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Abstract: Evaluation and prediction of groundwater levels via models can help manage groundwater resources. To 

investigate and predict the variation of groundwater dynamics in the plain of Shijiazhuang, the capital city of Hebei, 

three different data-driven models for researching the dynamics are assessed, including Multiple Linear Regression 

(MLR), Back-Propagation Artificial Neural Network (BPANN) and Support Vector Machines (SVM). Groundwater 

depth, precipitation, evaporation, groundwater exploitation, grain yield and Gross Domestic Product (GDP) records 

from 1984 to 2013 are used. We discuss the modeling process and accuracy of the three methods in the assessment of 

their relative advantages and disadvantages, based on Absolute Error (ABE), Relative Error (RE), Maximum Error (ME) 

and Average Error (AVE). The results showed that both SVM and BPANN models had sufficiently high accuracy in 

reproducing groundwater levels, while SVM performed better. This may provide a method and reference for 

forecasting of groundwater resources in this region. 
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1. Introduction 
   In arid and semi-arid regions like North China, groundwater plays a more important role in 

agricultural, industrial and environmental uses than other regions. Because groundwater can cover the 

shortage of water which is caused by uneven distribution of surface water in time and space (Cao et al, 

2013). However, the groundwater level has decreased dramatically because of over-exploitation in 

North China, which has been one of the most serious overdraft areas (Yuan and Shen, 2013). This 

phenomenon has attracted researchers’ extensive attentions.  

Groundwater dynamic forecasting is an important method for groundwater management. Physical 

descriptive model and data-driven model are two classes of dynamic prediction models (Knotters and 

Bierkens, 2000). However, considering the detailed data requirements in the application of the 

physical descriptive model, the data-driven model is a good choice when the data are in short and the 

groundwater system is complex. Multiple Linear Regression (MLR), Back-Propagation Artificial 

Neural Network (BPANN) and Support Vector Machines (SVM) are popular data-driven models used 

for forecasting the groundwater level (Coppola et al, 2003; Lin et al, 2006; Shiri et al, 2013). Among 

these methods, MLR is a linear regression model and the simplest one, while the other two models are 

nonlinear regression model and more complex. Some studies indicate that BPANN model and SVM 

model perform better, especially the SVM model (Nayak et al, 2006; Shirmohammadi et al, 2013), but 

the predictions of these two models are not always good for all places due to the complexity of 

hydrogeological conditions and groundwater flow in different regions (Ping et al, 2013). 

Shijiazhuang is the capital city of Hebei province in North China. The groundwater level declines 

about 30m during the past three decades in this city. There are some studies focusing on the reason 

why the groundwater level declines continuously and the negative effects caused by the decrease of 

groundwater level in Hebei province and North China plain. However, there is little research done on 

the selection of the data-driven models for groundwater dynamical prediction in Shijiazhuang plain.  

In this study, MLR, BPANN and SVM models are used to forecast the groundwater depth and the 

prediction accuracy of these three models is compared. Natural, anthropic, biological and economic 

factors which may influence the groundwater depth are considered. It can provide a new method for 

the groundwater dynamical prediction in Shijiazhuang plain, and it can also be treated as a 

complement for research methods of the groundwater forecasting. 

 

2. Study area and methods 

2.1 Study area 
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Shijiazhuang plain (from lat 37°33′ to lat 38°42′N and from long 113°18′ to long 114°41′E) is 

located in central and eastern Hebei province and belongs to the Bohai Sea Economic Zone. The total 

area is 8157 km
2
. The average annual prediction is about 490 mm and average air temperature ranges 

from -0.8°C in the winter season to 25.9°C in the summer season. The plain comprises Shijiazhuang 

city and 13 counties, including Xingtang, Luquan, Yuanshi, Gaoyi, Xinle, zhengding, Luancheng, 

Zhaoxian, Wuji, Gaocheng, Jinzhou, Xinji and Shenze. The location of the study area and the 

distribution of the monitoring wells and meteorological stations are showed in figure 1. 

2.2 Data and indices 

   14 monitoring wells covering the whole study are are chosen to study the groundwater dynamic 

variations. The observational data of annual groundwater depth for the 14 monitoring wells, annual 

precipitation and evaporation data at 13 meteorological stations from 1984 to 2013 are used in this 

study. Data of the annual groundwater exploitation, grain yield and Gross Domestic Product (GDP) 

for the whole study area are obtained from 1984 to 2013. The observational data of precipitation and 

evaporation are provided by the National Meteorological Information Center of China Meteorological 

Administration (available at http://www.nmic.gov.cn/).  

Prediction, evaporation, groundwater exploitation, grain yield and GDP are chosen to be the key 

factors, which are closely related to groundwater dynamic changes. Prediction and evaporation are 

main natural factors which influence groundwater recharge and loss. Groundwater exploitation is main 

anthropic factor which is the major reason for groundwater descending in the study area in recent 

decades (Liu et al, 2001). Grain yield is the main biological factor which reflects the crop water 

consumption, especially groundwater consumption in the study area (Cao et al, 2014). GDP is a 

comprehensive index of reflecting the regional economic strength and pressure of groundwater used.  

 
Fig. 1 Location of the study area and the distribution of the monitoring wells and meteorological stations 

2.3 MLR model 

The MLR model is often used for prediction by establishing the relationship between the forecast 

factors and the forecast objects. The general equation is as follows: 

 
NN xpxppy +++= 110 ˆ  (1) 

Where pk (k=0,…,N) are the parameters generally estimated by least squares and xk (k=1,…,N) are the 

explanatory variables (forecast factors). ŷ  is the forecast object. 

2.4 BPANN model 
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   The Artificial Neural Network (ANN) is an information processing system composed of many 

nonlinear and densely interconnected processing elements or neurons, which is patterned after the 

biological nervous system. This mathematical structure consists of input, hidden, and output layers 

with their nodes and activation functions. The back-propagation algorithm can effectively train the 

network (Rumelhart et al, 1986), and it does not require information about the complex nature of the 

underlying process under consideration to be explicitly described in mathematical form. If the neuron 

is the jth one in the present layer, while the inputs which it receives from the other n neurons are x1, 

x2,……,xn, respectively in the previous layer. The connection weights between the jth neuron and the 

other n neurons are w1j, w2j,……, wnj, respectively. The mathematical expression is as follows: 

 

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 (2) 

   In this study, the ANN model is built with one hidden layer trained by BPA .The activation 

function consists of a log-sigmoid function in the hidden layer and a linear function in the output layer. 

ANNs with this configuration are the most commonly used form, which have improved the 

extrapolation ability. The input layer, hidden layer and output layer have respectively five nodes, thirty 

nodes and one node. To avoid being captured in some minimum, a momentum term is added in the 

weight updating process, which diminishes drastic fluctuation in weight changes over consecutive 

iterations. 

2.5 SVM model 
The SVM model is based on Vapnik-Chervonenkis (VC) demension and structural risk minimum 

principle (Vapnik, 1995; Vapnik, 1998). SVM provides a new approach to solve the nonlinear and high 

dimension problem with small sample set. The basic idea of SVM is to use linear model to implement 

nonlinear class boundaries through some nonlinear mapping of the input vector into the 

high-dimensional feature space. Given a set of N samples of N

ky, 1kk }{ x  ( kx is the input vector,  ky is 

the corresponding output value), and the regression function of SVM can be expressed as: 

 bfy  )()( xwx   (3) 

Where   denotes a nonlinear transfer function that maps the input vectors into a high-dimensional 

feature space in which theoretically a simple linear regression can cope with the complex nonlinear 

regression of the input space, w is a weight vector and b is a bias. Vapnik (1995) introduced the 

convex quadratic optimization question to ensure that extreme solution is optimal, and a 

ε-insensitively loss function is added to Eq. (3): 
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where   and *  are slack variables that penalize training errors by the loss function over the error 

tolerance ε, and C is a positive trade-off parameter that determines the degree of the empirical error in 

the optimization problem. Eq. (4) is solved in a dual form using Lagrangian multipliers and 

Karush-Kuhn-Tucker (KKT) optimality condition. The input vectors are called support vectors. The 

dual Lagrangian form is: 
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with the constraints, 
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where α and α
*
 are Lagrange multipliers, and the optimal desired weight vector of the regression 

hyperplane is: 
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where K(x, xi) is the kernel function. The Eq. (3) can be expressed as: 

    



N

i

i

*

ii bx,xKbfy
1

)()(  xwx  (8) 

In general, Radial basis function (RBF) is used as kernel function (Liu et al, 2009; Safavi and 

Esmikhani, 2013): 

 )exp( ii x-x-)x,x(K   (9) 

   In this study, we define y as the groundwater depth which is an index of groundwater dynamic 

variation and the forecast object, and xk (k=1,2,3,4,5) as the factors which may influence the dynamic 

variation of groundwater for MLR, BPANN and SVM models.  

Twenty groups of data from 1984 to 2003 are used to build and train the models, while ten groups 

of data from 2004 to 2013 are used to test the models. All the data are normalized to a range of 0~1 to 

avoid disturbance of dimension. Absolute Error (ABE), Relative Error (RE), Maximum Error (ME) 

and Average Error (AVE) are used to assess the accuracy of three methods based on true value (TV) 

and simulation value (SV): 
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where N is the number of groups. 

 

3. Results 

3.1 Fitting results and errors 
The equation of MLR model can be expressed as follows based on the twenty groups of data from 

1984 to 2003： 

 
54321 91320351500.2435334901015006310 x.x.x-x.x..ŷ   (13) 

where x1 is precipitation, x2 is groundwater exploitation, x3 is evaporation, x4 is grain yield and x5 is 

GDP. ŷ  is the fitting results for groundwater depth.   

Table 1 Fitting results and errors of MLR, BPANN and SVM models 

Train groups’ number TV/m 
MLR model BPANN model SVM model 

SV/m ABE/m RE/% SV/m ABE/m RE/% SV/m ABE/m RE/% 

1 12.99 15.03 2.04 15.70 13.69 0.69 5.34 13.51 0.52 3.97 

2 13.87 15.64 1.77 12.78 11.37 -2.5 -18.03 14.94 1.07 7.71 

3 15.18 14.61 -0.57 -3.76 14.89 -0.29 -1.92 16.01 0.83 5.45 

4 16.52 15.13 -1.38 -8.36 16.56 0.05 0.3 17.23 0.71 4.33 

5 16.37 16.28 -0.09 -0.56 15.93 -0.44 -2.67 17.48 1.11 6.78 

6 17.01 16.46 -0.55 -3.21 17.72 0.71 4.16 17.95 0.94 5.53 

7 16.24 17.98 1.74 10.74 16.56 0.32 1.98 17.47 1.23 7.60 

8 16.91 17.13 0.22 1.28 17.51 0.6 3.53 18.3 1.39 8.19 

9 18.62 17.32 -1.30 -6.98 19.06 0.44 2.36 19.84 1.22 6.54 

10 19.74 17.96 -1.78 -9.00 20.85 1.11 5.64 21.21 1.47 7.45 

11 21.18 19.01 -2.17 -10.26 20.12 -1.06 -5.02 21.03 -0.15 -0.71 

12 20.61 18.51 -2.09 -10.16 20.29 -0.32 -1.55 21.76 1.15 5.59 

13 17.86 19.47 1.61 9.00 15.41 -2.45 -13.72 18.99 1.13 6.33 

14 18.56 21.21 2.65 14.27 16.03 -2.53 -13.62 19.01 0.45 2.44 

15 20.35 21.95 1.60 7.89 21.21 0.87 4.26 20.03 -0.32 -1.55 

16 21.93 23.20 1.27 5.81 22.88 0.95 4.34 22.58 0.65 2.98 

17 22.90 22.31 -0.59 -2.57 23.8 0.9 3.95 23.53 0.63 2.77 

18 24.33 24.58 0.25 1.03 25.57 1.24 5.1 25.97 1.64 6.73 

19 25.81 24.01 -1.80 -6.98 25.52 -0.29 -1.12 24.17 -1.64 -6.35 

20 26.29 25.45 -0.84 -3.18 26.93 0.64 2.44 24.43 -1.86 -7.06 
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The other two models are also trained based on the twenty groups of data from 1984 to 2003, and 

the optimal fitting results are adopted. The fitting results and errors of the three models are showed in 

Table1 and Figure2. The MEs of MLR model, BPANN model and SVM model are 2.65, -2.53 and 

-1.86, respectively. The AVEs of MLR model, BPANN model and SVM model are 1.32, 0.92 and 1.01. 

The three data-driven models all perform well. The SVM model has the best ability of generalization 

in the sample learning process, because the SVs fluctuate within a narrow range around TVs and all 

the REs are below 10%. The BPANN model performs better than MLR model as a whole and the 

BPANN model has the lowest AVEs, but the SVs fluctuate within a large range around TVs in some 

individual groups. The stability of fitting results for MLR model is worse than other two models. 

Good fitting results do not mean good prediction results for the data-driven models, so it’s necessary 

to examine their prediction capabilities. 

 
Fig. 2 Simulation results of groundwater depth with MLR, BPANN and SVM models 

3.2 Prediction results and errors 

Three models are tested based on the ten groups of data from 2004 to 2013. The Prediction results 

and errors are showed in Table 2 and Figure 3. The MEs of MLR model, BPANN model and SVM 

model are 4.91, -5.09 and 3.39, respectively. The AVEs of MLR model, BPANN model and SVM 

model are 3.16, 2.49 and 1.48. The three data-driven models all perform well. The SVM model has the 

best ability of generalization in the sample learning process, because the SVs fluctuate within a 

narrow range around TVs and most of the REs are below 10%. The BPANN model performs better 

than MLR model as a whole except the test group1, and the SVs also fluctuate within a large range 

around TVs. 
Table 2 Prediction results and errors of three models 

Test groups’ number TV/m 
MLR model BPANN model  SVM model 

SV/m ABE/m RE/% SV/m ABE/m RE/% SV/m ABE/m RE/% 

1 26.91 23.99 -2.92 -10.85 21.82 -5.09 -18.9 29.22 2.31 8.58% 

2 27.87 25.77 -2.1 -7.53 25.52 -2.35 -8.43 29.14 1.27 4.56% 

3 28.32 25.48 -2.84 -10.03 26.89 -1.44 -5.07 29.13 0.81 2.86% 

4 29.43 25.92 -3.51 -11.93 26.85 -2.57 -8.74 29.18 -0.25 -0.85% 

5 29.74 24.91 -4.83 -16.24 30.14 0.4 1.33 30.23 0.49 1.65% 

6 30.6 25.69 -4.91 -16.05 32.26 1.66 5.42 31.69 1.09 3.56% 

7 31.37 27.21 -4.16 -13.26 34.57 3.2 10.2 32.87 1.5 4.78% 

8 32.3 28.34 -3.96 -12.26 27.9 -4.4 -13.62 33.41 1.11 3.44% 

9 32.52 31.18 -1.34 -4.12 31.29 -1.22 -3.76 35.13 2.61 8.03% 

10 32.48 31.49 -0.99 -3.05 29.92 -2.56 -7.87 35.87 3.39 10.44% 
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Fig. 3 Prediction results of three models 

3.3 The influence of parameters for SVM 

   The parameters have a significant effect on the prediction results for the SVM model, especially 

the parameter C which is a positive trade-off parameter that determines the degree of the empirical 

error and the parameter γ which is the main parameter in kernel function of RBF. The optimal C and γ 

are 0.4 and 3.0, which are found by a lot of tests. The results are showed in figure 4 and figure 5. The 

minimum of the maximum RE and the minimum AVE are 10.44% and 1.43m in the tests. The RE and 

AVE changes significantly with the change of C values in the range of 0~1 and the change of γ values 

in range of 0~6.  

 
Fig. 4 Influence of parameter C on the results of prediction with γ=3 

  
Fig. 5 Influence of parameter γ on the results of prediction with C=0.4 

 

4. Conclusions 
   Three data-driven models are used to predict the groundwater depth in Shijiazhuang plain. 

Prediction, evaporation, groundwater exploitation, grain yield and GDP are chosen as the key factors 

which may influence the groundwater depth. These five factors involve natural, anthropic, biological 

and economic influence. The BPANN and SVM models perform well and can be used to forecast the 

groundwater depth in Shijiazhuang plain.  
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   ABE, RE, ME and AVE are used to assess the accuracy of three methods. The prediction results of 

BPANN model and SVM model, which are nonlinear regression models, are superior to the linear 

regression model MLR model. Although the SVs of BPANN model fluctuate within a large range 

around TVs in some train and test groups, the accuracy is better than MLR model in general. The 

prediction accuracy and stability of SVM model are better than the other two models. The ME and 

AVE values of the SVM model are -1.86 and1.01 for fitting results, while the values are 3.39 and1.48 

for prediction results. The maximum RE of SVM model is 10.44% and minimum RE is -0.85%.  

   The values of parameter C and γ have a significant effect on the prediction results for the SVM 

model. The optimal C and γ is 0.4 and 3.0, respectively, which are found by a lot of tests. The 

minimum of the maximum RE and the minimum AVE are 10.44% and 1.43m in the tests. 

   The results of this study can provide a reference for the forecasting of groundwater resources using 

data-driven models in the study area. However, monthly prediction of the groundwater depth has not 

been considered in this study, and the contributions of the five factors to the groundwater depth 

changes should be further studied in depth. 
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