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Abstract: Evaluation and prediction of groundwater levels via models can help manage groundwater resources. To
investigate and predict the variation of groundwater dynamics in the plain of Shijiazhuang, the capital city of Hebei,
three different data-driven models for researching the dynamics are assessed, including Multiple Linear Regression
(MLR), Back-Propagation Artificial Neural Network (BPANN) and Support Vector Machines (SVM). Groundwater
depth, precipitation, evaporation, groundwater exploitation, grain yield and Gross Domestic Product (GDP) records
from 1984 to 2013 are used. We discuss the modeling process and accuracy of the three methods in the assessment of
their relative advantages and disadvantages, based on Absolute Error (ABE), Relative Error (RE), Maximum Error (ME)
and Average Error (AVE). The results showed that both SVM and BPANN models had sufficiently high accuracy in
reproducing groundwater levels, while SVM performed better. This may provide a method and reference for
forecasting of groundwater resources in this region.
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1. Introduction

In arid and semi-arid regions like North China, groundwater plays a more important role in
agricultural, industrial and environmental uses than other regions. Because groundwater can cover the
shortage of water which is caused by uneven distribution of surface water in time and space (Cao et al,
2013). However, the groundwater level has decreased dramatically because of over-exploitation in
North China, which has been one of the most serious overdraft areas (Yuan and Shen, 2013). This
phenomenon has attracted researchers’ extensive attentions.

Groundwater dynamic forecasting is an important method for groundwater management. Physical
descriptive model and data-driven model are two classes of dynamic prediction models (Knotters and
Bierkens, 2000). However, considering the detailed data requirements in the application of the
physical descriptive model, the data-driven model is a good choice when the data are in short and the
groundwater system is complex. Multiple Linear Regression (MLR), Back-Propagation Atrtificial
Neural Network (BPANN) and Support Vector Machines (SVM) are popular data-driven models used
for forecasting the groundwater level (Coppola et al, 2003; Lin et al, 2006; Shiri et al, 2013). Among
these methods, MLR is a linear regression model and the simplest one, while the other two models are
nonlinear regression model and more complex. Some studies indicate that BPANN model and SVM
model perform better, especially the SVM model (Nayak et al, 2006; Shirmohammadi et al, 2013), but
the predictions of these two models are not always good for all places due to the complexity of
hydrogeological conditions and groundwater flow in different regions (Ping et al, 2013).

Shijiazhuang is the capital city of Hebei province in North China. The groundwater level declines
about 30m during the past three decades in this city. There are some studies focusing on the reason
why the groundwater level declines continuously and the negative effects caused by the decrease of
groundwater level in Hebei province and North China plain. However, there is little research done on
the selection of the data-driven models for groundwater dynamical prediction in Shijiazhuang plain.

In this study, MLR, BPANN and SVM models are used to forecast the groundwater depth and the
prediction accuracy of these three models is compared. Natural, anthropic, biological and economic
factors which may influence the groundwater depth are considered. It can provide a new method for
the groundwater dynamical prediction in Shijiazhuang plain, and it can also be treated as a
complement for research methods of the groundwater forecasting.

2. Study area and methods
2.1 Study area
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Shijiazhuang plain (from lat 37<33' to lat 3842'N and from long 11318’ to long 114<41’E) is
located in central and eastern Hebei province and belongs to the Bohai Sea Economic Zone. The total
area is 8157 km’. The average annual prediction is about 490 mm and average air temperature ranges
from -0.8<C in the winter season to 25.9<C in the summer season. The plain comprises Shijiazhuang
city and 13 counties, including Xingtang, Luguan, Yuanshi, Gaoyi, Xinle, zhengding, Luancheng,
Zhaoxian, Wuji, Gaocheng, Jinzhou, Xinji and Shenze. The location of the study area and the
distribution of the monitoring wells and meteorological stations are showed in figure 1.

2.2 Data and indices

14 monitoring wells covering the whole study are are chosen to study the groundwater dynamic
variations. The observational data of annual groundwater depth for the 14 monitoring wells, annual
precipitation and evaporation data at 13 meteorological stations from 1984 to 2013 are used in this
study. Data of the annual groundwater exploitation, grain yield and Gross Domestic Product (GDP)
for the whole study area are obtained from 1984 to 2013. The observational data of precipitation and
evaporation are provided by the National Meteorological Information Center of China Meteorological
Administration (available at http://www.nmic.gov.cn/).

Prediction, evaporation, groundwater exploitation, grain yield and GDP are chosen to be the key
factors, which are closely related to groundwater dynamic changes. Prediction and evaporation are
main natural factors which influence groundwater recharge and loss. Groundwater exploitation is main
anthropic factor which is the major reason for groundwater descending in the study area in recent
decades (Liu et al, 2001). Grain yield is the main biological factor which reflects the crop water
consumption, especially groundwater consumption in the study area (Cao et al, 2014). GDP is a
comprehensive index of reflecting the regional economic strength and pressure of groundwater used.
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Fig. 1 Location of the study area and the distribution of the monitoring wells and meteorological stations

2.3 MLR model
The MLR model is often used for prediction by establishing the relationship between the forecast
factors and the forecast objects. The general equation is as follows:
9: Po + PX, F o Py Xy (1)
Where pi (k=0,...,N) are the parameters generally estimated by least squares and x, (k=1,...,N) are the
explanatory variables (forecast factors). y is the forecast object.

2.4 BPANN model
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The Atrtificial Neural Network (ANN) is an information processing system composed of many
nonlinear and densely interconnected processing elements or neurons, which is patterned after the
biological nervous system. This mathematical structure consists of input, hidden, and output layers
with their nodes and activation functions. The back-propagation algorithm can effectively train the
network (Rumelhart et al, 1986), and it does not require information about the complex nature of the
underlying process under consideration to be explicitly described in mathematical form. If the neuron
is the jth one in the present layer, while the inputs which it receives from the other n neurons are X,
Xg, e e Xn, respectively in the previous layer. The connection weights between the jth neuron and the

other n neurons are Wyj, Woj,******, Wy;, respectively. The mathematical expression is as follows:

y; = f(iwjixi+bjj @)

In this study, the ANN model is built with one hidden layer trained by BPA .The activation
function consists of a log-sigmoid function in the hidden layer and a linear function in the output layer.
ANNs with this configuration are the most commonly used form, which have improved the
extrapolation ability. The input layer, hidden layer and output layer have respectively five nodes, thirty
nodes and one node. To avoid being captured in some minimum, a momentum term is added in the
weight updating process, which diminishes drastic fluctuation in weight changes over consecutive
iterations.

2.5 SVM model

The SVM model is based on Vapnik-Chervonenkis (VC) demension and structural risk minimum
principle (Vapnik, 1995; Vapnik, 1998). SVM provides a new approach to solve the nonlinear and high
dimension problem with small sample set. The basic idea of SVM is to use linear model to implement
nonlinear class boundaries through some nonlinear mapping of the input vector into the
high-dimensional feature space. Given a set of N samples of {x,,y, 1\, (X,is the input vector, Y, is

the corresponding output value), and the regression function of SVM can be expressed as:
y=f(x)=w-¢(x)+b 3)
Where 4 denotes a nonlinear transfer function that maps the input vectors into a high-dimensional

feature space in which theoretically a simple linear regression can cope with the complex nonlinear
regression of the input space, w is a weight vector and b is a bias. Vapnik (1995) introduced the
convex quadratic optimization question to ensure that extreme solution is optimal, and a
e-insensitively loss function is added to Eq. (3):

min g(w) =%HWH2 +Ck2N:;(§k +&)

) Vi —Wh(x)-b<g+&,
SUDJECLL0 )\ Ty(x, J+b—y, <e+&, k=12,--,N (4)
&8 20
where ¢ and ¢ are slack variables that penalize training errors by the loss function over the error

tolerance ¢, and C is a positive trade-off parameter that determines the degree of the empirical error in
the optimization problem. Eq. (4) is solved in a dual form using Lagrangian multipliers and
Karush-Kuhn-Tucker (KKT) optimality condition. The input vectors are called support vectors. The
dual Lagrangian form is:

Wlea )= oo oy = b bl -3 ) ©
i,j=1 i=l i=l
with the constraints,
N
;(ai—ai):o (i=12,--N) (6)
0<a,a; <C

where « and o are Lagrange multipliers, and the optimal desired weight vector of the regression
hyperplane is:
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WzZN:(ai_ai*)K(X'Xi) (7)
i=1
where K(x, X;) is the kernel function. The Eq. (3) can be expressed as:
y= f(x):w-¢(x)+b=i(ai—ai*)K(x,xi)+b (8)

In general, Radial basis function (RBF) is used as kernel function (Liu et al, 2009; Safavi and
Esmikhani, 2013):
K(x,% ) =ep(-7]xx]) ©)

In this study, we define y as the groundwater depth which is an index of groundwater dynamic
variation and the forecast object, and x, (k=1,2,3,4,5) as the factors which may influence the dynamic
variation of groundwater for MLR, BPANN and SVM models.

Twenty groups of data from 1984 to 2003 are used to build and train the models, while ten groups
of data from 2004 to 2013 are used to test the models. All the data are normalized to a range of 0~1 to
avoid disturbance of dimension. Absolute Error (ABE), Relative Error (RE), Maximum Error (ME)
and Average Error (AVE) are used to assess the accuracy of three methods based on true value (TV)
and simulation value (SV):

X-X;

ABE=SV-TV
RE=ABE/TV (10)
ME = max(ABE)
AVE =|ABE|/ N
where N is the number of groups.

3. Results

3.1 Fitting results and errors
The equation of MLR model can be expressed as follows based on the twenty groups of data from

1984 to 2003:

y =0.0631+0.1015x, +0.3349x, - 0.2435x, +0.3515x, +0.9132x, (13)
where X, is precipitation, x, is groundwater exploitation, xs is evaporation, x, is grain yield and xs is
GDP. y is the fitting results for groundwater depth.

Table 1 Fitting results and errors of MLR, BPANN and SVM models

MLR model BPANN model SVM model
SVIm ABE/m RE/% SV/Im ABE/m RE/®% SVIm ABE/m RE/%

Train groups’ number  TV/m

1 1299 15.03 2.04 1570 13.69  0.69 534 1351 052 3.97
2 13.87 1564 177 1278 1137 -25  -1803 1494 107 7.71
3 1518 1461 -057 -376 1489 -029 -192 16.01 0.83 5.45
4 16,52 1513 -138 -836 1656  0.05 03 1723 071 4.33
5 16.37 1628 -009 -056 1593 -044 -267 1748 111 6.78
6 17.01 1646 -055 -321 1772 0.71 416 1795 094 5.53
7 16.24 1798 174 10.74 1656  0.32 198 1747 123 7.60
8 1691 1713 0.22 128 1751 0.6 353 183 1.39 8.19
9 1862 1732 -130 -6.98 1906 0.44 236 1984 122 6.54
10 1974 1796 -1.78 900 2085 111 564 2121 147 7.45
11 2118 1901 -217 -1026 2012 -1.06 -5.02 2103 -015 -0.71
12 2061 1851 -2.09 -1016 2029 -0.32 -155 2176 115 5.59
13 17.86 1947 161 9.00 1541 -245 -1372 1899 113 6.33
14 1856 2121  2.65 1427 1603 -253 -13.62 1901 045 2.44
15 2035 2195 160 789 2121  0.87 426 2003 -0.32 -155
16 2193 2320 1.27 581 2288 0.95 434 2258  0.65 2.98
17 2290 2231 059 -257 238 0.9 395 2353 0.63 2.77
18 2433 2458  0.25 103 2557 124 51 2597 164 6.73
19 2581 2401 -180 -698 2552 -0.29 -112 2417 -164 -6.35
20 2629 2545 -0.84 -318 2693  0.64 244 2443 -186  -7.06
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The other two models are also trained based on the twenty groups of data from 1984 to 2003, and
the optimal fitting results are adopted. The fitting results and errors of the three models are showed in
Tablel and Figure2. The MEs of MLR model, BPANN model and SVM model are 2.65, -2.53 and
-1.86, respectively. The AVEs of MLR model, BPANN model and SVM model are 1.32, 0.92 and 1.01.
The three data-driven models all perform well. The SVM model has the best ability of generalization
in the sample learning process, because the SVs fluctuate within a narrow range around TVs and all
the REs are below 10%. The BPANN model performs better than MLR model as a whole and the
BPANN model has the lowest AVEs, but the SVs fluctuate within a large range around TVs in some
individual groups. The stability of fitting results for MLR model is worse than other two models.
Good fitting results do not mean good prediction results for the data-driven models, so it’s necessary
to examine their prediction capabilities.
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Fig. 2 Simulation results of groundwater depth with MLR, BPANN and SVM models

3.2 Prediction results and errors

Three models are tested based on the ten groups of data from 2004 to 2013. The Prediction results
and errors are showed in Table 2 and Figure 3. The MEs of MLR model, BPANN model and SVM
model are 4.91, -5.09 and 3.39, respectively. The AVEs of MLR model, BPANN model and SVM
model are 3.16, 2.49 and 1.48. The three data-driven models all perform well. The SVM model has the
best ability of generalization in the sample learning process, because the SVs fluctuate within a
narrow range around TVs and most of the REs are below 10%. The BPANN model performs better
than MLR model as a whole except the test groupl, and the SVs also fluctuate within a large range
around TVs.
Table 2 Prediction results and errors of three models

MLR model BPANN model SVM model
SVIm ABE/m RE/% SV/m ABE/m RE/% SV/Im ABE/m RE/%

Test groups’ number  TV/m

1 2691 2399 -292 -1085 2182 -5.09 -189 2922 231 8.58%
2 2187 2571  -21 -7.53 2552 -235 -843 2914 127 4.56%
3 2832 2548 -284 -1003 2689 -144 507 2913 081 2.86%
4 2943 2592 -351 -1193 2685 -257 -874 2018 -025 -0.85%
5 29.74 2491 -483 -1624 30.14 0.4 133 3023 049 1.65%
6 306 2569 -491 -16.05 3226  1.66 542 3169 1.09 3.56%
7 3137 2721 -416 -1326 3457 3.2 102 32.87 15 4.78%
8 323 2834 396 -1226 279 44 -1362 3341 111 3.44%
9 3252 3118 -134  -412 3129 -122 -376 3513 261 8.03%
10 3248 3149 -099 -305 2992 -256 -7.87 3587 339 10.44%




7th International Water Resources Management Conference of ICWRS,
18-20 May 2016, Bochum, Germany, IWRM2016-119-1

Test groups' number

0 2 4 6 8 10

20 . : .
g
N
=4
3 28
g
[
§ 7 ——TV
3 —a—MLR
O

36 —+—BPANN

—_—
w0l SVM

Fig. 3 Prediction results of three models

3.3 The influence of parameters for SVM

The parameters have a significant effect on the prediction results for the SVM model, especially
the parameter C which is a positive trade-off parameter that determines the degree of the empirical
error and the parameter y which is the main parameter in kernel function of RBF. The optimal C and y
are 0.4 and 3.0, which are found by a lot of tests. The results are showed in figure 4 and figure 5. The
minimum of the maximum RE and the minimum AVE are 10.44% and 1.43m in the tests. The RE and
AVE changes significantly with the change of C values in the range of 0~1 and the change of y values
in range of 0~6.
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Fig. 4 Influence of parameter C on the results of prediction with y=3

16 35 -
S 3
o 14
& E 25
g S
S < 2t
=12+
©
= 15 |

10 1 1 1 1 J 1 1 1 1 1 J

0 2 4 6 8 10 0 2 4 6 8 10
¥ ¥

Fig. 5 Influence of parameter y on the results of prediction with C=0.4

4. Conclusions

Three data-driven models are used to predict the groundwater depth in Shijiazhuang plain.
Prediction, evaporation, groundwater exploitation, grain yield and GDP are chosen as the key factors
which may influence the groundwater depth. These five factors involve natural, anthropic, biological
and economic influence. The BPANN and SVM models perform well and can be used to forecast the
groundwater depth in Shijiazhuang plain.
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ABE, RE, ME and AVE are used to assess the accuracy of three methods. The prediction results of
BPANN model and SVM model, which are nonlinear regression models, are superior to the linear
regression model MLR model. Although the SVs of BPANN model fluctuate within a large range
around TVs in some train and test groups, the accuracy is better than MLR model in general. The
prediction accuracy and stability of SVM model are better than the other two models. The ME and
AVE values of the SVM model are -1.86 and1.01 for fitting results, while the values are 3.39 and1.48
for prediction results. The maximum RE of SVM model is 10.44% and minimum RE is -0.85%.

The values of parameter C and y have a significant effect on the prediction results for the SVM
model. The optimal C and y is 0.4 and 3.0, respectively, which are found by a lot of tests. The
minimum of the maximum RE and the minimum AVE are 10.44% and 1.43m in the tests.

The results of this study can provide a reference for the forecasting of groundwater resources using
data-driven models in the study area. However, monthly prediction of the groundwater depth has not
been considered in this study, and the contributions of the five factors to the groundwater depth
changes should be further studied in depth.
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