stochastic dependence. 
Several possible physical explanation can be postulated for the sensitivity of the peak 
flow to the mean discharge in the preceding low flow season, such as the impact of the 
catchment storage or soil moisture, which in turn impact the formation of net rainfall, 
and the existence of memory in the weather. Current research is focusing on gaining a 
better understanding of the processes leading to the formation of the flood flows and in 
particular the related weather dynamics. Furthermore, we are carrying out experiments 
on several other rivers in the attempt to relate the above dependence to catchment 
properties. 
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