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Abstract

Ideally, semi-distributed hydrologic models should offer better streamflow simulations than
lumped models, along with spatially-relevant water resources management solutions. How-
ever, the spatial distribution of model parameters raises issues related to the calibration
strategy and to the identifiability of the parameters. To analyse these issues, we propose to
base the evaluation of a semi-distributed model not only on its performance at streamflow
gauging stations, but also on the spatial and temporal pattern of the optimised value of its
parameters. We implemented calibration over 21 rolling periods and 64 catchments, and we
analysed how well each parameter is identified in time and space. Performance and param-
eter identifiability are analysed comparatively to the calibration of the lumped version of
the same model. We show that the semi-distributed model faces more difficulties to identify
stable optimal parameter sets. The main difficulty lies in the identification of the parameters
responsible for the closure of the water balance (i.e. for the particular model investigated,
the intercatchment groundwater flow parameter).

keywords hydrological modelling, semi-distribution, parameter stability, time, space

1 Introduction

1.1 What hydrological good sense suggests

Developing modelling tools that help to understand the spatial distribution of water resources
is a key issue for better management. The dynamics of streamflow depends on (i) the spatial
variability of precipitation (which, a priori, should be better handled by a semi-distributed hydro-
logical model), (ii) the heterogeneity of catchment behavior (which can be dealt explicitly with
by spatially-variable model parameters), and, increasingly, (iii) localized human regulations (for
instance, water reservoirs). Since calibration is generally based on discharge measurements at the
outlet of the catchment only, and gauging stations are not available everywhere, semi-distributed
hydrological models are often difficult to parameterize. As argued by Pokhrel and Gupta (2011),
difficulties are due to the smoothing effect of catchments and to the dispersive effect of flow rout-
ing combined with numerical issues and measurement uncertainty. The authors state that the
impact of spatial variability could become “virtually non-detectable by conventional performance
measures by the time the water reaches the catchment outlet”.

This raises the need to better understand how well parameters are identified in a semi-distributed
model compared to a lumped model. The variability of catchment model parameters calibrated
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over different periods (”time variability”) is one way of approaching this question. Indeed, as
reminded by Merz et al. (2011), parameters of a rainfall-runoff model are supposed to represent
stable catchment conditions, while the time-varying conditions are supposed to be triggered by the
time-series of meteorological inputs. Thus, optimised parameter values should not be overly sensi-
tive to changes of climatic conditions, and one would expect a semi-distributed model to be more
stable than a lumped one (because the parameters of the lumped model would have to account
implicitly for changing spatial precipitation patterns).

1.2 What the literature says

However, literature provides many examples showing that this assumption is hardly satisfied. Merz
et al. (2011) raise two main difficulties. First, problems in model structure and data measurements
tend to be compensated by calibration. For instance, Wagener et al. (2003) identify inconsistencies
in the structure of a rainfall-runoff model by highlighting instabilities of the optimal values of the
parameters between periods with and without rainfall events. In contrast, Juston et al. (2009)
found that data subset of their input data (from daily to quaterly sampling intervals) can provide
very similar constraints on model calibration and parameter identification.

Secondly, conditions of the catchment itself may change over time, which consequently, and
understandably, shifts optimal parameters of the model, and justifies rigourous evaluations of the
robustness of the models (Thirel et al., 2015). For instance, changes of land use might directly
impact optimal parameter sets (Andréassian et al., 2003; Brown et al., 2005; Verstegen et al.,
2016). Trends on parameters can also be related to changes in climatic conditions (Merz et al.,
2006; Merz and Blöschl, 2009). On a study based on 273 Austrian catchments, Merz et al. (2011)
attribute a doubling of the parameter that controls runoff generation in their model to be related
to hydrological changes (such as higher evapotranspiration and drier catchment conditions) rather
than calibration artifacts. For about one third of 17 African catchments, Niel et al. (2003) find
their model parameters to be unstable, but they did not identify any climate-related reason.
Wilby (2005) analyses this question in the context of climate change impact assessment for the
River Thames. The author finds model parameters to be highly sensitive to training periods,
and recommends the quantitification of those large uncertainties due to parameter instability,
identifiability and non-uniqueness. Similarly, Brigode et al. (2013) found that the uncertainty
due to the climate characteristics of the calibration period is higher than the uncertainty in the
estimation of parameters that is often quantified on the basis of Bayesian inference. They attribute
this finding to a lack of robustness of the model and recommend more efforts to be put into this
aspect.

1.3 Scope of the paper

This paper investigates the procedure of parameter identifiability in a semi-distributed model
by comparing model calibration schemes and results with a lumped model on which it is based.
From this comparison, we address two main questions: 1) Does spatial distribution of parameters
interfere with parameters identifiability? Indeed, one could hope that applying parameters to a
more geographically-limited area tends to facilitate their identification. 2) What are the parameters
that are the most variable in the lumped and in the semi-distributed models? In this way, we
aim to diagnose which components of the model are the least robust, in the sense that their
parameterisation is difficult to transpose in time and space.
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2 Material and methods

2.1 Study area and hydro-meteorological data

The model is implemented in Eastern France, close to the border with Germany, over 64 sub-
catchments of French tributaries of the River Rhine (Fig. 1), namely the rivers Moselle, Sarre
and the smaller tributaries of the Rhine located in the Vosges massif. Catchments size vary from
27 km2 to 770 km2 and this represents a total area of about 4,340 km2. Climate is predomi-
nantly oceanic with continental influence. Annual precipitation (P) varies from about 700 mm in
the plaines to about 1600 mm in the Vosges massif. Average daily temperature (T) and poten-
tial evapotranspiration (PE) in the catchment vary from 7◦C to 10◦C and 540 mm to 690 mm,
respectively.

The two hydrological models implemented (lumped and semi-distributed) require daily time
series of P and PE as input data. We used climate data from the SAFRAN meteorological reanalysis
of Météo-France (Vidal et al., 2010), which is provided on a square grid of 8 km x 8 km. Discharge
data were extracted from the French Hydro database (http://www.hydro.eaufrance.fr) at the daily
time step. They were used to perform the calibration and the evaluation of the models. The study
period is 1971-2000.

Figure 1: Location of the study area (left), and average annual precipitaion (centre) and an-
nual potential evapotranspiration (right) for each sub-catchment (climate data are
estimated from the 1971-2000 SAFRAN database).

2.2 The GR5J lumped and GRSD semi-distributed rainfall-runoff mod-
els

The GRSD semi-distributed rainfall-runoff model was developed by Lerat (2009) and Lobligeois
(2014). It is based on the GR5J lumped model (Fig. 2) proposed by Le Moine (2008), which has
five free parameters to calibrate (Tab. 1). The main components of the model are two stores:
a production store (with maximum capacity X1) and a routing store (capacity X3), which is
filled by the output of a unit hydrograph (of time base X4). Two other parameters, X2 and X5,
are used to quantify the intercatchment groundwater flows (IGF). In order to account for snow
accumulation and melt, the model is combined with a degree-day snow module (Valéry et al.,
2014), which contains two additional parameters (CTG and Kf ). However, in our study, these
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parameters were not calibrated and fixed at their default values, respectively set at 0.2 and 4.5
mm · ◦C−1, as proposed by previous studies in France (Valéry et al., 2014).

Model GR5J GRSD Descriptionparameter
X1 Free Free Production store capacity [mm]
X2 Free Free Groundwater exchange coefficient [mm · d−1]
X3 Free Free Routing store capacity [mm]
X4 Free Free Time base of the unit hydrograph [d]
X5 Free Free Threshold for groundwater exchange [−]
C - Free Average streamflow velocity [m · s−1]

CTG Fixed Fixed Ponderation coefficient of the snow thermic state [-]
Kf Fixed Fixed Degree-day factor [mm · ◦C−1]

Table 1: List of the parameters for the semi-distributed conceptual rainfall–runoff model GRSD.

The semi-distributed model is applied on sub-catchments. The delineation of sub-catchments
is performed only at gauging stations points. The lumped GR5J model is applied on hydrological
units composed of Upstream catchments or intermediate sub-catchments (drained area between
downstream and upstream stations). In that way, each hydrological unit receives its own meteo-
rological inputs (P and PE) and uses a distinct parameter set (see section 2.3.2).

The outflow of each GR5J model is finally routed to its downstream catchment using a linear
lag propagation model (Bentura and Michel, 1997). Previous studies have shown that this propa-
gation model gives a satisfactory level of efficiency compared to more sophisticated channel routing
methods (Lobligeois et al., 2014). This routing functionality implies an additional free parameter
(compared to the lumped model GR5J) that needs to be calibrated on each hydrological unit: the
average flow velocity C.

(a) GR5J (b) GRSD

Figure 2: Schematic representation of the GR5J and GRSD semi-distributed model (from Lobli-
geois et al., 2014)
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2.3 Methodology

2.3.1 Goodness of fit criteria

In order to quantify the agreement between simulations (S) and observations (O), we used the
Kling-Gupta Efficiency (KGE) (Gupta et al., 2009), which is based on a decomposition of the
Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970). Moreover, in order to evaluate performances
on high and low flows, we used an objective function KGEm composed of two criteria (Eq. 1): a
KGE applied on discharge values to evaluate high flows and a KGE applied on inverse discharge
values to evaluate low flows. Both criteria are applied on the selected discharge time series.
Similarly to the KGE criteria, KGEm varies between −∞ and 1, which is its optimal value.

KGEm(S,O) = 0.5 ·
(
KGE(S,O) +KGE(

1

S + ε
,

1

O + ε
)

)
(1)

where O and S are the observed and simulated discharges. In order to face numerical problems
in case of zero discharge when using the inverse transformation, an ε constant is used. If at least
one value of S or O is null, then ε is set to 1% of the mean value of O. Otherwise ε is set to zero
(Pushpalatha et al., 2012).

2.3.2 Calibration strategy of the semi-distributed model

Following Lerat et al. (2012), we performed a multi-site calibration of the GRSD semi-distributed
model. Streamflow data at interior points are used to calibrate the model at one outlet. Each
intermediate catchment is allowed to have a different parameter set. This is done sequentially,
from upstream to downstream points: once the upstream catchment is calibrated, its parameters
remain fixed during the calibration of the downstream intermediate catchment.

Sequential calibration is a common strategy for semi-distributed models (see e.g.: Andersen
et al., 2001; Moussa et al., 2007). It needs as much calibration runs as there are interior points.
However, it only uses successive single objective functions, rather than using multi-response ob-
jective function to optimize every interior points simulataneously.

2.3.3 Rolling calibration periods

Similarly to Coron et al. (2012), we calibrated the parameters using 10-year long consecutive
periods between 1971 and 2000, and used the rest of the time series (20 years) for validation (Fig.
3). This is equivalent to 21 split-sample tests (Klemeš, 1986) performed every year.

Following the work of Merz and Blöschl (2009) and Merz et al. (2011), this enables to provide
21 parameter sets for each of the 64 catchments in order to analyse the temporal and spatial
changes of the calibrated parameters. This testing strategy is applied to both models, the lumped
model and the semi-distributed model. Parameter variability can thus be compared between the
two modelling strategies.
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Figure 3: Illustration of the rolling calibration period methodology: 21 parameter sets θ can be
identified for each catchment.

3 Results and discussion

3.1 Performance of the streamflow simulations

The comparison of the goodness-of-fit between the lumped GR5J model and the semi-distributed
GRSD model shows slightly better results of the lumped model during calibration and identical
results during validation (Fig. 4). One would expect higher performances of the semi-distributed
model because it accounts for spatial heterogeneities and nonlinearities that can influence the
response of the system. However, literature provides numerous examples of similar results (e.g.,
Reed et al. (2004)), where lumped models perform better. To explain such behaviour, calibration
strategies, which are not as well defined for semi-distributed models as for lumped models, are
often pointed out (Pokhrel and Gupta, 2011).

As expected, performance on upstream catchments are similar between the lumped and the
semi-distributed catchments. Indeed, for those catchments, models are strictly identical (section
2.2). Minor differences can be explained by calibration artifacts and by the fact that both models
are implemented in two different modelling environments.

We did not detect any significant performance trends in time. Calibration performances are
rather stable, whereas validation performances are subject to more fluctuations. These are similar
between the lumped and the semi-distributed models. Results illustrate that both models are po-
tentially able to produce stable efficiency (KGEm) all along 1971-2000 period, but each calibration
period does not provide the same robustness (as observed by validation).
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Figure 4: Quantile values of the goodness-of-fit (KGEm) during calibration and validation over
the 64 catchments for the lumped model (GR5J) and the semi-distributed model
(GRSD) along the 21 calibration periods.

3.2 Temporal trends and variability of parameters

Here, we compare the temporal trends and the variability of the parameters among each other,
and between the two models. The distribution of parameter values according to the 21 calibration
periods is given in Fig. 5.

As expected from the structure of the models (section 2.2), upstream catchments have similar
parameter sets for both models, whereas different optimum parameter values are obtained for
downstream catchments. The main differences concern the parameter X1 (capacity of production
store), which is higher for the lumped model than for the semi-distributed model. This means
a more dynamic response of the downstream hydrological units of the GRSD model and lower
evapotranspiration losses. The smoothing of the hydrodrographs may, in fact, be achieved by the
succession of responses of the sub-catchments, from upstream to downstream.

The smaller production store in GRSD appears to be compensated by X2 and X5. Indeed,
those parameters aim to quantify intercatchment groundwater flows (IGF), which is the amount of
water that daily gets out/in of the catchment to fill/empty the routing store. The X2 parameter

quantifies IGF according to a linear relation with the routing store rate (Srout(t)
X3

), whereas X5
allows changing the sign of IGF during the year (Eq. 2). In GRSD, where we observe greater
negative values of X2 and smaller values of X5 (Fig. 5), IGF may be higher to compensate lower
evapotranspiration losses in the production store.

IGF (t) = X2 ·
(
Srout(t)

X3
−X5

)
(2)

By looking at parameter values according to the calibration periods, a relative stability of the
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median value appears among catchments. Only the parameters X2 and X5 in GRSD tend to
slowly decrease. These trends are not observed in the lumped model, whose parameters appear
more stable for downstream catchments.

From the relative stability in Fig. 5, one could conclude about overall relative robustness of the
calibration. However, this does not evaluate parameter stability for each catchment. Therefore, for
each hydrological unit of both models, we calculated the coefficient of variation of the parameter
values using the 21 parameter sets (Fig. 6a).
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Figure 5: Quantile values of optimised parameter values according to the calibration periods for
the 64 catchments.

First, results clearly show a higher temporal variability of the parameters of the semi-distributed
model, comparatively to the variability observed with the lumped model (Fig. 6a). It appears
that limiting the geographical extent of the area on which the parameter set is applied does
not facilitate its identification. One reason for this can come from the calibration strategy, in
which one sub-catchment receives simulated outflows from upstream catchments. This upstream
volume of water can already represent most of the observed downstream hydrograph. Therefore,
parameters applied just on a downstream intermediate sub-catchment might have a minor impact,
with problems of sensitivity. Thus calibration may converge to more unstable values, which brings
only small improvements to downstream simulations.

Second, it is shown that the most important temporal instability of parameter values is related
to the parameter X2, followed by X3 and X5 parameters. All three parameters are used to
quantify IGF (Eq. 2). If parameter X2 is showing the most important temporal instability for
both models, it is not the case of parameter X5 with the lumped model, where it appears to be
one of the least variable parameter (just after parameter X4). This result highlights the problems
encountered in quantifying IGF. It seems to be the least identifiable parameter in the lumped
model (with high variability of parameter X2). The problem of IGF parameter identifiability is
even exacerbated with the semi-distributed model. This might be due to the high inter-dependency
of parameters in the formulation of IGF (Eq. 2) in the models. Future improvements of the GRSD
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semi-distributed model should focus on this issue.
The most stable parameter appears to be X4 (time base of unit hydrograph), which is consistent

with previous works (Lobligeois, 2014), where it has been shown that this parameter can easily be
related to catchment physical characteristics, such as catchment size.

3.3 Spatial variability of parameters

We also analysed the spatial variability of the parameter values, considering variability between
parameters and between models. For this, we estimated the coefficient of variation of the parameter
values among catchments (one performed by calibration period). The aim is to quantify how much
parameters can be different between catchments.

Similarly to the temporal variability of parameters, spatial variability appears to be higher
with the semi-distributed model than with the lumped model. However, contrary to the temporal
variability, spatial variability is more expected here, as one of the objectives of a semi-distributed
model is precisely to consider those spatial heterogeneities of the hydrological response. However,
we noticed again that parameters X1 and X2 are the most variable parameters for the semi-
distributed model. They appear therefore among the most variable parameters for both analyses,
the time variability and the space variability analyses. These two parameters control water balance.
Similarly to the temporal variability, they are expected to be highly variable in space in order to
get along with sequential observations at each downstream station during calibration.
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(a) Temporal variability
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(b) Spatial variability

Figure 6: Variability of parameters values among calibration periods within one catchment (64
catchments summarized by boxplots, Fig. 6a) and variability of parameters values
among catchments within one calibration period (21 calibration periods summarized
by boxplots, Fig. 6b). Boxplot limits describe the 10th, 25th, 50th, 75th and 90th
quantiles.

Spatial variabilities are not constant over time (as observed by the boxplot widths on Fig.
6b). Particularly, the spatial variability of parameter X3 (capacity of routing store) is stable for
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the lumped model, whereas it appears to be very dependent on the calibration period for the
semi-distributed model. For instance, it has the highest spatial variability during the ”1984-1994”
calibration period, and is among the lowest variability just 3 years after (not shown). Once again,
a robustness problem of GRSD is identified and needs to be addressed in further investigations.

4 Conclusion

In this paper, we compared the spatio-temporal variability of the parameters of a semi-distributed
model (GRSD) and a lumped model (GR5J) on which it is based. We applied a rolling calibration
strategy over 21 periods and 64 French catchments.

A classical evaluation of discharge simulations using goodness-of-fit criteria was applied to
the outputs of both models. It illustrates a slightly better performance of the lumped model
during calibration, and similar performance of the models during validation. However, further
investigation on parameter identifiability highlighted much higher temporal variabilities of the
semi-distributed model. This study also showed that it is more difficult to identify catchment’s
specific parameter sets with the semi-distributed model than with the lumped model.

The methodology applied also enabled to identify the more unstable parameters. Results
showed that the parameters related to the quantification of intercatchment groundwater flows
(IGF) are the most unstable. We conclude that further modelling efforts should focus on the
model structure in order to better quantify IGF.

This work also emphasizes the fact that the calibration strategy and the evaluation approach
of a semi-distributed model should not focus only on goodness-of-fit performance, but also on
parameter identifiability, especially if the model aims to be used to explore future scenarios in a
changing world. Such an approach would also facilitate the application of the model at ungauged
locations, since parameters that depict high variability in time and space might be more difficult
to regionalize.
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